EP145 Introduction to Engineering

Topic 6
Length, Time and Mass Related Parameters

Department of
 Engineering Physics University of Gaziantep
http://www1.gantep.edu.tr/~bingul/ep145
Nov 2012

Introduction

In this chapter we will consider some important concepts in Engineering. Details can be found in [1] and [2].

1. Length and angle related parameters
2. Time related parameters
3. Mass related parameters

1. Length and Angle Related Parameters

Measurement of Length

Early humans may have used
finger length, arm span, step length, stick, rope, chains, ... to measure the size or displacement of an object.

Today, depending on accuracy, we use: ruler, caliper, micrometer, electronic distance measuring device ..

Example

One can use a protractor to measure the height of a building as follows:

if $d=10 \mathrm{~m}, \theta=52^{\circ}$ and $h_{1}=1.5 \mathrm{~m}$ then:

$$
\begin{aligned}
H & =h_{1}+h_{2} \\
& =h_{1}+d \tan \theta \\
& =1.5+10^{*} \tan 52^{\circ}=\mathbf{1 4 . 3} \mathbf{~ m}
\end{aligned}
$$

Coordinate Systems

- Coordinate systems are used to locate things with respect to a known origin.
- In Engineering, to locate an object at point A, with respect to the origin (point 0) we generally use the following systems:

- Spherical coordinate system is used in science and engineering.
- This system is defines a 3D space where the position of a point is specified by three numbers: (r, θ, φ) where
$r>0$
$0 \leq \theta \leq 180$ ($\pi \mathrm{rad}$)
$0 \leq \varphi<360$ ($2 \pi \mathrm{rad}$)

Earth Geographic Coordinate System

- This enables every location on Earth to be specified by a set of numbers and/or letters.
- Earth is divided into 360 circular arcs that are equally spaced
$>$ from East to West called longitudes or meridians.
$>$ from North to South called latitudes or paralles.

http://en.wikipedia.org/wiki/Latitude_and_longitude
- The north pole is 90 N The south pole is 90 S The 0 parallel of latitude is designated the equator.

The zero longitude was arbitrarily assigned to the arc that passes through Greenwich, England.

Example

The geographic coordinates of Gaziantep's populated place are given by: $37^{\circ} 3^{\prime} 33^{\prime \prime} \mathrm{N}$ and $37^{\circ} 22^{\prime} 57^{\prime \prime}$ E. Express the values of latitude and longitude only in degrees.

Here:

```
3' = 3 min = 3/60 = 0.05' (0.05 deg)
33" = 33 sec = 33/60/60 = 0.0091670 (0.009167 deg)
22' = 22 min = 22/60 = 0.3670
57" = 57 sec = 57/60/60 = 0.01583'
```

Therefore:
$37^{\circ} 3^{\prime} 33^{\prime \prime} \mathrm{N}=37+0.050+0.009167=37.059167^{\circ} \mathrm{N}$
$37^{\circ} 22^{\prime} 57^{\prime \prime} \mathrm{E}=37+0.367+0.015833=37.382833^{\circ} \mathrm{E}$

Example

If you type 37.059167, 37.382833
on the webpage maps. google.com, you will get the location on the map.

Example

It takes the earth 24 hours to complete one revolution about its axis.
a) Show that every 15 degrees longitude corresponds to 1 hour.
b) Show that every 1 degree longitude corresponds to 4 minute.

SOLUTION
a) $\quad \omega=\frac{360^{\circ}}{24 \mathrm{~h}}=15$ degrees per hour
b) $\quad \omega=\left(\frac{360^{\circ}}{24 \mathrm{~h}}\right)\left(\frac{1 \mathrm{~h}}{60 \mathrm{~min}}\right)=0.25$ degrees per minute
or

$$
\omega=\frac{4}{4}\left(0.25 \frac{\mathrm{deg}}{\min }\right)=1 \text { degree per } 4 \text { minute }
$$

The Spherical Coordinate system is also used in AstroPhysics to measure the angular position of Sun.

The azimuth angle is the compass direction from which the sunlight is coming.

The elevation (altitude) angle is the angular height of the sun in the sky measured from the horizontal.

Both angles vary throughout the day.

horizontal

Download the following animations from the course web page:
sun-elevation.swf
sun-azimuth.swf

See also:
http://www.pveducation.org/properties-of-sunlight/elevation-angle
http://www.pveducation.org/properties-of-sunlight/azimuth-angle

Example

If you type 37.059167, 37.382833 on the webpage www. sunearthtools.com, you will get the angular position of the sun for the given time.

