EP 208 Computational Method in Physics, Final Exam Questions

These are the final exam questions (starting from next page) of the course.
Here is the instructions for sending your solutions after downloading this file.

S1. Print this document
S2. Write your solution steps clearly in the space provided.
S3. Scan your solution papers and save as pdf file named ep208-fin-yourIdNo.pdf such as ep208-fin-12345691.pdf
S4. Send the file to Email Address bingul@gantep.edu.tr
S5. Subject (konu) of your email must be ep208 fin yourIdNo

Deadline date / time : 18 June 2023 / 13:00

If you do not obey one of the rules above, your paper won't be considered as an exam paper!

Good Luck,
Prof. Dr. Ahmet Bingül

Fill in the blanks below:

Name :

Surname :
Studen ID No :

Signature :

EP 208 Computational Method in Physics, Final Exam Questions

$\mathbf{(2 5 \%)}$) Evaluate the following integral:

$$
\int_{-2}^{2} \frac{\sin (x)}{x} d x
$$

(c) Write a C++ or MATLAB program by using Simpson's Method with $n=1000$ parts.
(b) Use int() function MATLAB to compare your results.

EP 208 Computational Method in Physics, Final Exam Questions

$\mathbf{(2 5} \%)$ Find the root of the equation $\cos (2 x)=\mathbf{x}^{2}$
(a) by using fzero () function in MATLAB
(b) by using Newton-Raphson Method with tolerance $=0.01$. Do not write computer program. Solution has to be performed manually.

EP 208 Computational Method in Physics, Final Exam Questions

(25 \%) 3. A ball of mass $m=0.6 \mathrm{~kg}$ and radius $r=0.1 \mathrm{~m}$ is fired up with an angle of $\theta=32^{\circ}$ and with an initial speed of $\mathrm{v}_{0}=50 \mathrm{~m} / \mathrm{s}$. Assume that the drag coefficient is given by $C_{\mathrm{d}}=0.2$, and air density is $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

(a) Write down the equations of motion both in x and y directions and CromerEuler steps for the numerical solution.
(b) Write a $\mathrm{C}++$ or MATLAB program to estimate its maximum height (H) and maximum range (R) of the ball for $h=\Delta t=0.01 \mathrm{~s}$. Write down program's output.

EP 208 Computational Method in Physics, Final Exam Questions

($\mathbf{2 5}$ \%) 4. Time (t) vs velocity (v) data of a drone moving upward direction is collected as follows:

Write $\mathrm{C}++$ or MATLAB program to determine the initial of speed of the drone at $t=0$ using Linear Least Square Fitting Method. Do not use cftool. Write down the output of your program.

