PAGE
10

EP241 Supplementary Notes

Here are some supplementary lecture notes for EP241. These notes are only supplementary for reference and are not meant to replace lecture notes or the course book.

Lecture 1

fortran statements have the following functions:

· Declaration of quantities

 REAL E,F

· Input/Output (I/O) operations
 PRINT *, E,F

· Assignments

 E = 3.54

· Arithmetic operations

 E = 2.0 -(F*H/4.0)**3

· Arithmetic/Logical comparisons
 IF (A .LT. B) THEN

· Branching

 GO TO 50

· Loops

 DO I=1,10
END DO

Characters in fortran
Fortran accepts only English characters usually in upper and lower case. Special characters, such as = () & , have special meaning.

Lecture 2

Numbers in fortran
	Type
	Example

	INTEGER
	0 +15 -15 437 -32768 +32767

	REAL
	-34.7 1.0 1.62E-6 (6 to 7 digits E(38)

	DOUBLE PRECISION
	1.626563437D-6 (15 to 16 digits E(308)

	COMPLEX
	(3.2,-1.87) means 3.2 -1.87i

fortran Variables
	Type of Variable
	Declaration instruction
	Example Value

	INTEGER
	INTEGER ISUM,COUNT
	0 -5370

	REAL
	REAL ABC,SUM
	-34.7 1.62E-6

	DOUBLE PRECISION
	DOUBLE PRECISION ABC
	1.626563437D-6

	COMPLEX
	COMPLEX ABC,X4
	(3.2,-1.87)

	LOGICAL
	LOGICAL MALE
	.TRUE. .FALSE.

	CHARACTER
	CHARACTER*15 NAME
	‘Kerem Ozturk ’

Naming of fortran Variables

1. The first character of a variable name must be alphabetical (A(Z).

2. The following characters can then be alphanumeric

 (A(Z , 0(9).

Pre-defined Types of fortran Variables

In fortran, for numerical variables, the first character in a variable name defines the variable type to be REAL or INTEGER unless the variable is declared otherwise:

If the first character in the variable name is

I, J ,K, L, M, N then the variable type is INTEGER
If the first character in the variable name is

A (H , O (Z
then the variable type is REAL
Examples :
COUNT

is type REAL

ICOUNT

is type INTEGER

N

is type INTEGER

SUM

is type REAL

However, the variable type can be declared by the programmer so that more suitable variable names can be chosen:

INTEGER COUNT,SUM

the variables COUNT and SUM are now type INTEGER .

The default naming scheme can be cleared with the instruction

IMPLICIT NONE

now all numerical variables must be declared (as REAL or INTEGER). This has the advantage of reducing ‘bugs’ due to incorrectly spelt variable names; the compiler checks that all variable names have been declared.

fortran 77 Fields: See Handout http://www1.gantep.edu.tr/~andrew/ep241/docs/fortran77fields.doc

Lecture 3

fortran Arithmetic Expressions
For arithmetic operators we use the special characters:

	arithmetic operator
	example fortran
	Algebraic result

	+ and -
	A+B-C
	A+B-C

	* and /
	A*B/C
	AB/C

	(and)
	A*(B+C)/D
	A(B+C)/D

	 **
	A*(B+C**A)/D
	A(B+CA)/D

Arithmetic is performed in an order of priority:

	 ()
	The expression in parenthesis is evaluated

	**
	power expressions are evaluated

	* or /
	(/ are evaluated from left to right

	+ or -
	- + are evaluated from left to right

Integer division in fortran

Integer division causes truncation!

	 operation
	value
	truncation
	result

	81/9
	9
	9
	9 (

	81/10
	8.1
	8.1
	8

	9/5
	1.8
	1.8
	1

	1/7
	0.142857...
	0.142857...
	0

	1/7.0 or 1.0/7
	0.142857...
	real number
	0.1428571

Fortran Library Functions
The fortran library functions (intrinsic functions) are a collection of mathematical and character manipulation functions. A list can be found in appendix B of the course book. Here are some examples:

	function
	Result

	LOG(x)
	y = loge x [for x > 0]

	LOG10(x)
	y = log10 x [for x > 0]

	EXP(x)
	y = ex

	SIN(x)
	y = sin(x) [x in radians]

	ASIN(x)
	y = arcsin(x) [for |x| (1]

	ABS(x)
	|x| absolute value of x

	SQRT(x)
	square-root of x [for x (0]

	INT(x)
	integer part of x (truncates)

	NINT(x)
	nearest integer (rounds up or down)

e.g. the Gaussian probability density function :

