EP145 Introduction to Engineering

Topic 4
Use of Spreadsheets, GNUplot and Octave

Department of
 Engineering Physics
University of Gaziantep
http://www1.gantep.edu.tr/~bingul/ep145
Oct 2012

Introduction

In this chapter, we will discuss the basic use of:

1. Electronic Spreadsheets
2. GNUplot
3. GNU Octave

1. Electronic Spreadsheets

- A spreadsheet is the computer equivalent of a paper ledger sheet.
- It consists of a grid made from columns and rows. It is an environment that can make number manipulation easy and somewhat painless.

	prapex	esdgex	
	eax lean		$\$ 92,000$
	interest		9.6%
	\# of payments	60	
	menthly pagment	$\$ 252.67$	

	A	B	C
1		computer ledger	
2			
3		car loan	\$12,000.00
4		interest	9.60\%
5		\# of payments	60
6			
7		Monthly Pmt.	\$252.61

- Electronic spreadsheets can be used to solve an engineering problem.

Arithmetic Operators in Excel

+	Addition	$2+3=5$
-	Subtraction	$2-3=-1$
$*$	Multiplication	$2^{*} 3=6$
$/$	Right division	$2 / 3=0.6666$
\wedge	Exponention $\left(x^{y}\right)$	$2^{\wedge} 3=8$

Some Excel Functions			
Function name			
English	Turkish	Description	Example
SUM (range)	TOPLA (aralık)	sum of values	=SUM(A1:B5)
AVERAGE (range)	ORTALAMA (aralık)	mean of values	=AVERAGE(A1:B5)
COUNT (range)	BAĞ_DEĞ_SAY (aralık)	count values	=COUNT(F7:F11)
MAX (range)	MAK (aralık)	maximum value	=MAX(F7:F11)
MIN (range)	Mİ(aralik)	minimum value	=MIN(F7:F11)
STDEV(range)	STD_SAP (aralık)	standard deviation	=STDEV(F7:F11)
$\operatorname{SIN}()$	$\sin ()$	sinus	$=\operatorname{SIN}(0.1)$
\cos ()	$\cos ()$	cosinus	$=\operatorname{COS}(0.1)$
tan()	tan()	tangent	$=\operatorname{TAN}(0.1)$
SQRT()	KARE_KÖK ()	square root	=SQRT(0.1)
IF ()	EGERER()	if-else stucture	=\|F(A1>10; "yes"; "no")
Note that			
The argument SIN(30) retur	The argument of the trigonometric functions is in radian.	tric functions	is in radian.

EXAMPLE 1

EXAMPLE 2			
		A	c
		1	
	2	2	=SUM(A1:A5)
	3	-5	=AVERAGE(A1:A5)
	4	0	=COUNT(A1:A5)
	5	5.	=IF(A1>0;"Yes";"No")
	6		
	7		
		\cdots Say	201 ${ }^{23}$
		Microsa	Excel Calsma Sayfasılx ${ }^{\text {a }}$
		A	c
	1	1	
	2	2	3
	3	-5	0.6
	4	0	5
	5	5	Yes
	6		
	7		
		H Say	

2. GNUplot

- Gnuplot is a portable command-line driven graphing utility
 for Linux, MS Windows and many other platforms.
- Gnuplot homepage: http://www.gnuplot.info
- Documentation:
http://www.gnuplot.info/gnuplot_cvs.pdf
- Download:
- Demos:
http://www.gnuplot.info/download.html
http://gnuplot.sourceforge.net/demo

Running gnuplot:

$>$ plot [0:5] $x * x$

Consider you have the following data file saved in your Desktop as "data.txt".