Tools for consumers and designers of solar

Example

If you type 37.059167, 37.382833 on the webpage
http://www.pveducation.org/properties-of-sunlight/sun-position-high-accuracy you will get the position of the sun accurately.

PSA Algorithm Sun's Position Calculator

Year 2012 Month 11 Day 14

Azimuth	243.9017	degrees
Zenith	86.8806	degrees
Elevation	ก 3.1194	degrees

The date displayed is UTC, i.e. at Greenwich.
Hour 14 Minute 0 Second 0
Longitude $=37.059167 \quad$ Latitude $=37.382833$

2. Time Related Parameters

- Humans use

Sun, Moon, Stars, Planets, ... to keep track of long period of times.

- E.g. the lunar calendar
$>$ was used by many early civilizations
$>$ is used by many countaries today
- Humans also needs shorter time intervals such as what today we call an hour.
- This need led to the development of clocks.

Periodic Motion

- A period (T) is the time that it takes for the event to repeat itself. Such as every 365.24 days the earth lines up in exactly the same position with respect to the sun
- A frequency (f) is the inverse of a period.
- A spring-mass system or a simple pendulum are another examples for periodic motion.

Period and frequency of a pendulum:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{g}{L}} \\
& f=\frac{1}{T}
\end{aligned}
$$

Period and frequency of a spring-mass system:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{m}{k}} \\
& f=\frac{1}{T}
\end{aligned}
$$

Example

A simple pendulum of length 1 m makes 100 complete oscillations in 204 s at a certain location. What is the acceleration of gravity at this point?

Example

Determine the natural frequency of the simple spring-mass system shown in Figure.

- Periods and frequencies are also important in the design of electrical and electronic components.
- In general, mechanical systems have much lower frequencies than electrical/electronic systems.

```
Application
Alternating current (Türkiye)
    requency
    50 Hz
Alternating current (USA)
    60 Hz
AM radio
FM radio
Emergency, fire, police
Personal computer clocks (2012) up to 3 GHz
Wireless router (2012)
540 kHz-1.6 MHz
87-108 MHz
153-159 MHz
1-5 GHz
```


Bit Rate

- A bit is the basic capacity of information in computing and telecommunications.
- A byte is a collection of 8 bits.

1,024 Byte $=1$ kByte $=1 \mathrm{kB}$ and 1,024 Byte $=8192 \mathrm{bit}$
$1,024 \mathrm{kB}=1 \mathrm{MB}$
$1,024 \mathrm{MB}=1 \mathrm{~GB}$
$1,024 \mathrm{~GB}=1 \mathrm{~TB}$

- Bit rate is the number of bits that are transferred or processed per unit of time.

$$
\text { bit rate }=\frac{\text { bit }}{\text { second }}
$$

When quantifying large bit rates we use:
$1,000 \mathrm{bit} / \mathrm{s}=1 \mathrm{kbit} / \mathrm{s}$ (one kilobit or one thousand bits per sec.)
$1,000,000 \mathrm{bit} / \mathrm{s}=1 \mathrm{Mbit} / \mathrm{s}$ (one megabit or one million bits per sec.)
$1,000,000,000 \mathrm{bit} / \mathrm{s}=1 \mathrm{Gbit} / \mathrm{s}$ (one gigabit or one billion bits per sec.)
Sayfa 25

USB

Universal Serial Bus (USB) is an industry standard developed in the mid1990s that defines protocols used for communication between computers and electronic devices.

USB type	Transmissi
USB 2.0	$480 \mathrm{Mbit} / \mathrm{s}$
USB 3.0	$5 \mathrm{Gbit} / \mathrm{s}$

Example

How long does it take to transfer 1.2 GB of data in your flash disk to your PC by using USB 3.0?

Volume Flow Rate

- It is defined as

$$
\text { volume flow rate }=\frac{\text { volume }}{\text { time }}
$$

- Common units are:
$>\mathrm{m}^{3} / \mathrm{s}$ or $\mathrm{m}^{3} / \mathrm{min}$
$>\mathrm{L} / \mathrm{s}$ or $\mathrm{L} / \mathrm{min}$
$>\mathrm{ft}^{3} / \mathrm{s}$ or $\mathrm{ft}^{3} / \mathrm{min}$
$>\mathrm{gal} / \mathrm{s}(\mathrm{gps})$ or gal/min

Example

Consider the piping system shown in Figure. The average speed of water flowing through the 12 -cm-diameter section of the piping system in $5 \mathrm{~cm} / \mathrm{s}$.
What is the volume flow rate of water in the piping system?
Express the volume flow rate in $\mathrm{cm}^{3} / \mathrm{s}, \mathrm{ft} 3 / \mathrm{s}, \mathrm{gpm}$, and L / s.