[image: image1.wmf]þ

ý

ü

î

í

ì

-

-

=

2

)

(

2

1

exp

2

1

s

m

p

s

x

G

in fortran looks like:

 PI = 2.0*ASIN(1.0)

(this gives ()
 G = EXP(-0.5*((X-X0)/S)**2) / (S*SQRT(2.0*PI))

Lectures 4, 5 and 6

Relational (comparative) Expressions in fortran
Quantities can be compared using the following operators:

	Operator
	Meaning

	.GT.
	> (greater than)

	.GE.
	((greater than or equal to)

	.LT.
	< (less than)

	.LE.
	((less than or equal to)

	.EQ.
	= (equal to)

	.NE.
	((not equal to)

e.g. 1 IF (A.LT.B) THEN

 C=A

 the result of this IF block

 A=B

 statement is that A contains

 B=C

 the larger value and B the smaller

 END IF

Note that the comparison must be enclosed in brackets

e.g. 2
IF (A .GE. 0.0) B = A**0.5

Sometimes you want to make sure that you do not attempt to take the square-root of a negative number.

Control Statements and Loops
The GO TO Statement
The GO TO statement causes the program to ‘jump’ (transfer control) to elsewhere in the program. There are two types of GO TO statements:

Unconditional GO TO

GO TO stn
Example: GO TO 15

 GO TO 15

 15

Conditional GO TO

GO TO (stn 1, stn 2, ... , stn k), I

where stn 1,...,stn k are the statement numbers the program is instructed to jump to, I is an integer.

Example:

GO TO (5,20,15,35),I

gives if I = 1 then branch to 5

 yes

 if I = 2 then branch to 20

 I=1

 5

 if I = 3 then branch to 15

 if I = 4 then branch to 35

 no

 yes

also
 if I < 1 branch to 5

 I=2

 20

 if I > 4 branch to 5

 no

 yes

 I=3 15

 no

yes

 I=4 35

 no

 5

A similar operation is provided by the Arithmetic IF

IF (ae) stn1,stn2,stn3

where ae is an arithmetic expression whose sign is tested.

Example : IF (A-3.0) 20,15,35

gives
if (A-3.0) is negative then branch to 20

if (A-3.0) is zero then branch to 15

if (A-3.0) is positive then branch to 35

 20

A-3.0

35

 negative

 positive

 zero

 15
The Logical IF statement

IF (le) fs

 .true.

 le

 fs
where le is a logical expression,
and fs is a fortran statement .false.
e.g. PRINT , STOP , GO TO

Example:
IF (A.GE.0.0) S = A**0.5

The Block logical IF structure

 .true.

IF (le) THEN

 le

 fs 1

 fs 1

 fs 2

 fs 2

 .false.
 fs 3

 fs 3

 fs 4

 fs 4

END IF

In this case many fortran statements can be executed. For example swapping variables A(I) and A(I+1) in a bubble-sort:

Example (in the bubble-sort):

IF (A(I).GT.A(I+1)) THEN

 SWAP=A(I)

 A(I)=A(I+1)

 A(I+1)=SWAP

 FLAG=1

END IF

Branching from the logical IF and the Block logical IF

IF (le) GO TO stn
Example:
IF (I.LT.8) GO TO 10
and for the block IF

T

IF (le) THEN

 le

fs 1

 fs 1

fs 2

 fs 2

F

fs 3

 fs 3

 GO TO sn

END IF

 sn
Example:

IF (A(I).GT.A(I+1)) THEN

 SWAP=A(I)

 A(I)=A(I+1)

 A(I+1)=SWAP

 FLAG=1

 GOTO 10

END IF

Iteration is the repetition of instructions. This is achieved through looping which involves the above comparative and branching instructions.

DO-loops

DO-loops provide an easy and effective way to implement loops into a program. The course book provides a complete formal description of DO-loops; study the chapter carefully, code some of the examples and do the exercises.

Here I will illustrate DO-loops in a slightly less formal way to introduce you to forming loops with the DO instruction.

Consider the program section below:

DO 125 I=1,8

DO I=1,8

 J=I**2

 J=I**2

 PRINT *,I,J

 PRINT *,I,J

125
CONTINUE

END DO

Note that there are two ways to close the DO-loop:

1. With a labelled CONTINUE statement

 (referenced in the DO statement)

2. With an END DO statement (requires no referencing).

These two alternative loop structures have exactly the same output:

 1

 1

 2

 4

 3

 9

 4

 16

 5

 25

 6

 36

 7

 49

 8

 64

We can see that the DO-loop has two features:

1. Any statement inside the loop is executed, in this case, eight times; i.e. DO-loops iterate (repeat instructions).

2. The loop counter is assigned values 1 to 8 , increasing on each iteration; i.e. DO-loops count.

These two features of DO-loops are very useful, most fortran programs you write will include a DO-loop.

