

EP228 Particle Physics

Topic 1

Overview of Particle Physics

Department of Engineering Physics

University of Gaziantep

Course web page www.gantep.edu.tr/~bingul/ep228

Course Resources

Course web page for lecture materials & exam result http://www1.gantep.edu.tr/~bingul/ep228

- Books (see: http://books.google.com)
 - Griffiths, Introduction to Elementary Particles
 - Perkins, Introduction to High Energy Physics
 - > Das A, Introduction to Nuclear and Particle Physics
 - Green D, Physics of Particle Detectors
 - Any Modern Physics Book
 - Beiser, Concept of Modern Physics
 - Zafaritos, Modern Physics
- Wikipedia

http://en.wikipedia.org

Course Content

- Overview of Particle Physics
- Overview of the Special Theory of Relativity
- Historical Introduction to the Elementary Particles
- Elementary Particles and Their Interactions
- Experimental Terminology
- Accelerators and Colliders
- Interactions of Particles with Matter
- Particle Detectors
- Cosmic Rays

Atom and Subatomic Particles

Nuclear size: 10⁻¹³ cm

Any particle having less structure than Atom is called subatomic particle

Particle Physics

Particle physics = High Energy Physics (HEP)

is a branch of physics that studies the elementary constituents of matter and radiation, and the interactions between them.

High Energy means

'above the treshold for pion production'

$$p + p \rightarrow p + p + \pi$$

HEP pioneered 'big science'

> experiments are performed at accelerators increasing energy

- Collaboration of many physicists from many intitudes
- Research methodology is based on 'Statistical Analysis'

Some Applications

Medicine

Research

Education

Computer Science

Technology

History of the Particle Physics

•	M.Ö. 450	Atom	Democtitus
•	1807	Elements ve Atom	J. Dalton
•	1895	X-ray	W.C. Röntgen
•	1896	Radioactivity	H. Becquerel, M.Courie
•	1898	Atom model	J. J. Thompson
•	1899	Discovering Electron	J. J. Thompson
•	1911	Discovering nucleus	E. Rutherford
•	1913	Bohr Atom Model	N.Bohr
•	1920	lsotops	E.W. Aston
•	1932	Neutron	J. Chadwick
•	1932	Positron	C.D. Anderson
•	1947	Muon ve Pion	C. Powell
•	1947	Kaon (stange quark)	Rochester
•	1955	Antiproton	E. Segre
•	1956	Neutrino	Rheines
•	1960-70	Diğer mezonlar/baryonlar	
•	1974	J/ψ (charm quark)	SLAC
•	1977	Bottom quark	Fermilab
•	1983	W ve Z bosons	CERN
•	1995	Top quark	Fermilab (Tevatron)
•	1995	Anti-Hydrogen atom	CERN
•	2010	Neutrino Osciallatios	CERN & Italy
	2012	Higs Boson	CERN

Discovering new Particles

If we have some indications that we discover a <u>new particle</u>, we should answer:

- What are its properties? (mass, charge, lifetime, spin, ...)
- 2. -If its lifetime is not infinite, what particles does it decay into?
 -What are the branching ratios to different decay modes?
 -What are the distributions of energies and directions?
 -Do they agree with the theoratical models?
- 3. What happens when it collides with another particle?

Particle Physics

The field of study is all 'Elementary Particles'

that have been discovered

- >6 quarks (u, d, s, c, b, t)
- \geq 6 leptons (e, mu, tau and 3 neutinos)
- >4 intermediate bosons (W, Z, g, gamma)
- ➤The 100+ hadrons
 - made from 2 quarks: π, K, D, \cdots
 - made from 3 quarks: p, n, Λ, \cdots
 - made from 5 quarks: Θ^+, \cdots
- >+ corresponding anti-particles
- Higgs Boson

that have not been discovered

- Squarks and sleptons
- >Winos and Zinos/charginos and neutralinos
- Further hadrons

Bosons (Forces)

Sayfa 10

Four Fundamental Forces

Force	Object affected	Range	Magnitude
Gravitation	Freely falling object Planets Galaxies	∞	1
Weak	Beta decay Fussion in Sun	10 ^{–17} m	10 ²⁵
Electromagnetic	Atoms & Molecules Optics Electric & Electronic Frictional force	œ	10 ³⁶
Strong	Nucleons Quarks	10 ^{–15} m	10 ³⁸

Anti-Matter

1928:

Dirac's positive electron (positron) prediction

1932:

Anderson's observation in Cosmic rays

 Each particle has its own antiparticle with the same mass but opposite charge.

If particle and its antiparticle encounter each other, their masses (materials) are converted into the energy (photon)

$$E = m c^2$$

THE LHC EXPERIMENT

CERN

Conseil Européen pour la Recherche Nucléaire European Organization for Nuclear Research Avrupa Nükleer Araştırma Merkezi

 CERN is the world's largest particle physics laboratory, situated in the northwest suburbs of Geneva on the Franco–Swiss border, established in 1954.

CERN

- 1949: L. De Broglie offered.
- 1952: established by 11 countaries.
- 1959-1999: +9 countaries are added.

+8 observers
 Türkiye
 India
 Japan
 USA
 UNESCO
 EC
 Israel
 Russia

Members who joined CERN later

LHC: Large Hadron Collider

> Circumference 27 km
 > ~100 m underground
 > Protons ve Pb nuclei will collide
 > Cost: 3 billions €

PHYSICS

- > Higgs Boson(s)
- Supersymmetric particles
- furher quarks and/or hadrons
- ➢Big-Bang and mini-black holes

Overall view of the LHC experiments.

E540 - V10/09/97

ATLAS Detector: 34 countary / 175 University

atlas-olay.mpeg

THE GRID COMPUTING

Data Analysis

Data will be collected at LHC:15 PB/Year

15 PB ~ 22 millon CD

- * started at September 2008.* will work at least 10 years.
- * total data ~ 250 PB

Where do we store

this amount of data?

Data Analysis

 We need, <u>at least 100,000</u> times computers at GHz speed to analyse data

Where do we find

this amount of computer?

Grid Computing

 "Distributed" or "grid" computing in general is a special type of parallel computing that relies on complete computers (with onboard CPU, storage, power supply, network interface, etc.) connected to a network (private, public or the Internet) by a conventional network interface.

Discovery of the $X_{\rm b}$?

December 2011

The ATLAS collaboration has announced the discovery of the $X_b(3P)$, which is a bound state of a bottom quark and bottom antiquark (b b-bar).

Discovery of the Higgs ?

July 2012, *ATLAS* data $(H \rightarrow \gamma \gamma)$

Discovery of the Higgs ?

July 2012, *CMS* data $(H \rightarrow \gamma \gamma)$

Sayfa 31