

EP122 Measurement Techniques and Calibration

Topic 3 Introductory Probability

http://www.gantep.edu.tr/~bingul/ep122

Department of Engineering Physics

University of Gaziantep

Feb 2016

Content

PART I BASIC SET THEORY

PART II

BASIC PROBABILITY

PART III

RANDOM VARIABLES

PART IV

SPECIAL DISTRIBUTION FUNCTIONS

PART I

BASIC SET THEORY

Set Theory

In mathematics, a well defined collection of objects is called the **set**.

Examples:

 $A = \{1,2,3,4\} = 2$ $M = \{apple, banana, orange\} = 2$ $R = \{x \mid x \text{ is a river on Earth}\} = 2$ $N = \{0,1,2,3,4,...\} = 2$ $P = \{2,4,8,...\} = 2$ $K = \{x \mid 2 < x < 5, x \text{ is a real}\} = 2$

- => finite set
- => finite set
- => finite set
- => infinite set
- => infinite set
- => infinite set

Notation:

 $p \in A$ p is elements of A

 $A \subset B$ A is subset of B

U Universal set

 ϕ Empty set

For any set A

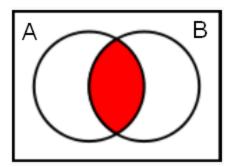
 $\phi \subset A \subset U$

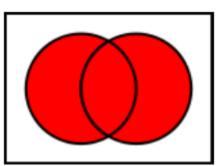
Intersection

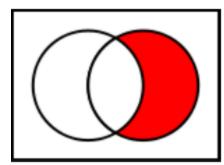
 $A \cap B$

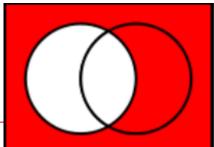
 $A \cup B$

Union


Difference


Complement


B-A


 A^{C}

Venn Diagram

Let

A ={1, 2, 3, 4}, B = {3, 4, 5, 6} and U={1, 2, 3, 4, 5, 6, 7, 8 ...}

```
A U B = \{1, 2, 3, 4, 5, 6\}
```

```
A n B = \{3, 4\}
```

 $A \setminus B = \{1, 2\}$

 $A^{c} = \{5, 6, 7, 8, ...\}$

PART II

BASIC PROBABILITY

Probability (=Olasılık)

Historically, the probability theory began with study of games of chance, such as roulette and cards.

The probability is the study of random or non-deterministic experiments

If a coin is tossed in the air, then

it is certain that the coin will come down

but

it is not certain that a head will appear.

Relative Frequency (=Göreli Sıklık)

Suppose we repeat an experiment of tossing a die. Let

s be the number of times a "six" appears *n* be the number of tosses

Then the ratio *s*/*n* becomes <u>stable</u> in the long run:

$$f = \frac{S}{n}$$

$$f = \frac{f}{n}$$

This stability is the basis of probability theory!

Here is the result obtained from a computer simulation for tossing of a coin and observing frequency of head!

n	S	f = s/n	and the second s		
10	4	0.400000			
100	41	0.4100000			
1,000	476	0.4760000			
10,000	5059	0.5059000	The result		
100,000	49942	0.4994200	approaches		
1,000,000	500351	0.5003510	a limit		
10,000,000	4998906	0.4998906	as n -> ∞		
100,000,000	50006417	0.5000641			
1,000,000,000	500000839	0.5000084			

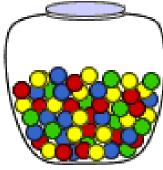
Here is the result obtained from a computer simulation for tossing of a die and observing frequency of six!

n	S	f = s/n	
10	3	0.300000	
100	19	0.1900000	
1,000	186	0.1860000	
10,000	1659	0.1659000	The result
100,000	16748	0.1674800	approaches
1,000,000	166705	0.1667050	a limit
10,000,000	1667210	0.1667210	as n -> ∞
100,000,000	16666290	0.1666629	
1,000,000,000	166666653	0.1666666	

Probability Theory

The probability *p* of an event *A* is defined as follows: If *A* occurs in *s* ways out of a total *n* <u>equally likely</u> ways then

$$p = P(A) = \frac{s}{n}$$


* Tossing a coin: Head occurs 1 way out of 2 => p = 1/2* Tossing a die: Six occurs 1 way out of 6 => p = 1/6* Tossing a die: Even number occurs 3 ways out of 6 => p = 3/6

Probability is the measure of how likely an event is

A glass jar contains 6 red, 5 green, 8 blue and 3 yellow marbles. If a single marble is chosen at random from the jar, what is the probability of choosing a red marble? a green marble? a blue marble? a yellow marble?

Outcomes:The possible outcomes of this experiment are red, green, blue and yellow.Probabilities: $P(red) = \frac{\# \text{ of ways to choose red}}{\text{total # of marbles}} = \frac{6}{22} = \frac{3}{11}$ $P(green) = \frac{\# \text{ of ways to choose green}}{\text{total # of marbles}} = \frac{5}{22}$ $P(blue) = \frac{\# \text{ of ways to choose blue}}{\text{total # of marbles}} = \frac{8}{22} = \frac{4}{11}$

$$P(\text{yellow}) = \frac{\# \text{ of ways to choose yellow}}{\text{total } \# \text{ of marbles}} = \frac{3}{22}$$

Sample Space (=Örneklem Uzayı)


The set S of all possible outcomes of some given experiment is called "sample space"

- * **Tossing a coin:** $S = \{H, T\}$
- * **Tossing two coins:** $S = \{HH, HT, TH, TT\}$

* Tossing a die:

 $S = \{1, 2, 3, 4, 5, 6\}$

* For two dice the outcomes are $S = \{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66\}$

Selecting a card randomly from a shuffle pack of playnig cards, the possible outcomes are:

A ♣	÷	÷	2 *	*	÷	3 ‡	* *	÷	4 •	*	5	*	*	6 * *	* * *	7	* *	8 •• •	****	9 ‡	* *	*	10 * * * * *	***	J.		K *
A		<u> </u>	2	•	2	3	•	2	• 4▲	•;	5	•	• <u> </u>	• 6▲	•9	7		8	• 8	9		6	• 10	• 01	ı ™™ ı İ	Q 	K K
•	¢	¢	•	÷	\$ Z	•		₹	÷.	•••		- 4 •		* * *			• • • •	* • •				6					
		1						_								-											
€	٠	\$	2 •	*	2	3 ♥	*	۹	4 ♥	•	5	• •	• •	ۥ •	♥ ♥ ♠ĝ	7		₿ ♥ ●		9		6		i i			K K K K K K K K K K K K K K K K K K K

Axioms of Probability

Let S be sample space and A and B are two events.

 $A1. \quad 0 \le P(A) \le 1$

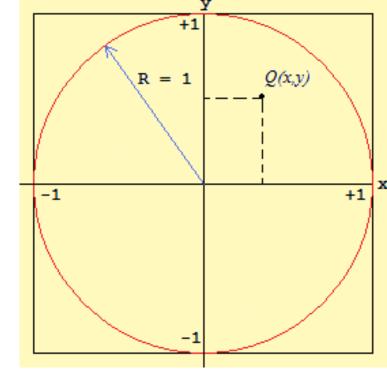
A2. P(S) = 1

A3. If A and B are mutually exclusive events (ayrık olaylar)

 $P(A \cup B) = P(A) + P(B)$

Theorems of Probability

T1. $P(\phi) = 0$ (probability of impossible event is zero) **T2.** If A^c is the complement of A, then $P(A^c) = 1 - P(A)$


T3. If A and B are <u>any</u> two events: $P(A-B) = P(A) - P(A \cap B)$

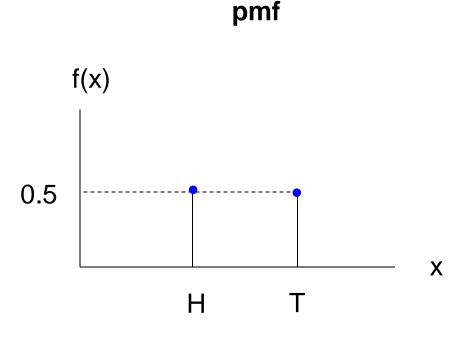
T4. If A and B are <u>any</u> two events: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $-P(A \cap B) - P(A \cap C) - P(B \cap C)$ $-P(A \cap B \cap C)$

(a) What is the sample space for choosing 1 letter at random from the word DIVIDE?

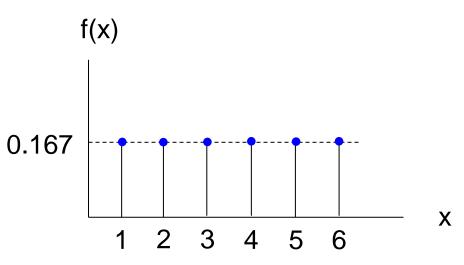
(b) What is the probability of selecting the letter V from the word DIVIDE?

A point Q is selected randomly in a square whose side is 2 cm. A circle is drawn tangent to the edges of the square. Find the probability of the point being inside the circle.

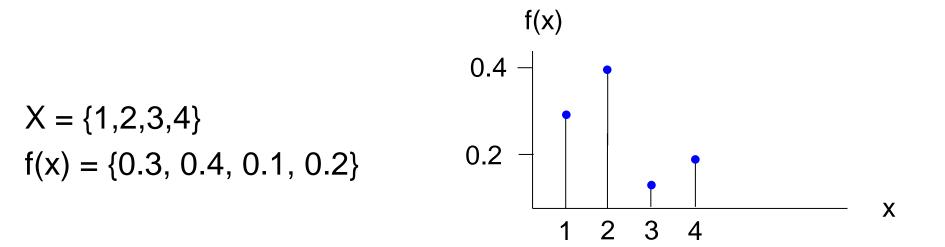
PART III


RANDOM VARIABLES

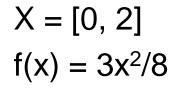
Random Variable (=Raslantı Değişkeni)

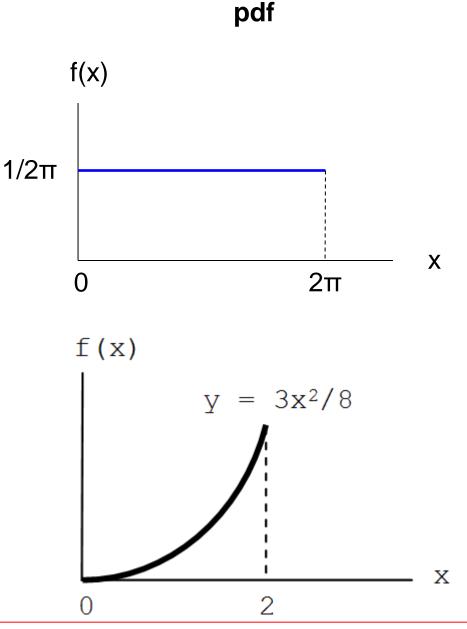

- A Random Variable (RV) is a set of values that occur randomly and have associated probabilities.
- RV can be discrete (kesikli) or continues (sürekli).
- Probability mass function (pmf) describes the distribution of the <u>discrete probabilities</u>
- Probability distribution function (pdf) describes the distribution of the <u>continues probabilities</u>.