Other features of DO-loops:

DO I=0,8,2

DO I=-2,2

 J=I**2

 J=I**2

 PRINT *,I,J

PRINT *,I,J

END DO

END DO

Results:

 0

 0

-2

 4

 2

 4

-1

 1

 4

 16

 0

 0

 6

 36

 1

 1

 8

 64

 2

 4

(The loop counts in steps of 2

(The counter is initially

 negative.

Also, the DO-loop can count backwards, e.g. DO I=10,1,-1

In General:

close-loop label
DO variable (counter)

 DO stn I = e1 , e2 ,e3

initial value

final value

optional increment (default = 1)

The rule for the number of iterations performed (the iteration-count) is given by :

ic = 1 + INT[(e2 - e1) / e3]

Examples: (These are in the course web pages)

DO I=1,10

(1+(10-1)/1
= 10 iterations

DO I=0,10

(1+(10-0)/1
= 11 iterations

DO I=0,10,2
(1+(10-0)/2
= 6 iterations

DO I=1,9,2
(1+(9-1)/2
= 5 iterations

DO I=3,9,3
(1+(9-3)/3
= 3 iterations

DO I=-6,9,4
(1+(9--6)/4
= 4 iterations

DO I=6,-1,-5
(1+(-1-6)/-5
= 2 iterations

DO I=0,10,-5
(1+(10-0)/-5
= -1 (0 iterations

Note: A negative iteration-count results in no iterations being performed - some compilers may issue an error message.

On exit from the loop the value of the counter is the value which takes the counter outside the loop range. e.g:

DO I=-6,9,4
(I = -6 , -2 , 2 , 6 (4 iterations)

 and exits the loop with I = 10

Nested DO-loops

A nested DO-loop is a DO-loop inside a DO-loop

INTEGER K(6)

INTEGER K(6)

DO 20 I=1,6

DO I=1,6

 DO 10 J=1,6

 DO J=1,6

 K(J)=I*J

 K(J)=I*J

10
 CONTINUE

 END DO

 PRINT *,K

 PRINT *,K

20
CONTINUE

END DO

END

END

The result in both cases is:

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

Lecture 7

Arrays and Subscripted Variables

· Vectors

x = xi(i=1,8)= (x1, x2, x3, x4, x5, x6, x7, x8)

The index i varies from 1 to 8.

Here, x is a one-dimensional array or ‘vector’ of length 8; we say the variable has 8 elements.

· Matrices

A doubly subscripted variable is x = xij(i=1,4:j=1,6)

 = x11, x12, x13, x14, x15, x16

 x21, x22, x23, x24, x25, x26

 x31, x32, x33, x34, x35, x36

 x41, x42, x43, x44, x45, x46
Here x is a two-dimensional array or ‘matrix’. The index ij represents row,column ; the variable x is therefore a 4(6 matrix.

Remember the row (column rule for the subscripts.

In fortran the above arrays are declared with the statements, which are placed at (or near to) the beginning of the program, as follows:

DIMENSION x(8)

or
REAL x(8)

here the one-dimensional array (vector) x contains the elements:

x(1), x(2), x(3), x(4), x(5), x(6), x(7),x(8)

DIMENSION x(4,6)
or
REAL x(4,6)

here the two-dimensional array (matrix) x contains the elements:

x(1,1), x(1,2), x(1,3), x(1,4), x(1,5),x(1,6)

x(2,1), x(2,2), x(2,3), x(2,4), x(2,5),x(2,6)

x(3,1), x(3,2), x(3,3), x(3,4), x(3,5),x(3,6)

x(4,1), x(4,2), x(4,3), x(4,4), x(4,5),x(4,6)

Notes:

· Arrays can have any name (within the normal rules of fortran variable naming) e.g.

A(10,5) ZEBRA(15) NAME(300,2) IBIN(100)

· Arrays can be REAL, INTEGER, DOUBLE PRECISION etc. and can have more than two-dimensions, though more than three-dimensions is not common e.g. a declaration statement might be

REAL TEMP(30,50,20)

The array TEMP may, for example, represent the distribution of the temperature in a room.

Lecture 8

To be written

Lecture 9

To be written

Lecture 10

To be written

_1030447811.unknown