$\#$ X	\mathbf{Y}	\mathbf{Z}
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5

```
splot "data.txt" using 1:2:3
```


> splot "data.txt" using 1:2:3 with lines

$\# \mathbf{X}$	\mathbf{Y}	\mathbf{Z}
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5

splot "data.txt" using 1:2:3 matrix with lines

$\#$ X	\mathbf{Y}	\mathbf{Z}
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5

> plot "data.txt" using 1:2 with lines

\# X	\mathbf{Y}	Z
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5

> plot "data.txt" using $1: 3$ with lines

Sayfa 20

3. GNU Octave

- GNU Octave is a high-level interpreted language, primarily intended for numerical
 computations.
- It provides a convenient command line interface for solving linear and nonlinear problems numerically.
- Gnu octave homepage:
http://www.gnu.org/software/octave
- Documentation:
http://www.gnu.org/software/octave/octave.pdf
- Download:
hhttp://www.gnu.org/software/octave/download.html

Qt Octave

Arithmetic Operators in Octave

+	Addition	$2+3=5$
-	Subtraction	$2-3=-1$
*	Multiplication	$2^{*} 3=6$
/	Right division	$2 / 3=0.6666$
\	Left division	$2 \backslash 3=1.5$
^	Exponention $\left(x^{y}\right)$	$2^{\wedge} 3=8$

Element-wise multiplication (we'll see later)
./ Element-wise division
.^ Element-wise exponention

Some Octave Intrinsic Functions			
Function	Description	Example	
abs (x)	\|x		abs(-2) = 2
$\sin (x)$	sine of $x \quad(x$ is in radian $)$	$\sin (1.5)$	
$\cos (x)$	cosine of x	$\cos (1.5)$	
$\tan (\mathrm{x})$	tangent of x	$\tan (1.5)$	
sind (x)	sine of $x \quad(x$ is in degrees)	$\sin (30)$	
$\operatorname{cosd}(\mathrm{x})$	cosine of x	$\cos (30)$	
tand (x)	tangent of x	$\tan (30)$	
$\operatorname{asin}(x)$	angle in radian from $\sin ^{-1}(x)$	asin(0.5)	
$\operatorname{acos}(\mathrm{x})$	angle in radian from $\cos ^{-1}(x)$	$\operatorname{acos}(0.5)$	
$\operatorname{atan}(x)$	angle in radian from $\tan ^{-1}(x)$	$\operatorname{atan}(0.5)$	
sqrt (x)	square root of x	sqrt(4) = 2	
$\log (\mathrm{x})$	$\ln (\mathrm{x})$	$\log (2)$	
$\log 10$ (x)	$\log _{10}(x)$	$\log 10(2)$	
$\exp (\mathrm{x})$	e^{x}	$\exp (-5)$	
$\bmod (x, y)$	x modulo y	$\bmod (12,5)=2$	
		Sayta 24	

```
>> 3+1
ans = 4
```

```
>> sqrt(4)
ans = 2
```

```
>> pi
ans = 3.1416
```

>> $x=3+4 i \quad \%$ complex number
$x=3.0000+4.0000 i$

OneDim Arrays (Vectors)

- An array can be created in many ways:

```
>> x = [lllllll}
x = 0 0.2500 0.5000 0.7500 1.0000
```

>> $x=0: 0.25: 1$
$\begin{array}{lllll}x=0 & 0.2500 & 0.5000 & 0.7500 & 1.0000\end{array}$

$$
\begin{aligned}
& \gg \mathbf{v}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \% \text { row vector } \\
& \mathbf{v}=1
\end{aligned}
$$

>> $\mathrm{v}=[1 ; 2 ; 3] \%$ column vector
v =
1
2
3

```
>> v = [ll 2 3]' % transpose of a row vector
v =
```

 1
 2
 3

TwoDim Arrays (Matrices)

```
>> A = [1 1 1; 2 2 2] % 2x3 matrix
A= llll
```

>> $A=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right.$
$222]$
$A=\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}$
>> $B=A^{\prime}$
$B=\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}$

```
>>A=[[1 2; 3 4]
A =
            1 
>> B = [4 5; 1 0]
B =
            4
>>A*B
ans =
            6
            16 15
>> A+B
ans =
    5
```

```
>> A = [1 2; 3 4]
A =
        1 
>> det(A) % determinant of A
ans = -2
>> inv(A) % matrix inverse of A
ans =
    -2.0000 1.0000
        1.5000 -0.5000
```