Note that, we can define the flow rate as follows:
$\mathrm{Q}=$ volume flow rate $=($ average speed $)($ cross - sectional area $)$

3. Mass Related Parameters

The kilogram is the unit of mass in SI ; it is equal to the mass of the international prototype of the kilogram, IPK.

IPK

- was accepted in 1889
- made of a platinum alloy (90% platinum and 10% iridium)

See also:
http://www.bipm.org/en/scientific/mass/prototype.html

Mass Density

- It is defined as density $=\frac{\text { mass }}{\text { volume }}$
- or

$$
\rho=\frac{m}{V}
$$

- Common units are:
$>\mathrm{kg} / \mathrm{m}^{3}$
$>\mathrm{g} / \mathrm{cm}^{3}$
$>\mathrm{lbm} / \mathrm{s}$
Density of some substances (at standard temperature and pressure)

Substance	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Helium Gas	0.18
Air	1.29
Ice	917
Water	1000
Iron	7860

Specific Gravity

- It is defined as

$$
\text { specific gravity }=\frac{\text { density of material }}{\text { density of water at } 4{ }^{\mathrm{O}} \mathrm{C}}
$$

- Density of water at $4^{\circ} \mathrm{C}=1 \mathrm{~g} / \mathrm{cm}^{3}$

Mass Flow Rate

- It is defined as

$$
\text { mass flow rate }=\frac{\text { mass }}{\text { time }}
$$

or

$$
\begin{aligned}
\text { mass flow rate } & =\frac{\text { mass }}{\text { time }} \\
& =\frac{(\text { density })(\text { volume })}{\text { time }} \\
& =(\text { density })\left(\frac{\text { volume }}{\text { time }}\right)
\end{aligned}
$$

- Common units are:
$>\mathrm{kg} / \mathrm{s} \mathrm{kg} / \mathrm{min} \mathrm{kg} / \mathrm{h}$
$>\mathrm{mg} / \mathrm{min}$
$>\mathrm{lbm} / \mathrm{s}$

Example: Conservation of Mass

Consider the chemical reactor:

Compute the C_{3} assuming that the system is at steady state i.e. mass flow in = mass flow out

Mass flow 1 (in) : $\dot{m}_{1}=Q_{1} c_{1}=\left(2 \mathrm{~m}^{3} / \mathrm{min}\right)\left(25 \mathrm{mg} / \mathrm{m}^{3}\right)=50 \mathrm{mg} / \mathrm{min}$
Mass flow 2 (in) : $\dot{m}_{2}=Q_{2} c_{2}=\left(1.5 \mathrm{~m}^{3} / \mathrm{min}\right)\left(10 \mathrm{mg} / \mathrm{m}^{3}\right)=15 \mathrm{mg} / \mathrm{min}$
Mass flow 3 (out) : $\dot{\mathrm{m}}_{3}=\dot{\mathrm{m}}_{1}+\dot{\mathrm{m}}_{2}=65 \mathrm{mg} / \mathrm{min}=\left(3.5 \mathrm{~m}^{3} / \mathrm{min}\right) \mathrm{c}_{3} \quad \Rightarrow \mathrm{c}_{3}=18.6 \mathrm{mg} / \mathrm{m}^{3}$
Sayfa 34

Equation of Continuity

The continuity condition requires the mass flux
of a ideal fluid through a pipe in time t is constant.

$$
\begin{aligned}
& m_{1}=\rho V_{1}=\rho \Delta x_{1} A_{1}=\rho v_{1} A_{1} t \\
& m_{2}=\rho V_{2}=\rho \Delta x_{2} A_{2}=\rho v_{2} A_{2} t
\end{aligned}
$$

Conservation of mass:

$$
\begin{aligned}
m_{1} & =m_{2} \\
\rho v_{1} A_{1} t & =\rho v_{2} A_{2} t
\end{aligned}
$$

volume flow rate $=v_{1} A_{1}=v_{2} A_{2}=$ constant

Example

The container shown in Figure is being filled by Taps 1 and 2. If the water level is to remain constant,
(a) what is the volumetric flow rate of water
 leaving the container at 3 ?
(b) what is the average velocity of the water leaving the tank?

