EP 122 Second mid－term exam 07／05／2014 Answer all questions．Duration 80 minutes．

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	TOT					
				xxx	xxx	xxx						
To be completed only by the lecturer												

To be completed only by the lecturer

Student Name，Surname	Student Id No

EDUCATION TYPE： \square First Education Second Education

Question 1 ［25\％］

A local ice cream shop keeps track of how much ice cream they sell Temperature Ice Cream Sales
versus the temperature on that day．Table shows their data for the last
$14^{\circ} \mathrm{C}$ 215 も
$16^{\circ} \mathrm{C}$ 325 も comment on the result．
$15^{\circ} \mathrm{C}$ 332 も
$18^{\circ} \mathrm{C}$ 406も
$19^{\circ} \mathrm{C}$ $412 も$
$25^{\circ} \mathrm{C}$
614 も
$23^{\circ} \mathrm{C}$
544 も
$18^{\circ} \mathrm{C}$
421 も
$22^{\circ} \mathrm{C}$
445 も
$17^{\circ} \mathrm{C}$ 408も

Question 2 [25\%]

A machine produces chocolates. Assume that the variation in the weight of the chocolates are normally distributed. The mean weight and standard deviation of the population are given by $\mu=100 \mathrm{~g}$ and $\sigma=2 \mathrm{~g}$ respectively. To determine if the machine is adequately calibrated, a sample of $n=13$ chocolates are chosen at
 random and the chocolates are weighed. The measured values in grams are:

$$
W=\{101,102,100,99,98,100,99,101,103,101,98,100,100\}
$$

(a) Write down the median of the sample
\square
(b) Write down the mod of the sample

(c) Calculate the sample mean
(d) Calculate the sample standard deviation \square

(e) Write down the interval that includes the population mean with 95% confidence level and comment on the results.

Question 3 [25\%]

In İstanbul, the temperature during June is normally distributed with mean $22.0^{\circ} \mathrm{C}$ and standard deviation $1.2^{\circ} \mathrm{C}$. Find the probability p that the temperature is between 21.0 ${ }^{\circ} \mathrm{C}$ and $24.0^{\circ} \mathrm{C}$.

Question 4 [25\%]

A temperature measurement element has an input range of 20 to 120 Celsius. The output of the element (milli-volts) is measured under standard conditions and a second-order polynomial fit to the data yields the following calibration function:

$$
\mathrm{O}(T)=1.9+0.1 T+0.05 T^{2}
$$

(a) Write down the ideal linear response equation
(b) Write down the non-linearity function

$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}} \quad \sigma_{E}=\frac{\sigma}{\sqrt{N}}$	$\bar{x}=\frac{\sum_{i=1}^{n} x_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}} \quad \bar{\sigma}=\frac{1}{\sqrt{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}}$
$\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} \sigma_{1}^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} \sigma_{2}^{2}+\cdots+\left(\frac{\partial f}{\partial x_{n}}\right)^{2} \sigma_{n}^{2}$	$\begin{array}{cc} \hline E[X]=\sum_{i} x_{i} f\left(x_{i}\right) & E[X]=\int_{-\infty}^{+\infty} x f(x) d x \\ E\left[X^{2}\right]=\sum_{i} x_{i}^{2} f\left(x_{i}\right) & E\left[X^{2}\right]=\int_{-\infty}^{+\infty} x^{2} f(x) d x \\ \sigma^{2}=E\left[X^{2}\right]-(E[X])^{2} & R M S=\sqrt{E\left[X^{2}\right]} \end{array}$
$\begin{gathered} P(A \cup B)=P(A)+P(B)-P(A \cap B) \\ P(B \mid A)=P(A \cap B) / P(A) \end{gathered}$	
$\begin{aligned} & P_{\text {binom }}=\binom{n}{k}(p)^{k}(1-p)^{n-k} \\ & \text { mean }: n p \quad \text { std.dev }: \sigma=\sqrt{n p(1-p)} \end{aligned}$	$\begin{aligned} & \rho=\frac{\overline{x y}-\bar{x} \cdot \bar{y}}{\sigma_{x} \sigma_{y}} \\ & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\ & \overline{x y}=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\ & n^{n}(\bar{x})^{2} \end{aligned}$
$\begin{array}{\|l\|} \begin{array}{l} P_{\text {poisson }}=\frac{e^{-\lambda} \lambda^{k}}{k!} \\ \text { mean }: \lambda=n p \\ \text { std.dev. } \sigma=\sqrt{\lambda} \end{array} \end{array}$	$\begin{aligned} & \sigma_{x}=\sqrt{\frac{1}{n-1}} \sum_{i=1}\left(x_{i}-\bar{x}\right)^{2} \\ & \sigma_{y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \end{aligned}$

Cumulative Distribution Function for Standard Normal Distribution