Discrete RV Examples:


Tossing a coin: X = {H,T} f(x) = {1/2, 1/2}

Tossing a die: X = {1,2,3,4,5,6} f(x) = {1/6,1/6,1/6,1/6,1/6,1/6}




Discrete RV Examples:

Continues RV Examples:

Random angle in the range $[0, 2\pi]$ $X = [0, 2\pi]$ $f(x) = 1/2\pi$

Properties of Random Variables

Discreate RV

 $f(x_i) \ge 0$

$$\sum_{i} f(x_i) = 1$$

$$\sum_{i=a}^{b} f(x_i) = P(a \le x \le b)$$

Continues RV

 $f(x) \ge 0$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_{a}^{b} f(x)dx = P(a \le x \le b)$$

Expectation Values

Expectation Value or Mean Value of RV is denoted by:

$$E[X]$$
 or $\langle X \rangle$ or \overline{X}

and defined by:

Discrete RV:

$$E[X] = \sum_{i} x_i f(x_i)$$

Continues RV:

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

Mean of the Squares

It is defined as:

Discrete RV:
$$E[X^2] = \sum_i x_i^2 f(x_i)$$

Continues RV:
$$E[X^2] = \int_{-\infty}^{+\infty} x^2 f(x) dx$$

Note that (RMS: Root Mean Square)

$$RMS = \sqrt{E[X^2]}$$

Variance

Variance is defined as:

Discrete RV: $\sigma^{2} = \sum_{i} (x_{i} - \overline{x})^{2} f(x_{i})$ Continues RV: $\sigma^{2} = \int (x - \overline{x})^{2} f(x) dx$

One can also prove that

$$\sigma^{2} = E[X^{2}] - (E[X])^{2}$$
$$= \langle X^{2} \rangle - \langle X \rangle^{2}$$

 $-\infty$

Standard Deviation

Square root of variance is called **standard deviation**:

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma = \sqrt{E[X^2] - (E[X])^2}$$

$$= \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$$

There are some applications of this equation in Quantum Mechanics

 $X = \{1, 2, 3, 4, 5, 6\}$ f(x) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} Find

(a) Expectation value of X, (b) RMS and (c) standard deviation

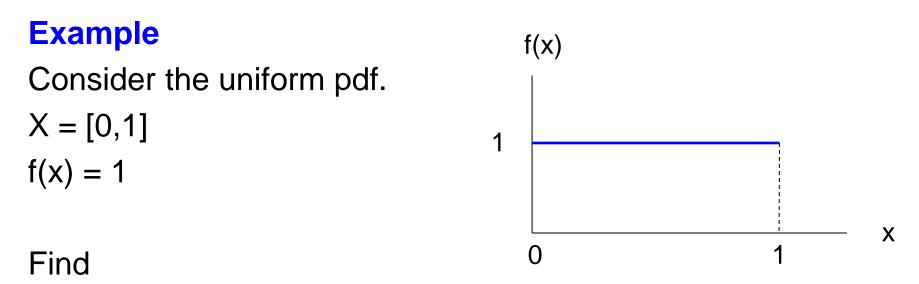
Suppose a variable X can take the values 1, 2, 3, or 4. The probabilities associated with each outcome are described by the following table:

 Outcome
 1
 2
 3
 4

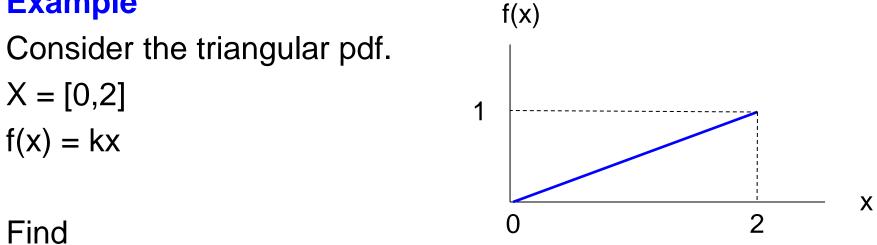
 Probability
 0.1
 0.3
 0.4
 0.2

Find

(a) P(X = 2 or X = 3)
(b) 1 - P(X = 1)


The following table gives the probability distribution of, X, the number of telephones in a randomly selected home in a certain community.

X :	0	1	2	3	4
f(x):	0.021	0.412	0.283	0.188	0.096


One home is selected randomly.

The probability that it will have:

- (a) no telephone is 0.021
- (b) fewer than two telephones is 0.433
- (c) at least three telephones is 0.284
- (d) one or two telephones is 0.695

(a) mean, (b) RMS and (c) standard deviation

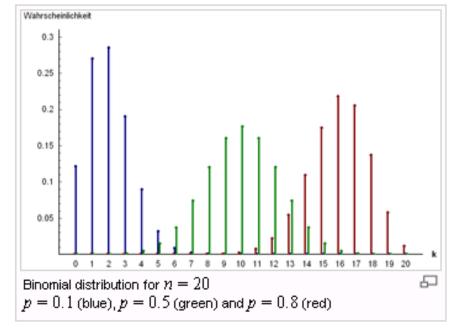
(a) the value k (b) mean and (c) standard deviation

PART IV

SPECIAL DISTRIBUTION FUNCTIONS

Binomial Distribution Function

The binomial distribution function specifies the number of times (k) that an event occurs in n independent trials where p is the probability of the event occurring in a single trial.


$$p_{binom}(n,k,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

std.dev:
$$\sigma = \sqrt{np(1-p)}$$

std.dev:
$$\sigma = \sqrt{np}(1)$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example: A coin is tossed 3 times.

If you call heads a success, draw pmf for k = 0, 1, 2, 3.

Example: A coin is tossed 6 times.

