EP 122 Final exam 26/05/2014
Answer all questions. Duration 90 minutes.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	TOT	
					xxx	xxx		

To be completed only by the lecturer

Student Name, Surname	Student Id No

EDUCATION TYPE: \square First Education

Second Education

Question 1 [20\%]

Figure shows a Plano-Convex lens whose radius of curvature R and refractive is index n.
Focal length of such a lens is given by:

Calculate the radius of curvature of the lens and its uncertainty for

$$
f=\frac{R}{n-1}
$$

$\mathrm{f}=0.50 \pm 0.01 \mathrm{~m}$ and $n=1.33 \pm 0.01$.

Question 2 [10\%]

In a Hospital maximum (systolic) blood pressure of 1500 people are measured. This measurement results in a normal distribution with mean 120 mmHg and standard deviation 15 mmHg . Using normal distribution function, find how many people have blood pressure between 100 mmHg and 140 mmHg .

Question 3 [20\%]

A temperature measurement element has an input range of 0 to 100 Celsius. The output of the element (milli-volts) is measured under standard conditions and a second-order polynomial fit to the data yields the following calibration function:

$$
\mathrm{O}(T)=3+2 T+T^{2}
$$

(a) Write down the ideal linear response equation
(b) Write down the non-linearity function
(c) Write down the maximum non-linearity

Question 4 [30\%]

Explain how to perform mass calibration of an electronic balance.

Question 5 [20\%]

Suppose a machine produces screws whose diameters, D, are normally distributed. The mean diameter and standard deviation of the population are given by $\mu=2 \mathrm{~cm}$ and $\sigma=0.2 \mathrm{~cm}$ respectively. To determine if the machine is adequately calibrated, a sample of $n=10$ screws are chosen at random and diameters are measured and the following sample data is obtained:

$$
D=\{2.238,1.759,1.996,1.969,1.679,2.052,1.789,2.283,1.839,2.106\}
$$

(a) Calculate the sample mean
(b) Calculate the sample standard deviation \square
(c) Write down the interval that includes the population mean with 95% confidence level.

$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}} \quad \sigma_{E}=\frac{\sigma}{\sqrt{N}}$	$\bar{x}=\frac{\sum_{i=1}^{n} x_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}} \quad \bar{\sigma}=\frac{1}{\sqrt{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}}$
$\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} \sigma_{1}^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} \sigma_{2}^{2}+\cdots+\left(\frac{\partial f}{\partial x_{n}}\right)^{2} \sigma_{n}^{2}$	$\begin{array}{cc} E[X]=\sum_{i} x_{i} f\left(x_{i}\right) & E[X]=\int_{-\infty}^{+\infty} x f(x) d x \\ E\left[X^{2}\right]=\sum_{i} x_{i}^{2} f\left(x_{i}\right) & E\left[X^{2}\right]=\int_{-\infty}^{+\infty} x^{2} f(x) d x \\ \sigma^{2}=E\left[X^{2}\right]-(E[X])^{2} & R M S=\sqrt{E\left[X^{2}\right]} \end{array}$
$\begin{gathered} P(A \cup B)=P(A)+P(B)-P(A \cap B) \\ P(B \mid A)=P(A \cap B) / P(A) \end{gathered}$	
$\begin{aligned} & P_{\text {binom }}=\binom{n}{k}(p)^{k}(1-p)^{n-k} \\ & \text { mean }: n p \quad \text { std.dev }: \sigma=\sqrt{n p(1-p)} \end{aligned}$	$\begin{aligned} & \rho=\frac{\overline{x y}-\bar{x} \cdot \bar{y}}{\sigma_{x} \sigma_{y}} \\ & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\ & \overline{x y}=\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\ & n^{n} \end{aligned}$
$\begin{array}{\|l\|l\|} \hline P_{\text {poisson }}=\frac{e^{-\lambda} \lambda^{k}}{k!} \\ \text { mean }: \lambda=n p \\ \text { std.dev. } \sigma=\sqrt{\lambda} \end{array} \quad \begin{aligned} & p_{\text {gauss }}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \\ & \text { mean }: \mu \quad \text { std.dev }: \sigma \end{aligned}$	$\begin{aligned} & \sigma_{x}=\sqrt{\frac{}{n-1}} \sum_{i=1}\left(x_{i}-\bar{x}\right)^{2} \\ & \sigma_{y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \end{aligned}$

Cumulative Distribution Function for Standard Normal Distribution