Array Functions

$\mathrm{n}=$ length (x) returns number of elements of a vector

```
>> x = [l0
>> length(x)
ans = 5
```

```
sum (x) returns sum of the elements of vector x
prod (x) returns product of the elements of vector x
>> x = [llllllll
>> sum(x)
ans = 11.6000
>> prod(x)
46.5000
```

$\operatorname{dot}(\mathbf{x}, \mathbf{y}) \quad$ returns dot product of two vectors x and y
cross $(\mathbf{x}, \mathrm{y}) \quad$ returns vector product of the elements of vector x and y

```
>> a = [lllll}1024]
>> b = [l0 2 5];;
>> dot(a,b)
ans = 24
>> cross (a,b)
ans = 2 -5 2
```

```
zeros(m,n) returns a matrix of m rows and n columns that is
        filled with zeroes
ones (m,n) returns a matrix of m rows and n columns that is
    filled with ones
rand (m,n) returns a matrix of m}\mathrm{ rows and n columns that is
                                filled with uniform random number between [0,1]
eye (n) creates an n x n identity (unit) matrix.
```

```
>> P = zeros (2,3)
```

>> P = zeros (2,3)
P= 0
P= 0
>> P = ones (2,3)
>> P = ones (2,3)
P = 1 1 1 1 1
P = 1 1 1 1 1
>> P = rand (2,3)
>> P = rand (2,3)
P=0.9501 0.6068 0.8913
P=0.9501 0.6068 0.8913
0.2311 0.4860 0.7621
0.2311 0.4860 0.7621
>> I = eye(2)
I = 1 0

EXAMPLE 3

Solve the linear system

$$
\begin{aligned}
2 x+y & =1 \\
-x+2 y+2 z & =2 \\
y+4 z & =3
\end{aligned}
$$

```
>> A = [2 1 0; -1 2 2; 0 1 4]; % Input 3 x 3 matrix
>> b = [1; 2; 3]; % Input column vector
>> x = A\b % Solve A*x = b by left division
x =
    0.2500
    0.5000
    0.6250
```


Questions

1. The advantage of using a spreadsheet is:
A) calculations can be done automatically
B) changing data automatically updates calculations
C) more flexibility
D) to record, organize, and analyze data using formulas
E) all of the above
2. In a spreadsheet, the intersection of a row and a column is called:
A) data
B) field
C) cell
D) equation
E) address
3. For the spreadsheet given, write down the result of the following equations?
a) $=\operatorname{SUM}(\mathrm{A} 1: \mathrm{A} 3)$
b) $=\operatorname{SUM}(\mathrm{A} 5: \mathrm{A} 3)$
c) $=A V E R A G E(A 1: A 5)$
d) $=\mathrm{MAX}(\mathrm{A} 1: \mathrm{A} 5)$
e) $=\operatorname{MIN}(A 2: A 4)$
f) $=\operatorname{COUNT}(A 1: A 4)$
g) $=1 F(A 4<6$; "on"; "off")
h) $=\operatorname{SIN}(\mathrm{A} 5)$
i) $=(\mathrm{A} 1+\mathrm{A} 2)^{\wedge} 2+\mathrm{A} 3^{*} \mathrm{~A} 4$

i) $=\operatorname{SQRT}(\mathrm{A} 3)$
k) $=\operatorname{STDEV}(\mathrm{A} 1: \mathrm{A} 3)$
4. Consider one wants to prepare a spreadsheet to convert a length in meters (whose value is written in the cell B4) to miles, inches and yards. What must be the equations in the cell
B7 to convert from m to mi B10 to convert from m to in B13 to convert from m to yd ?

