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PART I 

 

BASIC SET THEORY  
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Set Theory 

In mathematics, a well defined collection of objects  

is called the set. 

 

Examples: 

 

A = {1,2,3,4}      => finite set 

M = {apple, banana, orange}    => finite set 

R = {x | x is a river on Earth}  => finite set 

N = {0,1, 2, 3, 4, ...}  => infinite set 

P = {2, 4, 8, ...}   => infinite set 

K = {x |  2<x<5, x is a real} => infinite set 
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Notation: 

 

                     p is elements of A 

 

                     A is subset of B 

 

    Universal set 

 

    Empty set 

 

For any set A  

 

Ap

BA

U

UA
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Set Operations: 

 

Intersection 

 

 

Union 

 

 

Difference 

 

 

Complement 

 

BA

Venn Diagram 

BA

AB

CA



Sayfa 7 

Example 

Let 

A ={1, 2, 3, 4},  B = {3, 4, 5, 6}  and  U={1, 2, 3, 4, 5, 6, 7,8  …} 

 

 

 A U B  = {1, 2, 3, 4, 5, 6} 

 

 A n B   = {3, 4} 

 

 A \ B   = {1, 2} 

 

 Ac       = {5, 6, 7, 8, ...} 
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PART II 

 

BASIC  

PROBABILITY 
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Probability (=Olasılık) 

Historically, the probability theory began with study of  

games of chance, such as roulette and cards. 

 

 

 

 

If a coin is tossed in the air, then 

 

it is certain that the coin will come down  

but  

it is not certain that a head will appear. 

The probability is the study of  

random or non-deterministic experiments 
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Suppose we repeat an experiment of tossing a die.  

Let  

s be the number of times a “six” appears 

n be the number of tosses 

 

Then the ratio s/n becomes stable in the long run: 

 

 

 

 

This stability is the basis of probability theory! 

n

s
f

Relative Frequency  (=Göreli Sıklık) 

f  approaches  

a limit  

as  n -> ∞ 
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Example 

Here is the result obtained from a computer  

simulation for tossing of a coin and observing  

frequency of head! 

 
      n             s       f = s/n 

-------------    --------  --------- 

           10           4  0.4000000 

          100          41  0.4100000 

        1,000         476  0.4760000 

       10,000        5059  0.5059000 

      100,000       49942  0.4994200 

    1,000,000      500351  0.5003510 

   10,000,000     4998906  0.4998906 

  100,000,000    50006417  0.5000641 

1,000,000,000   500000839  0.5000084 

The result 

approaches  

a limit  

as  n -> ∞ 
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Example 

Here is the result obtained from a computer  

simulation for tossing of a die and observing  

frequency of six! 

 
      n             s       f = s/n 

-------------    --------  --------- 

           10           3  0.3000000 

          100          19  0.1900000 

        1,000         186  0.1860000 

       10,000        1659  0.1659000 

      100,000       16748  0.1674800 

    1,000,000      166705  0.1667050 

   10,000,000     1667210  0.1667210 

  100,000,000    16666290  0.1666629 

1,000,000,000   166666653  0.1666666 

The result 

approaches  

a limit  

as  n -> ∞ 
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Probability Theory 

The probability p of an event A is defined as follows: 

If A occurs in s ways out of a total n equally likely ways  

then  

 

 

 

 

* Tossing a coin: Head occurs 1 way out of 2                 =>  p = 1/2 

* Tossing a die:   Six occurs 1 way out of 6                    =>  p = 1/6 

* Tossing a die:   Even number occurs 3 ways out of 6  => p = 3/6 

 

n

s
APp )(

Probability is the measure of  

how likely an event is 
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Example 

A glass jar contains 6 red, 5 green, 8 blue and  

3 yellow marbles. If a single marble is chosen at  

random from the jar, what is the probability of choosing  

a red marble? a green marble? a blue marble? a yellow  

marble?  
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Sample Space (=Örneklem Uzayı) 

 
 

 

 

 

 

 

