

Some Excel Functions

Function name

English	Turkish	Description	Example
SUM(range)	TOPLA(aralık)	sum of values	=SUM(A1:B5)
AVERAGE (range)	ORTALAMA(aralık)	mean of values	=AVERAGE(A1:B5)
COUNT (range)	BAĞ_DEĞ_SAY(aralık)	count values	=COUNT(F7:F11)
MAX(range)	MAK(aralık)	maximum value	=MAX(F7:F11)
MIN(range)	MİN(aralık)	minimum value	=MIN(F7:F11)
STDEV(range)	STD_SAP(aralık)	standard deviation	=STDEV(F7:F11)
SIN()	SİN()	sinus	=SIN(0.1)
COS()	COS()	cosinus	=COS(0.1)
TAN()	TAN()	tangent	=TAN(0.1)
SQRT ()	KARE_KÖK ()	square root	=SQRT(0.1)
IF()	EĞER()	if-else stucture	=IF(A1>10; "yes"; "no")

Note that

The argument of the trigonometric functions is in radian. SIN(30) returns sinus of 30 radians!

Sayfa 5

QtOctave [Empty] - [Octave Terminal]
File View Analysis Data Equations Matrix
🕽 🗶 🥜 🔄 🔁 😨 🔍 🔍 🖉
able's list 6 × w Variable list ame Size Bytes Local u block variable (Local u block variable (Local u command List block variable (Local u command List command List commond

Arithmetic Operators in Octave

+	Addition	2 + 3 = 5
_	Subtraction	2 - 3 = -1
*	Multiplication	2 * 3 = 6
/	Right division	2/3 = 0.6666
١	Left division	2 \ 3 = 1.5
^	Exponention (x ^y)	2^3 = 8
.*	Element-wise multiplication	(we'll see later)
./	Element-wise division	
.^	Element-wise exponention	
		Sayfa 23

Some O	Ctave Intrinsic Functio	ns
Function	Description	Example
abs(x)	x	abs(-2) = 2
sin(x)	sine of x (<i>x is in radian</i>)	sin(1.5)
cos(x)	cosine of x	cos(1.5)
tan(x)	tangent of x	tan(1.5)
sind(x)	sine of x (<i>x is in degrees</i>)	sin(30)
cosd(x)	cosine of x	cos(30)
tand(x)	tangent of x	tan(30)
asin(x)	angle in radian from sin ⁻¹ (x)	asin(0.5)
acos(x)	angle in radian from cos ⁻¹ (x)	acos(0.5)
atan(x)	angle in radian from tan ⁻¹ (x)	atan(0.5)
sqrt(x)	square root of x	sqrt(4) = 2
log(x)	ln(x)	log(2)
log10(x)	log ₁₀ (x)	log10(2)
exp(x)	e ^x	exp(-5)
mod(x,y)	x modulo y	mod(12,5) = 2
		Sayfa 24


```
>> v = [1 2 3] % row vector
v = 1 2 3
>> v = [1; 2; 3] % column vector
v =
1
2
3

>> v = [1 2 3]' % transpose of a row vector
v =
1
2
3
```

์พ่อไ	Di	m	Arra	lys	5 (N	latr	ice	s)		
>> A	=	[1	1 1;	2	2 2]	8	2x3	matrix	:	
A =	1		1		1					
	2		2		2					
>> A		-	1 1 2 2]							
			1							
	2		2		2					
>> B	=	A '								
в =										
	1		2							
										Sayfa 28

```
>> A = [1 2; 3 4]
A =
   1 2
3 4
>> B = [4 5; 1 0]
в =
 4 5
1 0
>> A*B
ans =
 6
        5
  16 15
>> A+B
ans =
    5 7
    4
         4
                                          Sayfa 29
```