The probability of getting exactly four heads:


$$P = \frac{6!}{4!(6-4)!} \left(\frac{1}{2}\right)^4 \left(1 - \frac{1}{2}\right)^{6-4} = 0.234375$$

The probability of getting at least four heads:

$$P = \binom{6}{4} \left(\frac{1}{2}\right)^4 \left(1 - \frac{1}{2}\right)^{6-4} + \binom{6}{5} \left(\frac{1}{2}\right)^5 \left(1 - \frac{1}{2}\right)^{6-5} + \binom{6}{6} \left(\frac{1}{2}\right)^6 \left(1 - \frac{1}{2}\right)^6$$
$$= 0.34375$$

Poisson Distribution Function

In the binomial equation, if the probability p is so small then the distribution of events can be approximated by the Poisson distribution.

lim Binomial Distribution = Poisson Distribution p->0

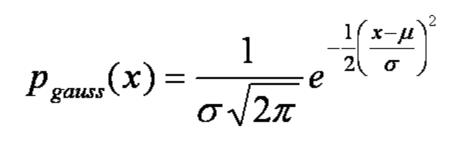
Example: *Birthday problem*

Probability of one person to have birthday in any day is 1/365 = 0.00274. Calculate the probability that 4 people share a birthday in a group of 1000 people.

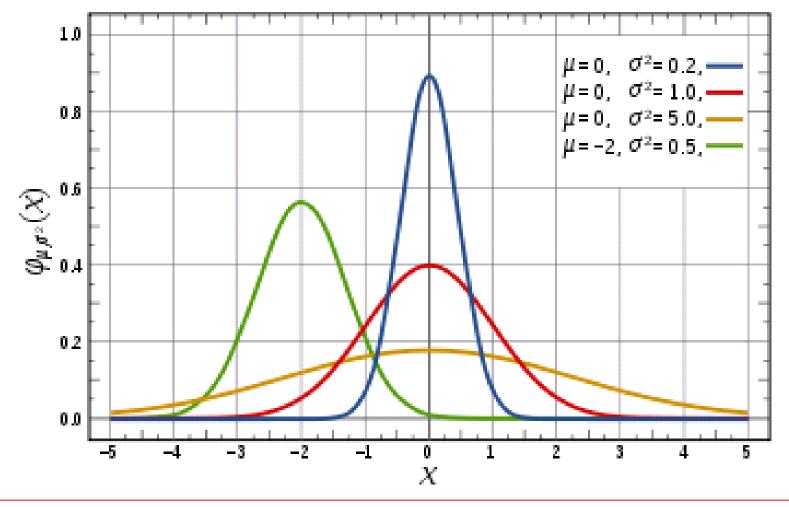
Mean: $\lambda = 1000*0.00274 = 2.734$

Probability: $p = \exp(-2.734) \cdot 2.734^{4}/4! = 0.151$

Example


Suppose 1% of items made by a factory are defective. Find the probability that 6 defective items in a sample of 300 items.

The Gaussian or Normal Distribution Function


In Statistics, if the number of events is very large (n>20), then the Gaussian (normal) distribution function may be used to describe nearly all events.

The Gaussian distribution is a continuous Random Variable of the form:

$$p_{gauss}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} \qquad \text{mean:} \quad \mu$$

std.dev: σ

- μ = mean σ = standart deviation
 - = 3.141593Π
 - = 2.718281е

Properties of Gaussian Function

$$p_{gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

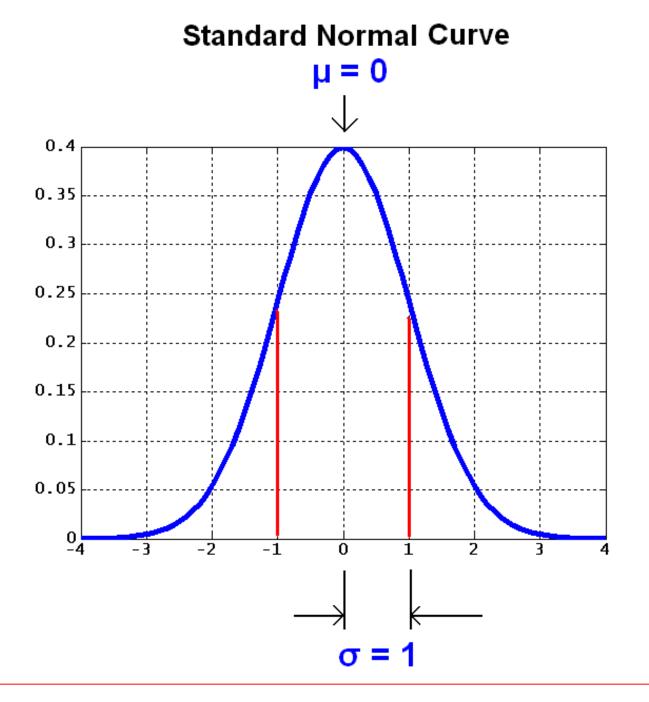
$$p(x) \ge 0$$

 $\int_{-\infty}^{+\infty} p(x) dx = 1$

$$E[X] = \int_{-\infty}^{+\infty} xp(x)dx = \mu$$

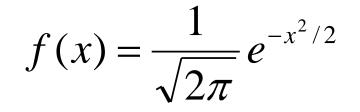
$$\int_{-\infty}^{+\infty} (x-\mu)^2 p(x) dx = \sigma^2$$

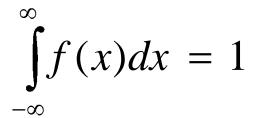
$$\int_{a}^{b} p(x)dx = P(a \le x \le b)$$

