EP145 Introduc	ction to Engineering		
Topic 7			
Force Related Parameters			
Department of Engineering Physics			
University of Gaziantep			
http://www1.gantep.edu.tr/~bingul/ep145			
Nov 2012			
	Sayfa 1		

Introduction	
In this chapter we will consider some concepts related to Force in Engineering.)
Details can be found in [1] and [2].	
	Sayfa 2

Force

What is Force? Force represents the interaction of two objects and it is a <u>push</u> or a <u>pull</u>.

Units of Force (*F* = *ma*)
SI:

 $1 \text{ Newton} = (1 \text{ kg})(1 \text{ m/s}^2)$

 $1 \text{ N} = 1 \text{ kg.m/s}^2$

BG:

1 pound force = 1 lbf = (1 slug)(1 ft/s²) 1 lbf = 4.448 N

Example 1 For a given spring, in order to determine the value of the spring constant, we have attached dead weights to one end of the spring, as shown in Figure. We have measured and recorded the deflection caused by the corresponding weights as given in Table. What is the value of the spring constant?			
The De	flection		
Weight (N) of the	Spring (mm)		
5.0 9			
10.0 17			
15.0 29			
20.0 35			
Solution will be given in the lecture.			
		Sayfa 8	

Coefficient of static and kinetic frictions for some materials:			
Material 1	Material 2	μ _s	μ _κ
Aluminum	Aluminum	1.05 - 1.35	1.40
Cast Iron	Cast Iron	1.10	0.15
Nickel	Nickel	0.70 - 1.10	0.53
Copper	Cast Iron	1.05	0.29
Glass (dry)	Glass (dry)	0.90 - 1.00	0.40
Glass (wet)	Glass (wet)	0.10 - 0.60	0.10
Teflon	Teflon	0.04	0.04
Steel (Mild)	Lead	0.95	0.95
			Sayfa 10

Drag Force

In fluid Mechanics, drag force (air resistance or fluid resistance) is a force that resists the motion of a body moving through a fluid.

At low speeds, drag force is proportional to the speed of the solid in the fluid:

 $F_d = bv$

where

- *b* is constant that depends on the properties of the fluid and the dimensions of the object.
- v is the speed of the object.

At high speeds, drag force is proportional to the square of the speed:

$$F_d = \frac{1}{2}\rho v^2 C_d A$$

where

- ρ is density of the fluid
- A is the crossectional area of object
- C_d is the drag coefficent.

Example 4

Calculate the drag force acting on a wooden sphere (density 0.83 g/cm³ and radius 8 cm) falling through air (density 1.23 kg/m³)

(a) for low speeds with b = 0.5 kg/s and v = 1 m/s.

(b) for high speeds with $C_{\rm d}$ = 0.5 and v = 25 m/s.

Solution will be given in the lecture.

S	Sayfa 20
Solution will be given in the lecture.	
(b) for high speeds with $C_d = 0.5$	
(a) for low speeds with $b = 0.5$ kg/s (b) for high encode with $C = 0.5$	
radius 8 cm) falling through air (density 1.23 kg/m ³)	
Estimate the terminal speed of a wooden sphere (density 0.83 g/cm ³ ar	าป
Example 5	
Example 5 Estimate the terminal speed of a wooden sphere (density 0.83 g/cm ³ ar	nd

Example 6 What is the magnitude of the gravitational force acting on an object whose mass is 1 kg due to Earth? Mass of Earth is $M_E = 6 \times 10^{24}$ kg. Radius of Earth $R_E = 6.4 \times 10^6$ m. Solution: $F = G \frac{M_E m}{R_E^2} = (6.673 \times 10^{-11} \text{ N.m}^2/\text{kg}^2) \frac{(6 \times 10^{24} \text{ kg})(1 \text{ kg})}{(6.4 \times 10^6 \text{ m})^2} = 9.8 \text{ kg.m/s}^2$ Note that gravitational acceleration is given by: $g = \frac{F}{m} = \frac{9.8 \text{ kg.m/s}^2}{1 \text{ kg}} = 9.8 \text{ m/s}^2$

Example 7

Two people have the same mass of $m_1 = m_2 = 75$ kg.

(a) What is the magnitude of the gravitational force between the people if the separation between them is 0.5 m.

(b) What is the value of the force exerted by Earth on each of them?

Solution:

(a)
$$F = (6.673 \times 10^{-11} \text{ N.m}^2/\text{kg}^2) \frac{(75 \text{ kg})(75 \text{ kg})}{(0.5 \text{ m})^2} = 1.5 \times 10^{-6} N$$

(b)
$$F = mg = (75 \text{ kg})(9.8 \text{ m/s}^2) = 735.0 N$$

The ratio:

$$\frac{735 N}{1.5 \times 10^{-6} N} \approx 10^8$$

Sayfa 23

Free-Fall Acceleration g			
as a function of altitude <i>h</i> :			
$g = \frac{F}{m}$	$=\frac{GM_{E}}{\left(R_{E}+h\right)^{2}}$		
Altitude h(km)	<u>g(m/s²)</u>		
0	9.80		
1000	7.33		
2000	5.68		
3000	4.53		
4000	3.70		
5000	3.08		
6000	2.60		
7000	2.23		
8000	1.93		
9000	1.69		
10000	1.49		
50000	0.13		

Example 8

The International Space Station operates at an altitude of 350 km. It has a weight (measured at the Earth's surface) of 4.22×10^6 N. What is its weight when in orbit?

Sayfa 25

Elastic Properties of Solids

Except springs, we have assumed that objects remain rigid when external forces act on them.

In reality, all objects are deformable. Forces can change the shape or the size of a solid. Internal forces in the object resist the deformation.

We will discuss the deformation of solids by using the concepts of **stress** and **strain**.

Typical Values for Elastic Moduli				
Substance	Young's Modulus (N/m²)	Shear Modulus (N/m²)	Bulk Modulus (N/m²)	
Tungsten	35 x 10 ¹⁰	14 x 10 ¹⁰	20 x 10 ¹⁰	
Steel	20 x 10 ¹⁰	8.4 x 10 ¹⁰	6 x 10 ¹⁰	
Copper	11 x 10 ¹⁰	4.2 x 10 ¹⁰	14 x 10 ¹⁰	
Brass	9.1 x 10 ¹⁰	3.5×10^{10}	6.1 x 10 ¹⁰	
Aluminum	7.0×10^{10}	2.5×10^{10}	7.0×10^{10}	
Glass	7.0×10^{10}	3.0×10^{10}	5.2 x 10 ¹⁰	
Quartz	5.6 x 10 ¹⁰	2.6 x 10 ¹⁰	2.7 x 10 ¹⁰	
Water	-	-	0.2 x 10 ¹⁰	
Mercury	-	-	2.8 x 10 ¹⁰	
			Sayfa 30	

Four Fundamental Forces (Interactions)				
Interaction	Particles affected	Range	Relati∨e Strength	Role in Universe
	Quarks			Holds quarks together to form nucleons
Strong	Hadrons	10 ^{−15} m	1	Holds nucleons together to form atomic nuclei
Electro- magnetic	Charged particles	ø	10-2	Determines the structure of atoms, molecules, solids and liquids, is important factor in astronomical universe, is responsible for frictional force
Weak	Quarks and Leptons	10 ⁻¹⁸ m	10 ⁻⁵	Mediates transformations of quarks and leptons, helps determine compositions of atomic nuclei
Gravitation al	All	ø	10 ⁻³⁹	Assembles matter into planets, stars, galaxies.
				0
				Sayta 38

Questions Not available.	
	Savfa 39