* Tossing a coin:        S = {H, T} 

* Tossing two coins:  S = {HH, HT, TH, TT} 

 

 

The set S of all possible outcomes of some given  

experiment is called “sample space” 
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* Tossing a die:  

         S = {1, 2, 3, 4, 5, 6} 

 

* For two dice the outcomes are  

      S = {11,12,13,14,15,16, 

              21,22,23,24,25,26, 

              31,32,33,34,35,36, 

              41,42,43,44,45,46, 

              51,52,53,54,55,56, 

              61,62,63,64,65,66} 
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Selecting a card randomly from a shuffle pack of playnig  

cards, the possible outcomes are: 
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Axioms of Probability 

Let S be sample space and A and B are two events. 

 

A1.  

 

A2. 

 

A3. If A and B are mutually exclusive events (ayrık olaylar) 

 

 

1)(0 AP

1)(SP

)()()( BPAPBAP
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Theorems of Probability 

T1.                     (probability of impossible event is zero) 

T2. If Ac is the complement of A, then 

 

T3.  If A and B are any two events: 

 

 

T4. If A and B are any two events: 

 

 

0)(P

)(1)( APAP c

)()()( BAPAPBAP

)()()()( BAPBPAPBAP
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Example 

(a) What is the sample space for choosing 1 letter at random 

from the word DIVIDE? 

(b) What is the probability of selecting the letter V from the      

word DIVIDE? 
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Example 

A point Q is selected randomly  

in a square whose side is 2 cm.  

A circle is drawn tangent to the  

edges of the square.  

Find the probability of the point  

being inside the circle. 
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PART III 

 

RANDOM 

VARIABLES 
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Random Variable (=Raslantı Değişkeni) 

 A Random Variable (RV) is a set of values that occur 

randomly and have associated probabilities.  

 

 RV can be discrete (kesikli) or continues (sürekli). 

 

 Probability mass function (pmf)  

describes the distribution of the discrete probabilities 

 

 Probability distribution function (pdf) 

describes the distribution of the continues probabilities. 
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Discrete RV Examples: 

 

Tossing a coin: 
X = {H,T} 

f(x) = {1/2, 1/2} 

 

 

 

Tossing a die: 
X = {1,2,3,4,5,6} 

f(x) = {1/6,1/6,1/6,1/6, 1/6, 1/6} 

 

 

 

 

 

 

pmf 

H T 

x 

f(x) 

0.5 

1 
x 

f(x) 

0.167 

2 3 4 5 6 
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Discrete RV Examples: 

 

 

 

X = {1,2,3,4} 

f(x) = {0.3, 0.4, 0.1, 0.2} 

 

 

 

 

 

 

 

 

 

pmf 

1 
x 

f(x) 

0.2 

2 3 4 

0.4 
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Continues RV Examples: 

 

Random angle  

in the range [0, 2π] 

X = [0, 2π] 

f(x) = 1/2π 

 

 

 

X = [0, 2] 

f(x) = 3x2/8 

 

 

pdf 

0 
x 

f(x) 

1/2π 

2π 
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Discreate RV                                Continues RV 

 

 

 

 

 

 

 

 

0)( ixf

1)(
i

ixf

)()( bxaPxf
b

ai

i

0)(xf

1)( dxxf

)()( bxaPdxxf

b

a

Properties of Random Variables 
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Expectation Value or Mean Value of RV is denoted by: 

 

E [ X ]       or      < X >    or   

 

and defined by: 

 

Discrete RV: 

 

 

Continues RV: 

i

ii xfxXE )( ][

dxxfxXE )( ][

Expectation Values 

x
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It is defined as: 

 

Discrete RV: 

 

 

Continues RV: 

 

 

Note that (RMS: Root Mean Square) 

 

 

i

ii xfxXE )( ][ 22

dxxfxXE )( ][ 22

][ 2XERMS

Mean of the Squares 
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Variance is defined as: 

 

Discrete RV: 

 

Continues RV: 

 

 

One can also prove that 

 

 

 

dxxfxx )( )( 22

i

ii xfxx )( )( 22

Variance 

22

222

 

])[(][

XX

XEXE
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Square root of variance is called standard deviation: 

 

 

 

 

 

 

 

 

There are some applications of this equation in 

Quantum Mechanics 

2

Standard Deviation 

22

22

 

])[(][

XX

XEXE
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Example 

           X = {1, 2, 3, 4, 5, 6} 

        f(x) = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} 

Find 

(a) Expectation value of X, (b) RMS and (c) standard deviation 
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Example 

Suppose a variable X can take the values 1, 2, 3, or 4. 