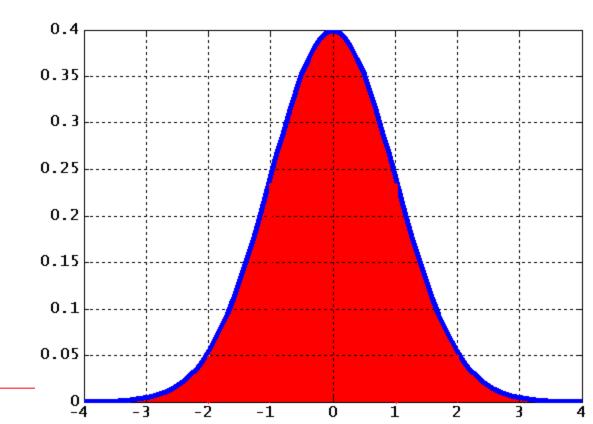

Standard Normal Curve

The normal distribution function for

 μ = 0 and σ = 1

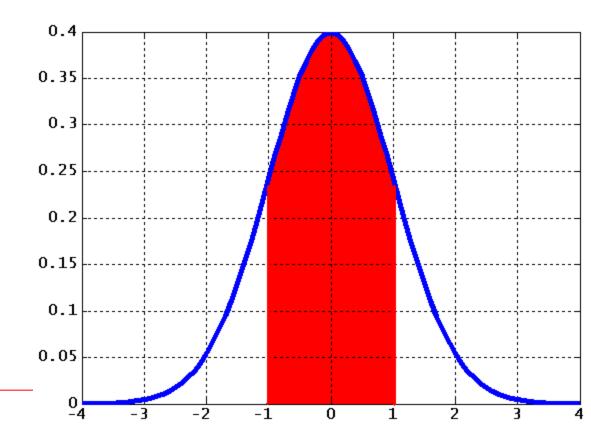

is called the standard normal distribution function.


$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \approx 0.4 \exp(-x^2/2)$$



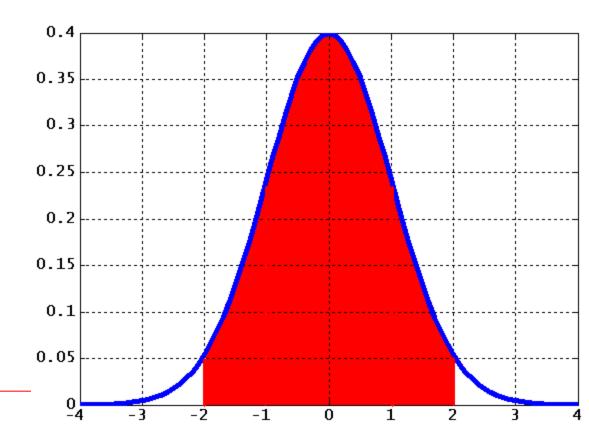
Area Under the Curve

Total area under the standard normal curve is 1.



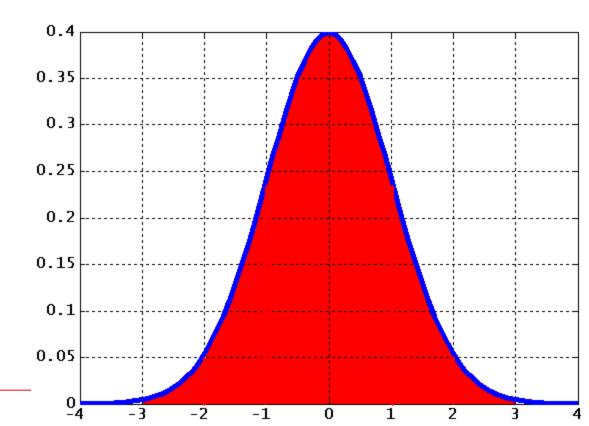
Area under the standard normal curve between [-1, 1] is:

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0.6827$$


This corresponds +- 1 sigma

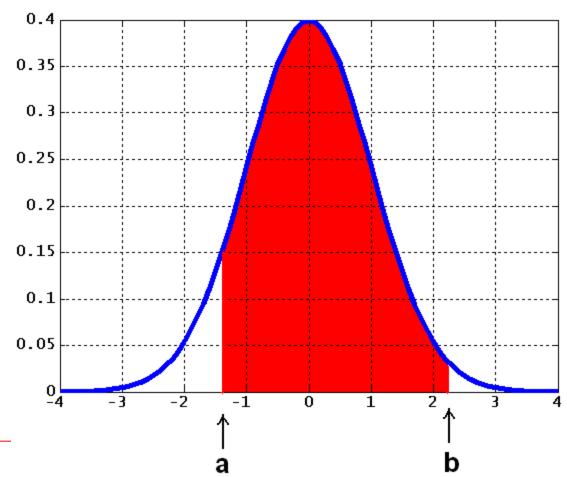
Area under the standard normal curve between [-2, 2] is:

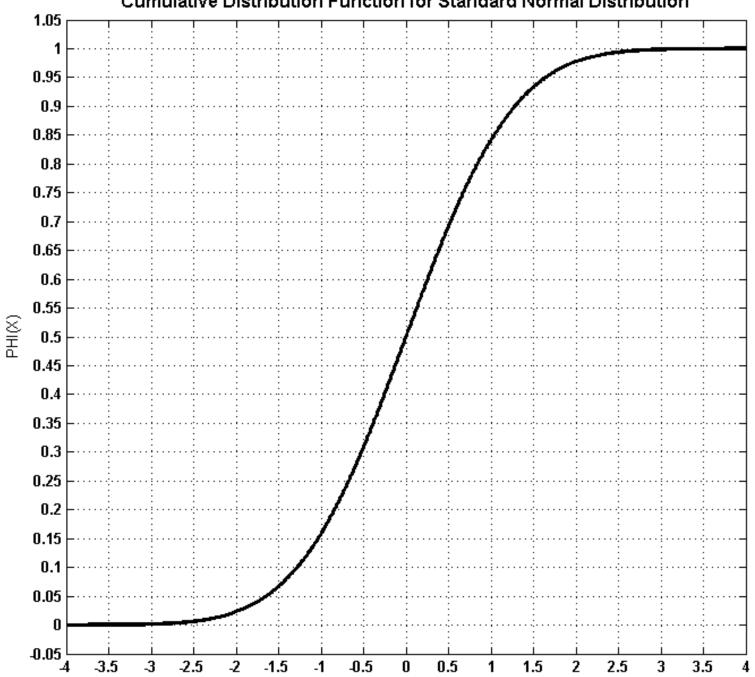
$$\int_{-2}^{2} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = 0.9545$$


