

Dimension

 All physical and engineering quantizes can be described by a combination of basic quantities such as Length, Time, Mass, etc.

These primary dimensions can be written as
 [L], [T], [M], etc.

e.g: the speed has the dimension:

speed =
$$\frac{length}{time} = \frac{[L]}{[T]} = [LT^{-1}]$$

e.g: the mass density has the dimension:

$$density = \frac{mass}{volume} = \frac{[M]}{[L]^3} = [ML^{-3}]$$

1. SI Bas	se Units
The Inter- units of rThese S	rnational System of Units (SI) defines seven neasure as a basic set. I base units and their physical quantities are:
Meter Kilogram Second Ampere Kelvin Mole Candela	the fundamental unit of length the fundamental unit of for mass the fundamental unit of time the fundamental unit of electric current the fundamental unit of temperature the fundamental unit of amount of substance the fundamental unit of luminous intensity <i>A candle has luminous intensity of approx. 1 candela</i>
	Sayfa 5

Name	Symbol	Definition
Meter	m	<i>The length</i> of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
Kilogram	kg	The mass of the international prototype of the kilogram
Second	S	<i>The duration</i> of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom
Ampere	A	The constant <i>electric current</i> which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to $2 10^{-7}$ newton per metre of length
Kelvin	к	The fraction 1/273.16 of the <i>thermodynamic temperature</i> of the triple point of water
Mole	mol	<i>The amount of substance</i> of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12 atom
Candela	cd	The luminous intensity in a given direction, of a light source that emits monochromatic radiation of frequency $540 10^{12}$ Hz and that has a radiant intensity in that direction of 1/683 watt per steradian
		Sayfa 6

Derived SI Units

- Relying on the base units, all other units of measurement can be formed.
- For example,
 - > the SI derived unit of area is square metre (m²)
 - density is kilograms per cubic metre (kg/m³)

Some named derived units:

Quantity	Symbol	Dimen.	SI	Deriv.S	<u> </u>
Force	F	[MLT ⁻²]	kg.m/s ²	Newton,	N
Energy	E	[ML ² T ⁻²]	kg.m²/s²	Joule,	J
Pressure	Р	[ML ⁻¹ T ⁻²]	kg/m.s ²	Pascal,	Pa
					Sayfa 7

Name 🗢	Symbol 🗢	Quantity \$	Expression in terms of other units	Expression in terms of SI base units
hertz	Hz	frequency	1/s	s ⁻¹
radian	rad	angle	m/m	dimensionless
steradian	sr	solid angle	m²/m²	dimensionless
newton	N	force, weight	kg∙m/s ²	kg·m·s ^{−2}
pascal	Pa	pressure, stress	N/m ²	kg⋅m ⁻¹ ⋅s ⁻²
joule	J	energy, work, heat	$N \cdot m = C \cdot V = W \cdot s$	kg·m ² ·s ⁻²
watt	w	power, radiant flux	J/s = ∀·A	kg⋅m²⋅s ⁻³
coulomb	с	electric charge or quantity of electricity	s·A	s·A
volt	v	voltage, electrical potential difference, electromotive force	W/A = J/C	kg·m ² ·s ⁻³ ·A ⁻¹
farad	F	electric capacitance	C/V	$kg^{-1} \cdot m^{-2} \cdot s^4 \cdot A^2$
ohm	Ω	electric resistance, impedance, reactance	V/A	$kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}$
siemens	s	electrical conductance	$1/\Omega = A/V$	$kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$
weber	Wb	magnetic flux	J/A	$kg \cdot m^2 \cdot s^{-2} \cdot A^{-1}$
tesla	т	magnetic field strength, magnetic flux density	$\vee s/m^2 = Wb/m^2 = N/(A \cdot m)$	kg·s ⁻² ·A ⁻¹
henry	н	inductance	∨·s/A = Wb/A	$kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}$
degree Celsius	°c	temperature relative to 273.15 K	к	к
lumen	Im	luminous flux	cd·sr	cd
lux	Ix	illuminance	lm/m ²	m ^{−2} ·cd
becquerel	Bq	radioactivity (decays per unit time)	1/s	s ⁻¹
gray	Gy	absorbed dose (of ionizing radiation)	J/kg	m ² · s ⁻²
sievert	Sv	equivalent dose (of ionizing radiation)	J/kg	m ² · s ⁻²
katal	kat	catalytic activity	mol/s	s ⁻¹ ·mol
				Sayfa 8