<pre>>> x = [1 2 2.5 3 3.1]; >> sum(x) ans = 11.6000 >> prod(x) 46.5000 dot(x,y) returns dot product of two vectors x and y cross(x,y) returns vector product of the elements of vector x and y >> a = [1 2 4]; >> b = [0 2 5]; >> dot(a,b) ans = 24 >> cross(a,b)</pre>	sum(x) prod(x)			f the elements of vector x at of the elements of vector x
<pre>cross(x,y) returns vector product of the elements of vector x and y >> a = [1 2 4]; >> b = [0 2 5]; >> dot(a,b) ans = 24</pre>	>> sum(x) ans = 11.60 >> prod(x)		3	3.1];
>> b = [0 2 5]; >> dot(a,b) ans = 24				-
ans = 2 -5 2	>> b = [0 2 >> dot(a,b) ans = 24 >> cross(a,	2 5]; b)	2	

```
returns a matrix of m rows and n columns that is
zeros(m,n)
               filled with zeroes
ones(m,n)
               returns a matrix of m rows and n columns that is
               filled with ones
              returns a matrix of m rows and n columns that is
rand(m,n)
              filled with uniform random number between [0,1]
              creates an n x n identity (unit) matrix.
eye(n)
\gg P = zeros(2,3)
P = 0
             0
                    0
      0
             0
                    0
>> P = ones(2,3)
P = 1
             1
                    1
      1
             1
                    1
\gg P = rand(2,3)
P = 0.9501 \quad 0.6068
                            0.8913
     0.2311
                0.4860
                             0.7621
>> I = eye(2)
I = 1
           0
      0
             1
                                                                 3
```

EXAMPLE 3 Solve the linear system 2x + y = 1-x + 2y + 2z = 2y + 4z = 3 $\implies A = [2 1 0; -1 2 2; 0 1 4]; \text{ input } 3 \times 3 \text{ matrix}\\ >> b = [1; 2; 3]; & \text{ input column vector}\\ >> x = A \text{ b} & \text{ Solve } A^*x = b \text{ by left division}\\ x = \\0.2500\\0.5000\\0.6250 \end{bmatrix}$

- Write down the GNUplot command to plot the function f(x) = sin(x)/x in the range [-10, 10].
- 7. Write down the GNUplot command to plot the set of functions $f_k(x) = k^* \cos(k^*x)$ in the range [-pi, pi] for k = -4, -3, ..., 3, 4
- 8. Write down the GNUplot command to plot the function $f(x,y) = sin(x^3) + x^*ln(y)$ in the x-range [-1,1] and y-range [1, 20].
- 9. Write down the GNUplot command to plot viscosity vs temperature graph of water in problem 5. Assume that temperature range is [0 °C,100 °C].

10. Gravitational force between two objects of masses m_1 and m_2 is given by:

$$F = G \frac{m_1 m_2}{r^2}$$

where *r* is the distance between the masses and *G* is the universal gravitational constant and has the value $G = 6.673 \times 10^{-11} \text{ N/(m.kg)}^2$. Assume that $m_1 = 6 \times 10^{24} \text{ kg}$ (Earth) and $m_2 = 7.4 \times 10^{22} \text{ kg}$ (Moon). Write down the GNUplot command to plot the graph of *F* vs *r* in the range r = [0, 384000 km].

Sayfa 37

Sayfa 38

- Following data file named "wind.txt" contains measurement of the wind speed (km/h) as a function of time (pm) and temperature (°C). Write down the GNUplot command to plot
 - a) 3D matrix graph of wind speed vs time vs temperature.
 - b) 3D point graph of wind speed vs time vs temperature.
 - c) 2D graph of time vs wind speed
 - d) 2D graph of temperature vs wind speed

#time	temperature	wind_speed
1	25	2.5
2	30	3.1
3	32	5.0
4	35	5.1
5	28	3.0
6	25	2.7
7	22	1.8
8	21	1.5


```
14. What is the output of the following Octave program?
   >> A = [1 2; 4 5];
   >> det(A)
   >> inv(A)
   >> det(inv(A'))
15. What is the output of the following Octave program?
   >> a = [1 2 3];
   >> b = [3 2 1];
   >> log10(a)
   >> a + b
   >> 3*a
   >> a.*b
   >> a*b'
16. Solve the following system by using Octave:
      x + y + z = 6
     2x + 5y + z = 15
    -3x + y + 5z = 14
                                                           Savfa 40
```

References

- 1. P. Kosky et al., *Exploring Engineering*, 2nd Ed. Elsevier Inc. (2010)
- 2. S. Moaveni, *Engineering Fundamentals*, 4th Ed. Cengage Learning (2011)
- 3. http://www.gnuplot.info
- 4. http://t16web.lanl.gov/Kawano/gnuplot/datafile-e.html

Sayfa 41