

Introduction In this chapter we will consider some important concepts in Engineering. Details can be found in [1] and [2]. 1. Length and angle related parameters 2. Time related parameters 3. Mass related parameters

Sayfa 2

Measurement of Length

Early humans may have used

finger length, arm span, step length, stick, rope, chains, ... to measure the size or displacement of an object.

Today, depending on accuracy, we use: *ruler, caliper, micrometer, electronic distance measuring device ..*

Example

The geographic coordinates of Gaziantep's populated place are given by: 37° 3' 33" N and 37° 22' 57" E. Express the values of latitude and longitude only in degrees.

```
Here:

3' = 3 \min = 3/60 = 0.05^{\circ} (0.05 \text{ deg})

33'' = 33 \sec = 33/60/60 = 0.009167^{\circ} (0.009167 \text{ deg})

22' = 22 \min = 22/60 = 0.367^{\circ}

57'' = 57 \sec = 57/60/60 = 0.01583^{\circ}

Therefore:

37^{\circ} 3' 33'' N = 37 + 0.050 + 0.009167 = 37.059167^{\circ} N

37^{\circ} 22' 57'' E = 37 + 0.367 + 0.015833 = 37.382833^{\circ} E
```

```
Sayfa 11
```


	9167, 37.382833 www.sunearthtools.com, ngular position of the sun for		ne
www.sunearthtools.com/dp/tools/			
Home Tools		ers of solar	
f bereforder	SunRise: 06:06:13*111:83*[SunSet 16:22:45*248:02*] Name SHARP Solar Panels Offer NDR245A5 - NDR250A5 - ND240R1J Official Distribut act de tolecom	, Alaybey Mh., Şihcan Cd, ; execute	1
			Sayfa 16

	www.sunearthtools.com						
Step (minute):	60 v ex	ecute	download Excel table				
Date:	12/11/2012						
coordinates:	37.059111,3	7.3829455					
location:	Alaybey Mh., Cd, 27000 Ga T¼rkiye						
hour	Elevation	Azimuth					
06:06:13	-0.833°	111.83°			_		
7:00:00	8.79°	120.29°	sun position	Elevation			
8:00:00	18.51°	131.07°	10/11/2012 15:08	12.69°	236.43°	37.059111°	37.3829455°
9:00:00	26.61°	143.82°	10/11/2012 15:08	12.09*	230.43	N	E
10:00:00	32.35°	158.86°	twilight	Sunrise		Azimuth	Azimuth
11:00:00	34.99°	175.73°		06:04:09	46:04:00	Sunrise	Sunset
12:00:00	34.06°	193.04°	twilight -0.833°	06:04:08	16:24:20	111.13°	248.72°
13:00:00	29.73°	209.08°	Civil twilight -6°	05:36:41	16:51:44	107.09°	252.74° 257.17°
14:00:00	22.67°	222.93°	Nautical twilight -12°	05:05:32	17:22:52	102.64°	
15:00:00	13.65°	234.58°	Astronomical twilight -18°	04:34:56	17:53:27	98.32°	261.47°
16:00:00	3.32°	244.56°	daylight 🕥	hh:mm:ss	diff. dd+1	diff. dd-1	Noon
16:22:45	-0.833°	248.02°	10/11/2012	10:20:12	-00:01:50	00:01:54	11:14:14
 							Sayfa 17

Example If you type 37.059167, 37.382833 on the http://www.pveducation.org/properties you will get the position of the sun acc	-of-sunlight/sun-position-high-accuracy
PSA Algorithm Sun's Position Calculator Year 2012 Month 11 Day 14 The date displayed is UTC, i.e. at Greenwich. Hour 14 Minute 0 Second 0 Longitude 37.059167 Latitude 37.382833	Azimuth243.9017degreesZenith86.8806degreesElevation3.1194degrees
	Savfa 18

Periodic Motion

- A **period** (*T*) is the time that it takes for the event to repeat itself. Such as every 365.24 days the earth lines up in exactly the same position with respect to the sun
- A **frequency** (*f*) is the inverse of a period.
- A spring-mass system or a simple pendulum are another examples for periodic motion.