Scaling Prefixes of SI U	nits		
Multiplication Factor	Prefix	SI sy	smbol
$1,000,000,000,000,000,000,000,000 = 10^{24}$	yotta	Y	
1,000,000,000,000,000,000,000 = 10 ²¹	zetta	z	
$1,000,000,000,000,000,000 = 10^{18}$	exa	Е	
$1,000,000,000,000,000 = 10^{15}$	peta	P	
$1,000,000,000,000 = 10^{12}$	tera	т	
$1,000,000 = 10^9$	giga	G	
1,000,000 = 10 ⁶	mega	м	
$1000 = 10^3$	kilo	k	
$100 = 10^2$	hecto	h	
$10 = 10^{1}$	deka	da	
$0.1 = 10^{-1}$	deci	d	Examples:
$0.01 = 10^{-2}$	centi	с	$1 \text{ GHz} = 10^9 \text{ Hz}$
$0.001 = 10^{-3}$	milli	m	
$0.000,001 = 10^{-6}$	micro	μ	$1 \text{ MW} = 10^6 \text{ W}$
$0.000,000,001 = 10^{-9}$	nano	n	4 L D = 402 D =
$0.000,000,000,001 = 10^{-12}$	pico	р	$1 \text{ KPa} = 10^{\circ} \text{ Pa}$
$0.000,000,000,000,001 = 10^{-15}$	femto	f	$1 \text{ mm} = 10^{-3} \text{ m}$
$0.000,000,000,000,000,001 = 10^{-18}$	atto	a	
$0.000,000,000,000,000,000,001 = 10^{-21}$	zepto	z	1 μF = 10 ^{−6} F
$0.000,000,000,000,000,000,000,001 = 10^{-24}$	yocto	У	
-			- , 9

EXAMPLE 1 [Engineering Fundamentals, 4th Ed, Cencage Learning] Acceleration is sometimes measured in g's, where 1 g = 9.8 m/s². How many g's correspond to the steady acceleration of a car doing zero to fifty km/h in 9.0 seconds? (Ans: 0.2 g)

SOLUTION

3. British Gravitational Units The unit of time is seconds (s). The unit of length is a foot (ft). 1 ft = 0.3048 m.The unit of force is a pound (lb). 1 lb = 4.448 N. The unit of mass is a slug. $1 \text{ lb} = (1 \text{ slug})(1 \text{ ft/s}^2)$ The unit of temperature is degree Fahrenheit (°F) or degree Rankine (°R) $T(^{\circ}R) = T(^{\circ}F) + 459.67$ $T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32$ $T(^{\circ}\mathbf{R}) = \frac{9}{5}T(K)$ $T(^{\circ}C) = T(K) - 273.15$ Sayfa 12

4. U.S. Customary Units

Some engineers still use the U.S. Customary system of units.

• The unit of time is seconds (s).

- The unit of length is a foot (ft). 1 ft = 0.3048 m
- The unit of mass is a pound mass (lbm). 1 lbm = 0.453592 kg
- The unit of force is pound force (lbf) 1 lbf = 4.448 N
- The unit of temperatures are identical to BG.
- Note that 1 slug ≈ 32.2 lbm.

More details can be found at:

http://en.wikipedia.org/wiki/Unit_converter

You can download a simple converter executable program from: http://www1.gantep.edu.tr/~bingul/ep145/converter.exe

Dimension	SI	BG	U.S. Customary	Conversion Factors
Length	Meter (m)	Foot (ft)	Foot (ft)	1 ft = 0.3048 m 1 m = 3.2808 ft
Time	Second (s)	Second (s)	Second (s)	
Mass	Kilogram (kg)	Slugs*	Pound mass (lb _m)	$\begin{array}{l} 1 \ lb_m = 0.4536 \ kg \\ 1 \ kg = 2.2046 \ lb_m \\ 1 \ slug = 32.2 \ lb_m \end{array}$
Force	Newton (N)	$1 \text{ lb}_{f} = (1 \text{ slug}) \left(1 \frac{\text{ft}}{\text{s}^2} \right)$	One pound mass	$1 \text{ N} = 224.809 \text{E-} 3 \text{lb}_{\text{f}}$
	$1\mathrm{N} = (1\mathrm{kg}) \left(1\frac{m}{s^2} \right)$		weighs one pound force at sea level	$1 \text{ lb}_{f} = 4.448 \text{N}$
Temperature	Degree Celsius (°C) or Kelvin (K) K = °C + 273.15	Degree Fahrenheit (°F) or degree Rankine (°R) °R = °F + 459.67	Degree Fahrenheit (°F) or degree Rankine (°R) °R = °F + 459.67	${}^{\circ}C = \frac{5}{9} [{}^{\circ}F - 32]$ ${}^{\circ}F = \frac{9}{5} {}^{\circ}C + 32$ $K = \frac{5}{9} {}^{\circ}R$ ${}^{\circ}R = \frac{9}{5} K$
Work, Energy	Joule $(J) = (1N)(1m)$	$\begin{split} lb_f \cdot ft &= (1 \ lb_f)(1 \ ft) \\ Commonly written \\ as \ ft \cdot lb_f \end{split}$	$lb_f \cdot ft = (1 \ lb_f)(1 \ ft)$	$\begin{array}{l} 1 \; J \; = \; 0.7375 \; ft \cdot lb_{f} \\ 1 \; ft \cdot lb_{f} \; = \; 1.3558 \; J \\ 1 \; Btu \; = \; 778.17 \; ft \cdot lb_{f} \end{array}$
Power	$Watt(W) = \frac{1 \text{ Joule}}{1 \text{ second}}$	$\frac{lbf \cdot ft}{second} = \frac{(1lbf)(1 ft)}{1 second}$	$\frac{lbf \cdot ft}{second} = \frac{(1lbf)(1 ft)}{1 second}$	$1 \text{ W} = 0.7375 \frac{\text{ft} \cdot \text{lb}_{\text{f}}}{\text{s}}$
	kW = 1000 W			$1 \text{ hp} = 550 \frac{\text{ft} \cdot \text{lb}_{\text{f}}}{1}$
				1 hp = 0.7457 kW
				Sayfa 14

