

When a high temperature object is placed in contact with a low temperature object, then energy will flow from the high temperature object to the lower temperature object, and they will approach an equilibrium temperature.

Infrared thermometers

The distribution of the cosmic microwave background radiation across the **universe** as measured by the Wilkinson Microwave Anisotropy Probe.

		ī.											i.							ī.									1
Celsius °C -50)	-40		-30	-4	20	-10	0	 0		10		20		30	4	0 0	50		60		70	ł	30	90)	100)	11
Kelvin K	23	 	240)	250		260	2	270	26	30	290		300		310		320	33	ю	340)	350		360		370	38	80
Fahrenheit °F	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	23
Rankine °Ra	410	420	430				470					520		540			570			600	610	620	630	640	650	660	670	680	65
Rømer °Rø	-1	5	-10		-5		0	5		10		15	++	20	25	• • •	30		35	4	D	45		50	5	5 5	60		6
Newton °N	-15	 	•••	-10		L	5		0			5			10		1	5		20			25	1 I		30	++	35	5
Delisle °D 22		210		195	1	80	16	5	15	0	135		120		105	9	D	75		60		45	1	30	15	5	0		-1
Réaumur °Ré			0		-20		-10				1	10		20		30		40		 5	i0		60	+	70		80		

Heat

Heat is energy transferred from one body to another by thermal interactions.

Heat transfer occurs whenever there is a temperature difference (ΔT)

- within an object •
- between two bodies
- between a body and its surroundings

Heat always flows from a high-temperature region to a low-temperature region.

Heat transfer can occur in three ways: conduction, radiation and convection.

Thermal Conductivity of Some Materials at 300 K	
Material	Thermal Conductivity (W/m • k)
Air (at atmospheric pressure)	0.0263
Aluminum (pure)	237
Aluminum alloy-2024-T6 (4.5% copper, 1.5% magnesium,	177
0.6% manganese)	
Asphalt	0.062
Bronze (90% copper, 10% aluminum)	52
Brass (70% copper, 30% zinc)	110
Brick (fire clay)	1.0
Concrete	1.4
Copper (pure)	401
Glass	1.4
Gold	317
Human fat layer	0.2
Human muscle	0.41
Human skin	0.37
Iron (pure)	80.2
Stainless steels (AISI 302, 304, 316, 347)	15.1, 14.9, 13.4, 14.2
Lead	35.3
Paper	0.18
Platinum (pure)	71.6
Sand	0.27
Silicon	148
Silver	429
— Zinc	116
Water (liquid)	0.61

In engineering practice, the terreferred to as the <i>R</i> -value of the <i>L</i>	ne material.	
R - value $=\frac{L}{k}$	<i>R</i> Values for Some Common Buildin	
ĸ	Material	R value (ft²·°F·h∕Btu)
	Hardwood siding (1 in. thick)	0.91
	Wood shingles (lapped)	0.87
	Brick (4 in. thick)	4.00
	Concrete block (filled cores)	1.93
	Fiberglass insulation (3.5 in. thick)	10.90
	Fiberglass insulation (6 in. thick)	18.80
	Fiberglass board (1 in. thick)	4.35
	Cellulose fiber (1 in. thick)	3.70
	Flat glass (0.125 in. thick)	0.89
	Insulating glass (0.25-in. space)	1.54
	Air space (3.5 in. thick)	1.01
	Stagnant air layer	0.17
	Drywall (0.5 in. thick)	0.45
	Sheathing (0.5 in. thick)	1.32
		Sayfa 24

Example 4

Determine the thermal resistance and *R*-value of the glass window of Example 2.

Solution:

$$R = \frac{L}{kA} = \frac{0.008 \text{ m}}{(1.4 \text{ W/mK})(1.8 \text{ m}^2)} = 0.00317 \text{ K/W}$$

R-value
$$= \frac{L}{k} = \frac{0.008 \text{ m}}{(1.4 \text{ W/m.K})} = 0.0057 \text{ m}^2.\text{K/W}$$