 Periods and frequencies are also important electronic components. In general, mechanical systems have much electrical /electronic systems. 	-
Application	Frequency
Alternating current (Türkiye)	50 Hz
Alternating current (USA)	60 Hz
AM radio	540 kHz-1.6 MHz
FM radio	87-108 MHz
Emergency, fire, police	153-159 MHz
Personal computer clocks (2012)	up to 3 GHz
Wireless router (2012)	1-5 GHz
	Sayfa 24

Bit Rate

- A bit is the basic capacity of information in computing and telecommunications.
- A byte is a collection of 8 bits.

1,024 Byte = 1 kByte = 1 kB and 1,024 Byte = 8192 bit 1,024 kB = 1 MB 1,024 MB = 1 GB 1,024 GB = 1 TB

Bit rate is the number of bits that are transferred or processed per unit of time.

bit rate =
$$\frac{\text{Dit}}{\text{second}}$$

When quantifying large bit rates we use:

1,000 bit/s = 1 kbit/s (one kilobit or one thousand bits per sec.)
1,000,000 bit/s = 1 Mbit/s (one megabit or one million bits per sec.)
1,000,000,000 bit/s = 1 Gbit/s (one gigabit or one billion bits per sec.)
Sayfa 25

USB

Universal Serial Bus (USB) is an industry standard developed in the mid-1990s that defines protocols used for communication between computers and electronic devices.

Equation of Continuity

The continuity condition requires the mass flux

The continuity condition requires the mass nux $\rho A v$ of a ideal fluid through a pipe in time t is constant. $m_{1} = \rho V_{1} = \rho \Delta x_{1} A_{1} = \rho v_{1} A_{1} t$ $m_{2} = \rho V_{2} = \rho \Delta x_{2} A_{2} = \rho v_{2} A_{2} t$ Conservation of mass: $m_{1} = m_{2}$ $\rho v_{1} A_{1} t = \rho v_{2} A_{2} t$ volume flow rate = $v_{1} A_{1} = v_{2} A_{2}$ = constant Sayfa 35

Questions

- Table shows the observed mean radius and the mass of planets in our solar sytem. Determine the mass density of each planet in kg/m³, kg/L, g/cm³, lbm/ft³ units.
- For each planet, determine the value of length of a simple pendulum whose period is 1 s. Note that, if the mass of the palanet is M and mean radius is *R*, then the gravitational acceleration can be evaluated by:

$$g = \frac{GM}{R^2}$$

Planet	Mean Radius	Mass
	(km)	(x 10 ²⁴ kg)
Mercury	2439.7 [D] ±1.0	0.330104 FI ±.000036
Venus	6051.8 [D] ±1.0	4.86732 [^{G]} ±.00049
Earth	6371.00 P ±.01	5.97219 H ±.00060
Mars	3389.50 PI ±.2	0.641693 II ±.000064
Jupiter	69911 (D) ±6	1898.13 M ±.19
Saturn	58232 [D] ±6	568.319 ⊠ ±.057
Uranus	25362 [D] ±7	86.8103 [L] ±.0087
Neptune	24622 [D] ±19	102.410 M ±.010
Pluto	1151 [C] ±6	.01309 N ±.00018

where *G* is the universal gravitational constant and has the value: $G = 6.67300 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Sayfa 37

- 4. How long does it take to transfer 400 MB of data in your flash disk to your PC by using (a) USB 2.0 and (b) USB 3.0?
- 5. We are interested in determining the mass-flow rate of fuel from the gasoline tank of a small car to its fuel injection system. The gasoline consumption of the car is 15 kilometers per liter when the car is moving at the speed of 90 km/h. The specific gravity of gasoline is 0.72. If there were one million of these cars on the road, how many kilograms of gasoline are burned every hour? [2].
- The coordintes of a city is given by: 41.050683 N, 29.031186 E. Express the coordinate in terms of deg, min and sec format. Where is the city?
- 7. The geographic coordinates of a town is given by: +32 54' 31", -7 15' 15", this equivalent to +32 54' 31" N, 7 15' 15" E. Express the values of latitude and longitude only in degrees. Where is the town?

```
Sayfa 39
```


References

- 1. P. Kosky et al., *Exploring Engineering*, 2nd Ed. Elsevier Inc. (2010)
- 2. S. Moaveni, *Engineering Fundamentals*, 4th Ed. Cengage Learning (2011)

Sayfa 41