EXAMPLE 2 [Engineering Fundamentals, 4th Ed, Cencage Learning] A person who is 6 feet and 1 inch tall and weighs 185 pound force (lbf) is driving a car at a speed of 65 miles per hour over a distance of 25 miles. The outside air temperature is 80 °F and has a density of 0.0735 pound mass per cubic foot (lbm/ft³). Convert all of the values given in this example from U.S. Customary Units to SI units. **SOLUTION**

Other Units	of Length	
Physics:		
 fermi (fm) 	1 fm = 1 femtometre = 1	0 ⁻¹⁵ m (Nuclear Physics)
 angstrom (Å) 	1 Å = 10 ⁻¹⁰ m	(Atomic Physics)
 micron 	1 micron = 10 ⁻⁶ m	
 Bohr radius (a₀) 	1 a ₀ = 5.29 x 10 ⁻¹¹ m	(Atomic Physics)
 Planck length(_{lp}) 	1 ℓ _P = 1.6 x 10 ⁻³⁵ m	(Particle Physics)
1.		
Astronomy:		
 Earth radius (RE) 	1 RE = 6370 km	
 Astronomical unit ((AU) 1 AU = 1.5 x10 ⁹ m	(dis. between Sun and Earth)
 Light year (ly) 	1 ly = 9.46 x 10 ¹² m	(dis. travelled by light in a year)
 parsec (pc) 	1 pc = 30.8 10 ¹² m	
Imperial/US units:		
 Inches (in) 1 in = 	2.54 cm and 1 ft = 12 in	
 yard (yd) 1yd = 	3 ft = 36 in = 0.9144 m	
 mile (mi) 1 mi = 	5280 ft = 1609.344 m	
		Sayfa 16

Turns0 $1/_{12}$ $1/_8$ $1/_6$ $1/_4$ $1/_2$ $3/_4$ 1Degrees0°30°45°60°90°180°270°360°Radians0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads0 ^g 33½50 ^g 66⅔100 ^g 200 ^g 300 ^g 400 ^g	Turns 0 1/ ₁₂ 1/ ₈ 1/ ₆ 1/ ₄ 1/ ₂ 3/ ₄ 1 Degrees 0° 30° 45° 60° 90° 180° 270° 360° Radians 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads 0 ^g 33½ ^g 50 ^g 66⅔ ^g 100 ^g 200 ^g 300 ^g 400 ^g	Units				Val	ues			
Degrees 0° 30° 45° 60° 90° 180° 270° 360° Radians 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads 0° $33^{1/9}$ 50° $66^{2/9}$ 100° 200° 300° 400°	Degrees0°30°45°60°90°180°270°360°Radians0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads0 ^g 33½50 ^g 66½100 ^g 200 ^g 300 ^g 400 ^g	Turns	0	1/12	1⁄8	1/6	1/4	1/2	³ ⁄4	1
Radians 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads 0 ^g 33 ¹ / ₂ ^g 50 ^g 66 ² / ₃ ^g 100 ^g 200 ^g 300 ^g 400 ^g	Radians 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π Grads 0 ^g 33½ ^g 50 ^g 66½ ^g 100 ^g 200 ^g 300 ^g 400 ^g	Degrees	0°	30°	45°	60°	90°	180°	270°	360°
Grads 0 ^g 331 ³ ^g 50 ^g 66 ² / ₃ ^g 100 ^g 200 ^g 300 ^g 400 ^g	Grads 0 ^g 331/3 ^g 50 ^g 662/3 ^g 100 ^g 200 ^g 300 ^g 400 ^g	Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
		Grads	0 ^g	331⁄3 ^g	50 ^g	66²⁄₃ ^g	100 ^g	200 ^g	300 ^g	400 ^g