The probabilities associated with each outcome are described  

by the following table: 

 

  Outcome      1     2      3     4 

  Probability  0.1   0.3    0.4   0.2 

 

Find 

(a)  P(X = 2 or X = 3) 

(b)  1 - P(X = 1) 
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Example 

The following table gives the probability distribution of, X,  

the number of telephones in a randomly selected home in a  

certain community. 

 

    x:   0      1       2        3       4 

 f(x):   0.021  0.412   0.283    0.188   0.096 

 

One home is selected randomly.  

The probability that it will have: 

(a) no telephone  is 0.021 

(b) fewer than two telephones is 0.433 

(c) at least three telephones is 0.284 

(d) one or two telephones is 0.695 
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Example 

Consider the uniform pdf. 

X = [0,1] 

f(x) = 1 

 

Find 

(a) mean, (b) RMS and (c) standard deviation 

      

0 
x 

f(x) 

1 

1 
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Example 

Consider the triangular pdf. 

X = [0,2] 

f(x) = kx 

 

Find 

(a) the value k (b) mean and (c) standard deviation 

0 
x 

f(x) 

     1 

2 
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PART IV 

 

SPECIAL  

DISTRIBUTION  

FUNCTIONS 
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Binomial Distribution Function 

The binomial distribution function specifies the number of times  

(k) that an event occurs in n independent trials where p is the  

probability of the event occurring in a single trial. 

 

 

 

 

 

 

where 
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Example: A coin is tossed 3 times.  

If you call heads a success, draw pmf for k = 0, 1, 2, 3. 
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Example: A coin is tossed 6 times.  

 

The probability of getting exactly four heads: 

 

 

 

 

 

The probability of getting at least four heads: 
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In the binomial equation, if the probability p is so small then the  

distribution of events can be approximated by the Poisson  

distribution. 

 

 

 

 

 

 

 

lim     Binomial Distribution = Poisson Distribution 

p->0 

 

Poisson Distribution Function 
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Example: Birthday problem 

Probability of one person to have birthday in any day is 

1/365 = 0.00274. Calculate the probability that 4 people  

share a birthday in a group of 1000 people. 

---- 

 

Mean:  λ = 1000*0.00274 = 2.734 

 

Probability:  p = exp(-2.734)*2.7344/4! = 0.151 
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Example  

Suppose 1% of items made by a factory are defective.  

Find the probability that 6 defective items in a sample of  

300 items. 
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The Gaussian or Normal Distribution Function 

In Statistics, if the number of events is very large (n>20),  

then the Gaussian (normal) distribution function may be  

used to describe nearly all events.  

 

The Gaussian distribution is a continuous  

Random Variable of the form: 
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0)(xp 1)( dxxp

)()( bxaPdxxp

b

a

Properties of Gaussian Function 

dxxxpXE )(][

22 )()( dxxpx
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Standard Normal Curve 

The normal distribution function for 

 

 

is called the standard normal distribution function. 

 

 

 

µ = 0 and σ = 1 

)2/exp(0.4
2

1
)( 22/2

xexf x



Sayfa 48 



Sayfa 49 

Area Under the Curve 

Total area under the standard normal curve is 1. 