Questions

1. Table shows the observed mean radius and the mass of planets in our solar sytem. Determine the mass density of each planet in $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{~kg} / \mathrm{L}, \mathrm{g} / \mathrm{cm}^{3}, \mathrm{lbm} / \mathrm{ft}^{3}$ units.
2. For each planet, determine the value of length of a simple pendulum whose period is 1 s . Note that, if the mass of the palanet is M and mean radius is R, then the gravitational acceleration can be evaluated by:

$$
g=\frac{G M}{R^{2}}
$$

Planet	Mean Radius	Mass
	(km)	($\times 10^{24} \mathrm{~kg}$)
Mercury	$\begin{gathered} 2439.7 \text { [D] } \\ \pm 1.0 \end{gathered}$	$\begin{aligned} & 0.330104[\mathrm{F]} \\ & \pm .000036 \end{aligned}$
Venus	$\begin{gathered} 6051.8[D] \\ \pm 1.0 \end{gathered}$	$\begin{aligned} & 4.86732[G] \\ & \pm .00049 \end{aligned}$
Earth	$\begin{gathered} 6371.00[0] \\ \pm .01 \end{gathered}$	$\begin{aligned} & 5.97219[H]] \\ & \pm .00060 \end{aligned}$
Mars	$\begin{gathered} 3389.50[D] \\ \pm .2 \end{gathered}$	$\begin{aligned} & 0.641693 \mathrm{mI} \\ & \pm .000064 \end{aligned}$
Jupiter	$\begin{gathered} 69971[0] \\ \pm 6 \end{gathered}$	$\begin{gathered} 1898.13 \mathrm{lJ} \\ \pm .19 \end{gathered}$
Saturn	$\begin{gathered} 58232[D] \\ \pm 6 \end{gathered}$	$\begin{gathered} 568.319 \mathrm{M} \\ \pm .057 \end{gathered}$
Uranus	$\begin{gathered} 25362 \text { [D] } \\ \pm 7 \end{gathered}$	$\begin{gathered} 86.8103 \text { [L] } \\ \pm .0087 \end{gathered}$
Neptune	$\begin{gathered} 24622[\text { [D] } \\ \pm 19 \end{gathered}$	$\begin{gathered} 102.410[\mathrm{M}] \\ \pm .010 \end{gathered}$
Pluto	$\begin{gathered} 1151[c] \\ \pm 6 \end{gathered}$	$\begin{aligned} .01309[\mathbb{N}] \\ \pm .00018 \end{aligned}$

where G is the universal gravitational constant and has the value:

$$
G=6.67300 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}
$$

3. Indoor Air Pollution

Suppose that you are designing a ventilation system for a restaurant.

By using Octave, solve for the steady-state concentration of carbon monoxide (CO) concentration ($\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ and c_{4}) in each room.
4. How long does it take to transfer 400 MB of data in your flash disk to your PC by using (a) USB 2.0 and (b) USB 3.0?
5. We are interested in determining the mass-flow rate of fuel from the gasoline tank of a small car to its fuel injection system. The gasoline consumption of the car is 15 kilometers per liter when the car is moving at the speed of $90 \mathrm{~km} / \mathrm{h}$. The specific gravity of gasoline is 0.72 . If there were one million of these cars on the road, how many kilograms of gasoline are burned every hour? [2].
6. The coordintes of a city is given by: $41.050683 \mathrm{~N}, 29.031186 \mathrm{E}$. Express the coordinate in terms of deg, min and sec format. Where is the city?
7. The geographic coordinates of a town is given by: +32 $54^{\prime} 31^{\prime \prime},-715^{\prime} 15^{\prime \prime}$, this equivalent to $+32 \quad 54^{\prime} 31^{\prime \prime} \mathrm{N}, 7$ 15'15" E . Express the values of latitude and longitude only in degrees. Where is the town?
8. A plugged dishwasher sink with the dimensions of 14 in. $x 16$ in. $\times 6$ in. is being filled with water from a faucet with an inner diameter of 1 in . If it takes 220 seconds to fill the sink to its rim, estimate the mass flow of water coming out of the faucet.

9. In the concentration of orange juice, fresh juice containing $s_{1}=7.08 \%$ solids is fed to a vacuum evaporator at a rate of $L=1000 \mathrm{~kg} / \mathrm{h}$. In the evaporator, water is removed at a rate of $\mathrm{W}(\mathrm{kg} / \mathrm{h})$ and the solid content is increased to $s_{2}=58 \%$. Calculate
a) the outlet concentration $\mathrm{C}(\mathrm{kg} / \mathrm{h})$
b) removed water rate $\mathrm{W}(\mathrm{kg} / \mathrm{h})$.
[Answer: a) $C=122.1 \mathrm{~kg} / \mathrm{h}$ concentrated juice b) $W=877.9 \mathrm{~kg} / \mathrm{h}$ water]

References

1. P. Kosky et al., Exploring Engineering, 2nd Ed. Elsevier Inc. (2010)
2. S. Moaveni, Engineering Fundamentals, 4th Ed. Cengage Learning (2011)