EXAMPLE 3

In NATO countries including Turkish Army, an angular mil (pn) unit is used. This angular measurement is generally employed by Artillery (Topçu). If 1 pn = 1/6400 of a circle, evaluate 542 pn in degrees, radians and grads.

(Ans: 15.24°, 0.27 rad, 16.949)

SOLUTION

equal to the spherical cap since the Moon-Earth distance (d) is much more grater than the radius (R) of the moon (d >> R).

$$\Omega = \frac{A}{r^2} \approx \frac{\pi R^2}{d^2} = \frac{\pi (1738)^2}{(384000)^2} = 6.4 \times 10^{-5} \text{ sr}$$

Note that Moon covers about 5x10⁻⁴ % of the sky since

$$\frac{6.4 \times 10^{-5} \text{ sr}}{4\pi \text{ sr}} = 5.1 \times 10^{-6}$$

Angular SI Units: Hz and rpm

 Rotational or angular speed (ω) is rate of change of angular displacement

$$\omega \equiv \frac{\text{angular displacements}}{\text{time}} = \frac{\Delta \theta}{\Delta t} \equiv \frac{\text{rad}}{\text{s}}$$

• **rpm** stand for revolutions per minute (rpm is not a unit).

$$1 \text{ rpm} = \frac{1 \text{ revolution } s}{1 \text{ minute}} = \frac{2\pi \text{ rad}}{60 \text{ s}} = \frac{\pi}{30} \text{ rad/s} \approx 0.105 \text{ rad/s}$$

• Rotational frequency (*f*) and angular velocity is related by:

$$f = \frac{\omega}{2\pi} \equiv \frac{\text{rad/s}}{\text{rad}} \equiv \frac{1}{s} \equiv \text{Hz}$$

Sayfa 37

Addition and Subtraction rules:

The sum or difference of two values should contain no significant figures farther to the right of the decimal place than occurs in the least precise number in the operation.

```
113.2 + 1.43 = 114.63 (your calculator will display)

113.2 + 1.43 = 114.6 (But the result should be recorded in this way)

113.2 - 1.43 = 111.77 (your calculator will display)

113.2 - 1.43 = 111.8 (But the result should be recorded in this way)

113.212 - 113.0 = 0.212 (your calculator will display)

113.212 - 113.0 = 0.2 (result should be recorded in this way)

Sayfa 38
```

Multiplication and Division rules:

The product or quotient should contain no more significant figures than are contained by the term with the least number of significant figures used in the operation.

 $(113.2) \times (1.43) = 161.876$ (your calculator will display) $(113.2) \times (1.43) = 162$ (result should be recorded in this way) (113.2) / (1.43) = 79.16 (your calculator will display) (113.2) / (1.43) = 79.2 (result should be recorded in this way)

Sayfa 39

Ouestions How many seconds are there in a year? Convert the value of area A = 100 cm² to m². Convert the value of volume V = 100 mm³ to in³. Convert the value of atmospheric pressure, P = 10⁴ N/m² to lbf/in². Convert the value of the density of water, ρ = 1 g/cm³ to lbm/ft³. If the pressure in the tire on your car is 34.0 lbf/in² (or psi), what is its pressure in SI units? What is the area in SI system of the skin of a spherical apple that is 3.8 inches in diameter?

14.	Gravitation	al force	between two objects of masses m_1 and m_2 is given by	en by:
			$F = G \frac{m_1 m_2}{r^2}$	
	where <i>r</i> is t gravitationa to be dime	the dista al consta nsionally	nce between the masses and G is the universal ant. What is the SI unit of the G if the above equation homogenous?	ition is
15.	The "secor Express the	nd" hand e rotatio	of a conventional analogue clock rotates at 1 rp nal speed in Hz unit.	m.
16.	Convert the	e followir	ng SI units into BG	
	140 km/h	>	miles/h and ft /s	
	1240 W	>	Btu/h and hp	
	10 m ³	>	ft ³	
	16 kg	>	lbm	
	1 g/cm ³	>	lbm/ft ³	
	150 N	>	lbf	
	10 kPa	>	lbf /in ²	
	9.8 m/s ²	>	ft /s ²	
			Sa	yfa 42