 

 

 

 

 

 

2/2

2

1
)( xexf

1    )( dxxf
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Area under the standard normal curve between [-1, 1] is: 

 

 

 

 

 

 

This corresponds 

+- 1 sigma 

 

 

 

 

 

 

1

1

2/ 0.6827   
2

1 2

dxe x
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Area under the standard normal curve between [-2, 2] is: 

 

 

 

 

 

 

This corresponds 

+- 2 sigma 

 

 

 

 

 

 

2

2

2/ 0.9545   
2

1 2

dxe x
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Area under the standard normal curve between [-3, 3] is: 

 

 

 

 

 

 

This corresponds 

+- 3 sigma 

 

 

 

 

 

 

3

3

2/ 0.9973   
2

1 2

dxe x
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Area under the standard normal curve between [a, b] is: 

 

 

 

 

 

The values of the 

function phi(x) 

can be taken from  

a table or from the 

figure on next page. 

 

b

a

x abdxe )()(  
2

1 2/2
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Example: 

 

 

 

 

From CDF figure 

(previous page) 

 

 

 

 

 

87.012.099.0)2.1()3.2(  
2

1
3.2

2.1

2/2

dxe x

99.0)3.2(

12.0)2.1(
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Alternatively one can use Octave’s normcdf(x) function: 

 

 

 

 

 

8742.0)2.1()3.2(  
2

1
3.2

2.1

2/2

dxe x

octave:> normcdf(2.3) 

ans = 0.9893 

octave:> normcdf(-1.2) 

ans = 0.1151 

octave:> normcdf(2.3)-normcdf(-1.2) 

ans = 0.8742 
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Example: Evaluate the integral 

 

 

 

 

 

 

 

 

 

4.1

0

2/   
2

1 2

dxe x
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Example: Evaluate the integral 

 

 

 

 

 

 

 

 

 

1.1

2/   
2

1 2

dxe x
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Example: Evaluate the integral 

 

 

 

 

 

 

 

 

 

5.0

5.0

2/  
2

1 2

dxe x
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Example: Let X be a random variable with the standard  

normal distribution. Find: 

(a) P(0<X<1.4) 

(b) P(X<-1.1) 

(c) P(|X|<0.5) 

(d) P(X>3) 

(e) P(X>5) 
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If a random varibale X is normally distributed, we compute  

the probability that X lies between a and b as follows. 

 

1. First we change a and b into standard units: 

 

 

 

2. Then we compute the probability from 

*)**()( bXaPbXaP

a
a*

b
b*

= area under the standard normal curve between a and b 
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Example: Suppose the temperature during June is normally  

distributed with mean 20 oC and standard deviation 3.33 oC.  

Find the probability p that the temperature is between 21.11 oC  

and 26.66 oC (Answer: 0.3479) 
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Example: Mean weight of 500 male students at a certain  

university is 72 kg and the standard deviation is 5 kg.  

Assuming that the weights are normally distributed, find how  

many students weigh: 

(a) between 66 and 75 kg    (Answer: 305) 

(b) more than 80 kg              (Answer: 27) 

--- 
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Example Normal Distributions 

 Here we will examine some interesting real data whose 

values are distributed normally. 

 

 

 For each example, histogram of the data is fitted to a 

Gaussian Function indicated by a blue line. 

 

 

 All data files can be found at: 

http://www1.gantep.edu.tr/~bingul/ep122/data 
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Annual Rainfall (1960-2012) 
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Annual Rainfall (1960-2012) 

Mean       :   <x> = 651.10 mm 

Std. Dev. :     σ   =   74.35 mm 

 

 

 

 

 

 

 

 

 

 
Data: http://www.mgm.gov.tr  
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Air temperature in Istanbul for the last 105 years. 