5. Viscosity is a measure of how easily a fluid flows. For example, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. The viscosity of water can be from the following correlation:

$$
\mu=2.414 \times 10^{\left(\frac{247.8}{T-140}\right)-5}
$$

where T is the temperature in Kelvin and μ is the viscosity in $\mathrm{N} / \mathrm{s} . \mathrm{m}^{2}$. Using Excel, write down the formula in cell B7 to evaluate the viscosity of the water for the given temperature in ${ }^{\circ} \mathrm{C}$ in cell B4.

6. Write down the GNUplot command to plot the function $f(x)=\sin (x) / x$ in the range $[-10,10]$.
7. Write down the GNUplot command to plot the set of functions $f_{k}(x)=k^{*} \cos \left(k^{*} x\right)$ in the range $[-p i$, pi] for $k=-4,-3, \ldots, 3,4$
8. Write down the GNUplot command to plot the function $f(x, y)=\sin \left(x^{3}\right)+x^{*} \ln (y)$ in the x-range $[-1,1]$ and y-range $[1,20]$.
9. Write down the GNUplot command to plot viscosity vs temperature graph of water in problem 5 . Assume that temperature range is $\left[0^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}\right]$.
10. Gravitational force between two objects of masses m_{1} and m_{2} is given by:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where r is the distance between the masses and G is the universal gravitational constant and has the value $G=6.673 \times 10^{-11} \mathrm{~N} /(\mathrm{m} . \mathrm{kg})^{2}$. Assume that $m_{1}=6 \times 10^{24}$ kg (Earth) and $m_{2}=7.4 \times 10^{22} \mathrm{~kg}$ (Moon). Write down the GNUplot command to plot the graph of $F \mathrm{vs} r$ in the range $r=[0,384000 \mathrm{~km}]$.
10. Following data file named "wind.txt" contains measurement of the wind speed (km / h) as a function of time (pm) and temperature $\left({ }^{\circ} \mathrm{C}\right)$.
Write down the GNUplot command to plot
a) 3 D matrix graph of wind speed vs time vs temperature.
b) 3D point graph of wind speed vs time vs temperature.
c) 2 D graph of time vs wind speed
d) 2 D graph of temperature vs wind speed

$\#$ time	temperature	wind_speed
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5

11. Write down the following equations in Octave command line:
a) $\quad K=\left(\left(1-v^{2} / c^{2}\right)^{-1 / 2}-1\right) m c^{2}$
b) $\psi=\frac{h k}{2 \pi}+A \sin ^{2}(x-\beta)$
c) $F=G \frac{m_{1} m_{2}}{r^{2}}$
d) $\mu=2.414 \times 10^{\left(\frac{247.8}{T-140}\right)-5}$
12. What is the output of the following Octave program?
```
>> h = 6.6e-34;
>> p = 2.2e-31;
>> lambda = h/p
```

13. What is the output of the following Octave program?
```
>> x = [llllll}1023]
>> y = [3 2 1];
>> a = sum(x)
>> b = prod (y)
>> d = length(x)
>> e = exp (x)
>> dot(x, y) * x.^2
```

14. What is the output of the following Octave program?
```
>>A = [1 2; 4 5];
>> det(A)
>> inv(A)
>> det(inv(A'))
```

15. What is the output of the following Octave program?
```
>> a = [llll}
>> b = [3 2 1];
>> log10(a)
>> a + b
>> 3*a
>> a.*b
>> a*b'
```

16. Solve the following system by using Octave:

$$
\begin{aligned}
x+y+z & =6 \\
2 x+5 y+z & =15 \\
-3 x+y+5 z & =14
\end{aligned}
$$

References

1. P. Kosky et al., Exploring Engineering, 2nd Ed. Elsevier Inc. (2010)
2. S. Moaveni, Engineering Fundamentals, 4th Ed. Cengage Learning (2011)
3. http://www.gnuplot.info
4. http://t16web.lanl.gov/Kawano/gnuplot/datafile-e.html