Heat Capacity	Specific Heats of Some Substances at 25°C and Atmospheric Pressure						
near oapacity		Specific heat c					
The energy Q transferred between a	Substance	J/kg·°C	cal/g·°C				
sample of mass <i>m</i> of a material and	Elemental solids						
its surroundings to a temperature	Aluminum	900	0.215				
its surroundings to a temperature	Beryllium	1 830	0.436				
change ΔT is given by:	Cadmium	230	0.055				
	Copper	387	0.092 4				
	Germanium Gold	322 129	0.077 0.030 8				
$Q = mc\Delta T$	Iron	448	0.0308				
2	Lead	128	0.030 5				
	Silicon	703	0.168				
	Silver	234	0.056				
Where	0.1 11						
	Other solids						
Q = energy transferred (J)	Brass	380	0.092				
m = mass of the sample (kg)	Glass	837	0.200 0.50				
	Ice $(-5^{\circ}C)$ Marble	2 090 860	0.50				
c = specific heat capacity (J/kg.°C)	Wood	1 700	0.21				
ΔT = temperature difference (°C or K)	Liquids	1100	0111				
	Alcohol (ethyl)	2 400	0.58				
	Mercury	140	0.033				
	Water (15°C)	4 186	1.00				
	Gas						
	Steam (100°C)	2 010	0.48				

Example 6

An aluminum circular disk with a diameter, d = 15 cm and a thickness t = 4 mm is exposed to a heat source that puts out 200 J every second. The density of the aluminum is 2700 kg/m³. Assuming no heat loss to the surrounding, estimate the temperature rise of the disk after 20 s. (Ans: $\Delta T = 24 \text{ oC}$)

Sayfa 29

Change in Heat

Change in heat energy in a fluid stream, if its temperature changes from T_1 to T_2 , is expressed as [3]:

$$\frac{\Delta Q}{\Delta t} = \frac{\Delta m}{\Delta t} c(T_1 - T_2)$$
$$\dot{Q} = \dot{m}c(T_1 - T_2)$$
$$q = \dot{m}c(T_1 - T_2)$$

where

m-dot = mass flow rate of a fluid (kg/s)

c = the specific heat of the fluid.

The temperature change of a fluid is from some

inlet temperature T_1 to an exit temperature T_2 .

(a) Using simple heat balance equation:

$$q = \dot{m}_C c_C \Delta T_C = \dot{m}_H c_H \Delta T_H$$

$$\left(0.5\frac{\mathrm{kg}}{\mathrm{s}}\right)\left(4\frac{\mathrm{kJ}}{\mathrm{kg}^{\circ}\mathrm{C}}\right)\left(60^{\circ}\mathrm{C}-20^{\circ}\mathrm{C}\right) = \left(1\frac{\mathrm{kg}}{\mathrm{s}}\right)\left(4.18\frac{\mathrm{kJ}}{\mathrm{kg}^{\circ}\mathrm{C}}\right)\left(90^{\circ}\mathrm{C}-T_{E}\right)$$

Solving *T*_E = 70.9 °C.

(b) The rate of energy transfer is:

$$q = \left(0.5 \,\frac{\text{kg}}{\text{s}}\right) \left(4 \,\frac{\text{kJ}}{\text{kg}^{\circ}\text{C}}\right) (60^{\circ}\text{C} - 20^{\circ}\text{C}) = 80 \,\text{kJ/s} = 8 \times 10^4 \text{ W}$$

Sayfa 35

Questions

- 1. What is the equivalent value of T = 40 oC in degrees Fahrenheit, Rankine, and Kelvin?
- On a summer day, in Gaziantep, the inside room temperature is maintained at 68 °F while the outdoor air temperature is a sizzling 110 °F. What is the outdoor-indoor temperature difference in

 (a) degree Fahrenheit,
 (b) degree Celsius, and
 (c) Kelvin?
- 3. Calculate the heat transfer rate from a 1000 ft², 6-in-thick concrete wall with inside and outside surface temperatures of 20 °C and 0 °C.
- Calculate the amount of thermal energy required to raise the temperature of 20 gallon of water from 60 °F to 120 °F. Express your answer in Btu, J, and cal.
- 5. For Example 4, convert the thermal resistance and *R*-value results from SI units to British Units.

- 6. We have exposed 1 kg of water, 1 kg of brick, and 1 kg of concrete, each to a heat source that puts out 100 J every second. Assuming that all of the supplied energy goes to each material and they were all initially at the same temperature, which one of these materials will have a greater temperature rise after 10 s?
- 7. A copper plate, with dimensions of 3 cm x 3 cm x 5 cm (length, width, and thickness, respectively), is exposed to a thermal energy source that puts out 150 J every second. The density of copper is 8900 kg/m3. Assuming no heat loss to the surrounding block, determine the temperature rise in the plate after 10 seconds.
- 8. Repeat Example 5 for q = 1000 W.
- 9. Repeat Example 7 for liquid food with $c = 8.0 \text{ kJ/kg. }^{\circ}\text{C}$.