This corresponds +- 2 sigma

Area under the standard normal curve between [-3, 3] is:

$$\int_{-3}^{3} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = 0.9973$$


This corresponds +- 3 sigma

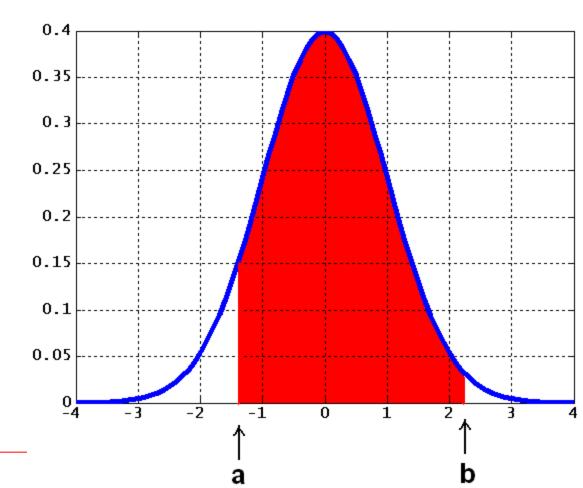


Area under the standard normal curve between [a, b] is:

$$\int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = \Phi(b) - \Phi(a)$$

The values of the function phi(x) can be taken from a table or from the figure on next page.

Cumulative Distribution Function for Standard Normal Distribution


Example:

$$\frac{1}{\sqrt{2\pi}} \int_{-1.2}^{2.3} e^{-x^2/2} dx = \Phi(2.3) - \Phi(-1.2) = 0.99 - 0.12 = 0.87$$

From CDF figure (previous page)

 $\Phi(2.3)\approx 0.99$

 $\Phi(-1.2)\approx 0.12$

Alternatively one can use Octave's **normcdf(x)** function:

$$\int_{-1.2}^{2.3} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \Phi(2.3) - \Phi(-1.2) = 0.8742$$

```
octave:> normcdf(2.3)
ans = 0.9893
octave:> normcdf(-1.2)
ans = 0.1151
octave:> normcdf(2.3)-normcdf(-1.2)
ans = 0.8742
```

Example: Evaluate the integral

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{1.4} e^{-x^2/2} dx$$

Example: Evaluate the integral

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{1.1}e^{-x^2/2}dx$$

Example: Evaluate the integral

$$\frac{1}{\sqrt{2\pi}} \int_{-0.5}^{0.5} e^{-x^2/2} dx$$

Example: Let X be a random variable with the standard normal distribution. Find:

- (a) *P*(0<X<1.4)
- (b) *P*(X<-1.1)
- (c) *P*(|X|<0.5)
- (d) *P*(X>3)
- (e) *P*(X>5)

If a random varibale X is normally distributed, we compute the probability that X lies between a and b as follows.

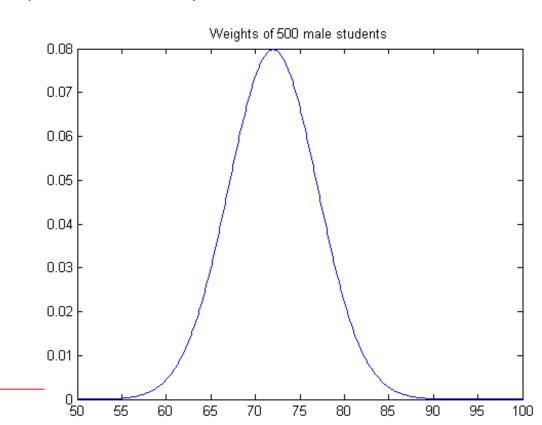
1. First we change *a* and *b* into standard units:

$$a^* = \frac{a - \mu}{\sigma} \qquad b^* = \frac{b - \mu}{\sigma}$$

2. Then we compute the probability from

 $P(a < X < b) = P(a^* < X^* < b^*)$

= area under the standard normal curve between a and b

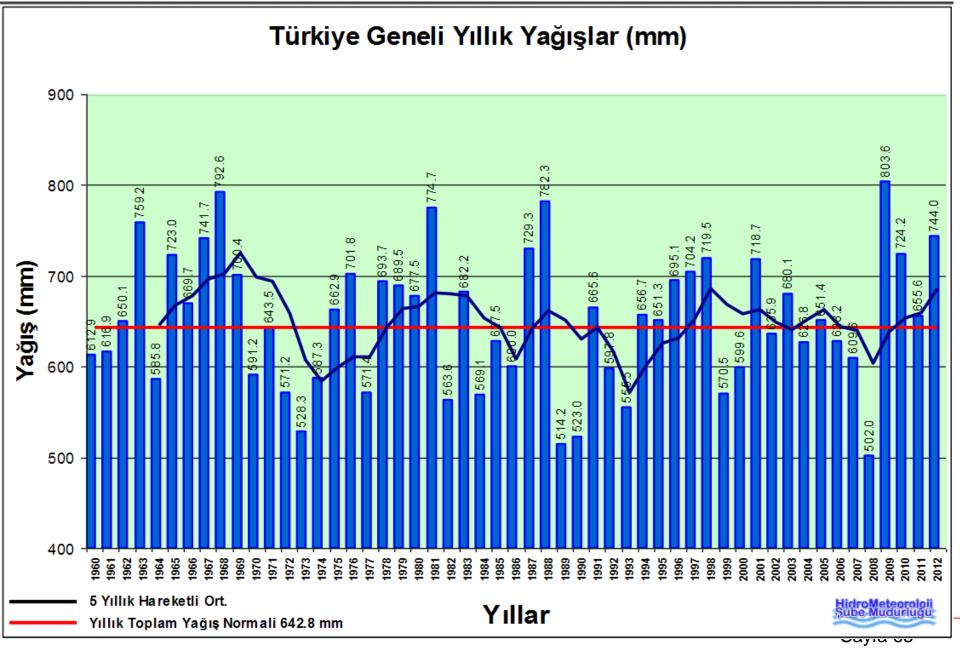

Example: Suppose the temperature during June is normally distributed with mean 20 °C and standard deviation 3.33 °C. Find the probability *p* that the temperature is between 21.11 °C and 26.66 °C (Answer: 0.3479)

Example: Mean weight of 500 male students at a certain university is 72 kg and the standard deviation is 5 kg. Assuming that the weights are normally distributed, find how many students weigh:

(a) between 66 and 75 kg (Answe

(b) more than 80 kg

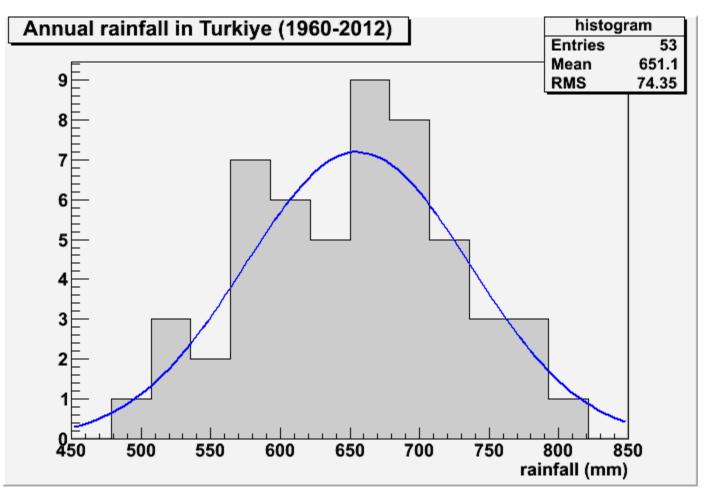
(Answer: 305) (Answer: 27)


Example Normal Distributions

 Here we will examine some interesting real data whose values are distributed <u>normally</u>.

 For each example, histogram of the data is fitted to a Gaussian Function indicated by a blue line.

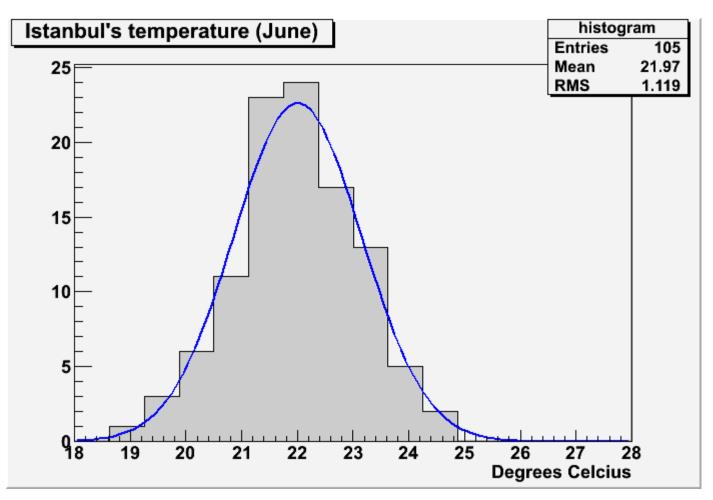
 All data files can be found at: <u>http://www1.gantep.edu.tr/~bingul/ep122/data</u>


Annual Rainfall (1960-2012)

Annual Rainfall (1960-2012)

Mean : <x> = 651.10 mm

Std. Dev. : $\sigma = 74.35$ mm

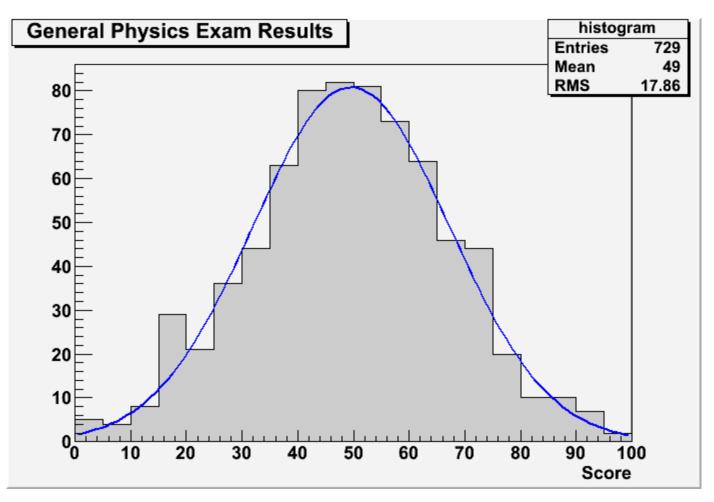


Data: http://www.mgm.gov.tr

Air temperature in Istanbul for the last 105 years.

