

Galilean Transformations (Classical Relativity)

Event is a four dimensional coordinate in space-time. Consider two inertial (non-accelerating) frames whose origins are O and O^{\prime} respectively. O is at rest and O^{\prime} is moving at a constant speed v in the direction of +x -axis. An event is represented by four-vector (x, y, z, t) in O and by $\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$ in O The connection between these two coordinates are given by Galilean Transformations as follows:

Galilean coordinate
transformations in $1 D$.
$x^{\prime}=x-v t$
$y^{\prime}=y$
$z^{\prime}=z$
$t^{\prime}=t$

$$
\begin{aligned}
& \text { Galilean velocity } \\
& \text { transformations in } 1 D . \\
& u_{x}^{\prime}=u_{x}-v \\
& u_{y}^{\prime}=u_{y} \\
& u_{z}^{\prime}=u_{z}
\end{aligned}
$$

where for the 3D transformations

$$
\text { the position vectors are: } \quad \mathbf{r}=(x, y, z) \quad \text { and } \mathbf{r}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

the velocity of the object (bird):
$\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$ and $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$
the velocity of frame O' with respect to $\mathrm{O}: \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$.

Lorentz Transformations (Extracted from Einstein's "Theory of Special Relativity")

Postulate 1: The laws of physics are the same for all inertial observers.
Postualte 2: Speed of light as measured by all observers is $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ independent of motion of the source.

Lorentz coordinate
transformations in $1 D$.
$x^{\prime}=\gamma(x-v t)$
$y^{\prime}=y$
$z^{\prime}=z$
$t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)$

$$
\begin{aligned}
& \text { Lorentz velocity } \\
& \text { transformations in } 1 D . \\
& u_{x}^{\prime}=\frac{u_{x}-v}{1-\left(v / c^{2}\right) u_{x}} \\
& u_{y}^{\prime}=\frac{u_{y} / \gamma}{1-\left(v / c^{2}\right) u_{x}} \\
& u_{z}^{\prime}=\frac{u_{z} / \gamma}{1-\left(v / c^{2}\right) u_{z}}
\end{aligned}
$$

Lorentz coordinate transformations in 3D.

$$
\mathbf{r}^{\prime}=\mathbf{r}+\mathbf{v}\left(\frac{(\gamma-1) \mathbf{v} \cdot \mathbf{p}}{v^{2}}-\gamma t\right)
$$

$$
t^{\prime}=\gamma\left(t-\mathbf{v} \cdot \mathbf{r} / c^{2}\right)
$$

where

$$
\beta=v / c, \quad \boldsymbol{\beta}=\mathbf{v} / c \quad \text { and } \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Time Dilation $\quad: t=\gamma t_{0}$
Length Contraction: $L=L_{0} / \gamma$

Relativistic Kinematics

Let rest mass be m_{0} and particle speed be u. Then,
Gamma factor $\gamma=\frac{1}{\sqrt{1-u^{2} / c^{2}}}$
Relativistic mass: $m=\gamma m_{0}$
Relativistic Momentum: $p=\gamma m_{0} u=m u$
Force: $F=d p / d t$
Relativistic Total energy: $E=\gamma m_{0} c^{2}=m c^{2}$
Relativistic Kinetic energy: $T=(\gamma-1) m_{0} c^{2}=m c^{2}-m_{0} c^{2}$
Energy-momentum relation: $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$
Particle speed: $u=p c^{2} / E$
For massless particles $\left(m_{0}=0\right.$, like photon $) \rightarrow K=E=p c$ and $u=c$

$$
\begin{aligned}
& \text { Lorentz transformations for energy and momentum } \\
& \begin{array}{l|l}
\text { in } 1 D . & \text { in } 3 D . \\
p_{x}^{\prime}=\gamma\left(p_{x}-(v / c) E\right) & \mathbf{p}^{\prime}=\mathbf{p}+\frac{\gamma \mathbf{v}}{c^{2}}\left(\frac{\gamma \mathbf{v} \cdot \mathbf{p}}{\gamma+1}-E\right) \\
p_{y}^{\prime}=p_{y} & E^{\prime}=\gamma(E-\mathbf{v} \cdot \mathbf{p c}) \\
p_{z}^{\prime}=p_{z} & \\
E^{\prime}=\gamma\left(E-v p_{x}\right) &
\end{array}
\end{aligned}
$$