Mean temperature:   <x> = 21.97 oC 

Std. Dev.              :     σ   =   1.12  oC 

 

 

 

 

 

 

 

 

 

 
Data: http://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_649170620000_14_0/station.txt   
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“EP106 General Physics II” Course exam results (2010) 

Mean score:   <x> = 49.0 

Std. Dev.    :     σ   = 17.9 

 

 

 

 

 

 

 

 

 

 
Data: http://www1.gantep.edu.tr/~physics/ep106/exam-statistics.php 



Sayfa 69 

Background Radiation in Gaziantep (2013) 

Mean          :   <x> = 101.3 counts / sec 

Std. Dev.    :     σ   =    2.5  counts / sec 

 

 

 

 

 

 

 

 

 

 
Data is obtained by: Research Assistant Sadık Zuhur (University of Gazaintep) 
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Questions 

1. Let  

U = {a,b,c,d,e,f,g}, A = {a,b,c,d,e}, B = {a,c,e,g}, C = {b,e,f,g} 

Find AnB, AUB, C\B, (A\Bc)c and Cc n A. 
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2. Which of the following is a random experiment? 

(a) Tossing a coin. 

(b) Rolling a single 6-sided die. 

(c) Choosing a marble from a jar. 

(d) All of the above. 

3. Which of the following is an outcome? 

(a) Rolling a pair of dice. 

(b) Landing on red. 

(c) Choosing 2 marbles from a jar. 

(d) None of the above. 

4. Which of the following experiments does NOT have equally 

likely outcomes? 

(a) Choose a number at random from 1 to 7. 

(b) Toss a coin. 

(c) Choose a letter at random from the word SCHOOL. 

(d) None of the above. 
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5. What is the probability of choosing a vowel from the English 

alphabet? 

6. A number from 1 to 11 is chosen at random. What is the 

probability of choosing an odd number? 

7. What is the probability of choosing a king from a standard 

deck of playing cards? 

8. What is the probability of choosing the letter i from the word 

probability?  

9. What is the probability of choosing a jack or a queen from a 

standard deck of 52 playing cards? 

10.What is the sample space for choosing a letter from the 

word mathematics? 

11.What is the sample space for choosing a prime number less 

than 15 at random? 

12.What is the probability that a single throw of a die will result 

in either 2 or 5? 
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13.A fair coin is tossed 5 times.  Find the probability of getting 

(a) exactly four heads  (b) at least two heads  (c) no heads. 

 

14.A fair dice is tossed 7 times. Find the probability of getting: 

(a) exactly four ONEs   (b) at least four ONEs   (c) no ONEs  

 

15.A woman has 8 children, the probability of each child being 

female is 50%. What is the probability of being   

(a) 4 children female (b) all children female. 

 



Sayfa 74 

16.A communication system contains 6 stations. Independent 

probability of each station being functional is 90%. If the 

system requires at least 4 stations to be functional what is 

the probability that the communication system is functional. 

(Answer: 0.9842) 

 

17.Suppose 2% of the people on the average are left-handed. 

Find the probability of 3 or more left-handed among 100 

people.  

(Answer: 0.325) 
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18.  Given the random variable and corresponding probability 

mass function (pmf) 

 

   X = {1, 2, 3, 4, 5} 

f(x) = {0.1, 0.3, 0.4, 0.1, 0.1} 

 

Calculate 

(a) ∑ f(xi)     

(b) P(1<x<5) 

(c) E[X]     

(d) E[X2] 

(e) RMS 

(f) Variance 

(g) standard deviation 
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19.  Given the probability density function f(x) = 3x2/8. 

 

Calculate 

(a) Mean    

(b) RMS 

(c) P(x>0.5) 

 

 

20.Given the pdf f(x) = N sin(x) for 0<x<π. 

(a) Compute the normalization constant N. 

(b) Compute the expectation value and variance. 

 

21.Given the pdf f(x) = k exp(-0.1x) for 0 < x < inf. 

(a) Compute the normalization constant k. 

(b) Find P(x>2). 
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22. Evaluate the following integrals: 

 

 

 

 

 

 

 

 

 

2

1

2/   
2

1 2

dze z

2

1

8/)1(   
22

1 2

dze z
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23.Suppose the diameters, D, of screws  

manufactured by a company are normally distributed with  

mean 0.25 cm and standard deviation 0.02 cm. A screw is  

considered defective if  its diameter D < 0.22 cm.  

A sample of 250 screws are selected randomly.  

Estimate the number of defective screws in this sample. 
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