Mean temperature: $\langle x \rangle = 21.97 \, ^{\circ}C$

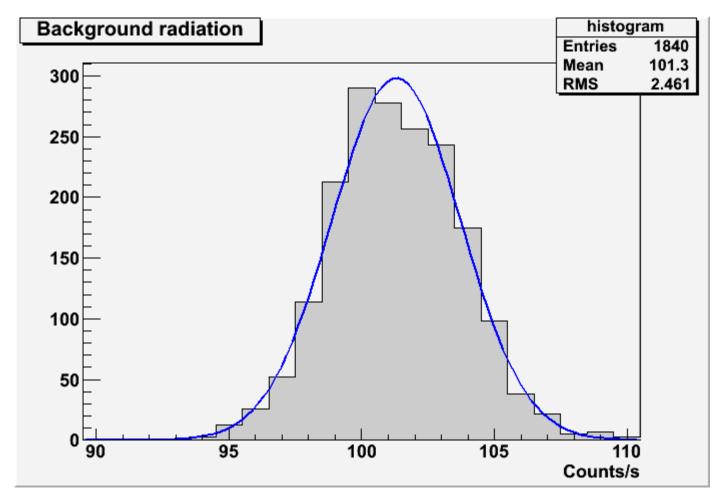
Std. Dev. : $\sigma = 1.12 \text{ °C}$



Data: http://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_649170620000_14_0/station.txt

"EP106 General Physics II" Course exam results (2010)

Mean score: $\langle x \rangle = 49.0$


Std. Dev. : $\sigma = 17.9$

Data: http://www1.gantep.edu.tr/~physics/ep106/exam-statistics.php

Background Radiation in Gaziantep (2013)

- Mean : <x> = 101.3 counts / sec
- Std. Dev. : $\sigma = 2.5$ counts / sec

Data is obtained by: Research Assistant Sadık Zuhur (University of Gazaintep)

Questions

1. Let

U = {a,b,c,d,e,f,g}, A = {a,b,c,d,e}, B = {a,c,e,g}, C = {b,e,f,g} Find AnB, AUB, C\B, $(A \setminus B^c)^c$ and $C^c \cap A$.

2. Which of the following is a random experiment? (a) Tossing a coin. (b) Rolling a single 6-sided die. (c) Choosing a marble from a jar. (d) All of the above.

- 3. Which of the following is an outcome?
 (a) Rolling a pair of dice.
 (b) Landing on red.
 (c) Choosing 2 marbles from a jar.
 (d) None of the above.
- 4. Which of the following experiments does NOT have equally likely outcomes?
 - (a) Choose a number at random from 1 to 7.
 - (b) Toss a coin.
 - (c) Choose a letter at random from the word SCHOOL.
 - (d) None of the above.

- 5. What is the probability of choosing a vowel from the English alphabet?
- 6. A number from 1 to 11 is chosen at random. What is the probability of choosing an odd number?
- 7. What is the probability of choosing a king from a standard deck of playing cards?
- 8. What is the probability of choosing the letter i from the word probability?
- 9. What is the probability of choosing a jack or a queen from a standard deck of 52 playing cards?
- 10. What is the sample space for choosing a letter from the word mathematics?
- 11. What is the sample space for choosing a prime number less than 15 at random?
- 12. What is the probability that a single throw of a die will result in either 2 or 5?

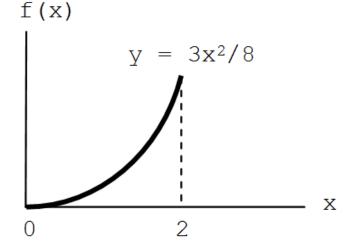
- 13. A fair coin is tossed 5 times. Find the probability of getting(a) exactly four heads (b) at least two heads (c) no heads.
- 14. A fair dice is tossed 7 times. Find the probability of getting:(a) exactly four ONEs (b) at least four ONEs (c) no ONEs
- 15. A woman has 8 children, the probability of each child being female is 50%. What is the probability of being (a) 4 children female (b) all children female.

16. A communication system contains 6 stations. Independent probability of each station being functional is 90%. If the system requires at least 4 stations to be functional what is the probability that the communication system is functional. (Answer: 0.9842)

17. Suppose 2% of the people on the average are left-handed. Find the probability of 3 or more left-handed among 100 people.

(Answer: 0.325)

18. Given the random variable and corresponding probability mass function (pmf)


$$X = \{1, 2, 3, 4, 5\}$$

f(x) = {0.1, 0.3, 0.4, 0.1, 0.1}

Calculate

- (a) $\sum f(x_i)$
- (b) P(1<x<5)
- (c) E[X]
- (d) E[X²]
- (e) RMS
- (f) Variance
- (g) standard deviation

19. Given the probability density function $f(x) = 3x^2/8$.

Calculate (a) Mean (b) RMS (c) P(x>0.5)

20. Given the pdf f(x) = N sin(x) for 0<x<π.
(a) Compute the normalization constant N.
(b) Compute the expectation value and variance.

21. Given the pdf f(x) = k exp(-0.1x) for 0 < x < inf.
(a) Compute the normalization constant k.
(b) Find P(x>2).

22. Evaluate the following integrals:

$$\frac{1}{\sqrt{2\pi}}\int_{1}^{2}e^{-z^{2}/2}dz$$

$$\frac{1}{2\sqrt{2\pi}}\int_{1}^{2}e^{-(z-1)^{2}/8}dz$$

23. Suppose the diameters, *D*, of screws manufactured by a company are normally distributed with mean 0.25 cm and standard deviation 0.02 cm. A screw is considered defective if its diameter D < 0.22 cm. A sample of 250 screws are selected randomly. Estimate the number of defective screws in this sample.

References

- "Data Analysis for Physical Science Students", L. Lyons, Cambridge University Press
- 2. "Probability and Statistics" M. Spiegel et. al., Shaum
- **3.** "Probability" S. Lipshutz, Shaum
- 4. "Radiation Detection and Measurement", G.F.Knoll, Wiley
- 5. http://www1.gantep.edu.tr/~andrew/eee283