Lorentz transformations for energy and momentum

Lorentz transformations for energy and momentum

Doppler shift for light:

Substitute $E^{\prime}=h f^{\prime}$ and $E=h f=p_{x} c \rightarrow E^{\prime}=\gamma(E-v E / c) \rightarrow f^{\prime}=\gamma f(1-\beta)$

Hints for Decay: $X \rightarrow Y+Z$

For all frames:

* $m_{\mathrm{X}}>m_{\mathrm{Y}}+m_{\mathrm{Z}}$ (mass is not conserved)
* $E_{\mathrm{X}}=E_{\mathrm{Y}}+E_{\mathrm{Z}}$
${ }^{*} \mathbf{p}_{\mathrm{X}}=\mathbf{p}_{\mathrm{Y}}+\mathbf{p}_{\mathrm{Z}}$
* Kinetic energy may or may not be conserved

Hints for Collision: $1+2 \rightarrow 3+4$
For all frames:

* $m_{1}+m_{2} \neq m_{3}+m_{4}$ (mass is not conserved)
* $E_{1}+E_{2}=E_{3}+E_{4}$
${ }^{*} \mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{3}+\mathbf{p}_{4}$
* Kinetic energy may or may not be conserved

In the rest frame of mother, X, (that is $\mathbf{p}_{\mathrm{X}}=0$) center of mass energies of products are:
$E_{\mathrm{Y}}{ }^{*}=\left(m_{\mathrm{X}}{ }^{2}-m_{\mathrm{Y}}{ }^{2}+m_{\mathrm{Z}}{ }^{2}\right) c^{2} / 2 \mathrm{~m}_{\mathrm{X}}$
$E_{\mathrm{Z}}^{*}=\left(m_{\mathrm{X}}{ }^{2}+m_{\mathrm{Y}}{ }^{2}-m_{\mathrm{Z}}^{2}\right) c^{2} / 2 \mathrm{~m}_{\mathrm{X}}$
Invariant mass (\boldsymbol{W}) has the same value in any inertial frame
Invariant mass for single particle:

$$
W^{2} c^{2}=E^{2}-p^{2} c^{2}
$$

Invariant mass for n particles:

$$
\begin{aligned}
& W^{2} c^{2}=\left(\sum_{i=1}^{n} E_{i}\right)^{2}-c^{2}\left(\sum_{i=1}^{n} \mathbf{p}_{i}\right)^{2} \\
& W^{2} c^{2}=\left(E_{1}+E_{2}+\cdots+E_{n}\right)^{2}-\left(\mathbf{p}_{1}+\mathbf{p}_{2}+\cdots+\mathbf{p}_{n}\right)^{2} c^{2}
\end{aligned}
$$

EP 228 Particle Physics, Lecture Notes on Special Theory of Relativity, Oct 2020

Solved Problems
1]. As measured by O, an event occurs at $x=100 \mathrm{~km}, y=10 \mathrm{~km}, z=1 \mathrm{~km}$ at $t=5 \times 10^{-4} \mathrm{~s}$. What are the coordinates $x^{\prime}, y^{\prime}, z^{\prime}$ and t^{\prime} of this event as determined by by a second observer, O^{\prime}, moving relative to O at $-0.8 c$ along the common $x-x^{\prime}$ axis? (Ans: $x^{\prime}=367 \mathrm{~km}, y^{\prime}=10 \mathrm{~km}, z^{\prime}=1 \mathrm{~km}, t^{\prime}=12.8 \times 10^{-4} \mathrm{~s}$)
[2]. An airplane is moving with respect to earth at constant speed of $600 \mathrm{~m} / \mathrm{s}$. Its proper length is 50 m By how much will it appear to be shortened to an observer on earth? (Ans: $10^{-10} \mathrm{~m}$)
[3]. Atmospheric muons (μ) are created at an altitude around $25-30 \mathrm{~km}$. Muons are unstable particle since they decay (are converted) to electrons. In the rest frame of muons, mean lifetime of muons are about $2 \times 10^{-6} \mathrm{~s}$. The speed of a muon is 0.99 c on average. How far can a muon travel in the atmosphere before it decay
(a) if relativistic effects are ignored?(Ans: about 600 m)
[4]. It takes 10^{5} years for light to reach us from the most distant part of our galaxy. Could a human travel there, at a constant speed, in 50 years? (Yes. the speed is $\mathrm{v}=0.999999875 c$)
[5]. Rocket A travels to right and rocket B travels to left, with velocities $0.8 c$ and $0.6 c$ respectively, relative to the earth. What is the velocity of rocket A measured from rocket B? (Ans: $0.946 c$)
[6]. Rocket A travels to right and a laser beam travels to left, with velocities $0.8 c$ and c respectively, relative to the earth. What is the velocity of laser beam measured by rocket A ? (Ans: c)

EP 228 Particle Physics, Lecture Notes on Special Theory of Relativity, Oct 2020

[7]. Mass of the proton is $1.67 \times 10^{-27} \mathrm{~kg}$. Calculate the rest mass of a proton in $\mathrm{GeV} / \mathrm{c}^{2}$. (Ans: $0.938 \mathrm{GeV} / \mathrm{c}^{2}$)
[8]. Kinetic energy of an electron is 10 MeV . Calculate
(a) total energy of the electron in MeV
(b) the momentum of the electron in $\mathrm{MeV} / \mathrm{c}$
(c) the speed of the electron in m / s
(d) the relativistic mass of the electron in $\mathrm{MeV} / \mathrm{c}^{2}$
(e) the relativistic mass of the electron in kg
[9]. Doppler shift. For which value of velocity v you can you see a red light as green in a traffic?
[10]. Find the energies of the decay products in the decay $X \rightarrow Y+Z$ if the mother particle is at rest.
[11]. Consider a neutrino originating from the decay $\pi \rightarrow \mu+v$
(a) What is the speed of the muon if pion is at rest?
(b) What are the minimum and maximum speeds of the muon if pion has momentum of $10 \mathrm{GeV} / \mathrm{c}$?
[12]. What is the wavelength of each photon (gamma ray) emitted from $\pi^{0} \rightarrow \gamma+\gamma$ decay where neutral pion is at rest?
[13]. Consider π^{0} is flying in x-direction in the decay $\pi^{0} \rightarrow \gamma+\gamma$ decay. What is the angle between photons if photon energies are measured as $E_{1}=2 \mathrm{GeV}$ and $E_{2}=6 \mathrm{GeV}$?

EP 228 Particle Physics, Lecture Notes on Special Theory of Relativity, Oct 2020

[14]. The Bevatron at Berkeley was built with the idea of producing antiprotons by the reaction

$$
p+p \rightarrow p+p+p+\bar{p}
$$

That is, a high-energy proton strikes a proton at rest, creating (in addition to the original particles) a proton-antiproton pair. What is the threshold energy for this reaction (i.e., the minimum energy of the incident proton)? Let mass of a proton is m. (Ans: $E=7 m c^{2} \approx 7 \mathrm{GeV}$)

Two lumps of clay, each of mass m, collide head-on at $3 c / 5$. They stick together. What is the mass M of the final composite lump? (Ans: $M=2.5 m$)

$3 c / 5$	$3 c / 5$	
\bigcirc	$\leftarrow \bigcirc$	$\bigcirc \bigcirc$
m	m	M
before		after

[16].

A particle of mass M, initially at rest, decays into two pieces, each of mass m.
What is the speed of each piece as it flies off?
(Ans: $\mathrm{v}=c \sqrt{1-(2 m / M)^{2}}$)
at rest

M
before

$m \quad m$ after

