

Galilean Transformations (Classical Relativity)

Event is a four dimensional coordinate in space-time. Consider two inertial (non-accelerating) frames whose origins are O and O' respectively. O is at rest and O' is moving at a constant speed v in the direction of +x-axis. An event is represented by four-vector (x, y, z, t) in O and by (x', y', z', t') in O The connection between these two coordinates are given by Galilean Transformations as follows:

Galilean coordinate	Galilean velocity	Galilean				
transformations in 1D.	transformations in 1D.	transformations in 3D.				
x' = x - vt	$u_{x}' = u_{x} - v$ $u_{y}' = u_{y}$ $u_{z}' = u_{z}$	$\mathbf{r}' = \mathbf{r} - \mathbf{v}t$				
y' = y	$u_y' = u_y$	$\mathbf{u}' = \mathbf{u} - \mathbf{v}$				
z' = z	$u_z' = u_z$	t' = t				
t' = t						
where for the 3D transformations						
the position vectors are: $\mathbf{r} = (x, y, z)$ and $\mathbf{r'} = (x', y', z')$.						
the velocity of the object (bird): $\mathbf{u} = (u_x, u_y, u_z)$ and $\mathbf{u}' = (u'_x, u'_y, u'_z)$						

the velocity of the object (bird): $\mathbf{u} = (u_x, u_y, u_z)$ and $\mathbf{u}^* = (u_x, u_y, u_z)$ the velocity of frame O' with respect to O: $\mathbf{v} = (v_x, v_y, v_z)$.

Lorentz Transformations (Extracted from Einstein's "Theory of Special Relativity")

Postulate 1: The laws of physics are the same for all inertial observers.

Postualte 2: Speed of light as measured by all observers is $c = 3x10^8$ m/s independent of motion of the source.

Lorentz coordinate
transformations in 1D.

$$\begin{aligned}
x' &= \gamma(x - vt) \\
y' &= y \\
z' &= z \\
t' &= \gamma(t - \frac{vx}{c^2})
\end{aligned}$$
Lorentz velocity
transformations in 1D.

$$u_x' &= \frac{u_x - v}{1 - (v/c^2)u_x} \\
u_y' &= \frac{u_y/\gamma}{1 - (v/c^2)u_x} \\
u_z' &= \frac{u_z/\gamma}{1 - (v/c^2)u_z}
\end{aligned}$$
Lorentz coordinate
transformations in 3D.

$$\mathbf{r}' &= \mathbf{r} + \mathbf{v}(\frac{(\gamma - 1)\mathbf{v} \cdot \mathbf{p}}{v^2} - \gamma t) \\
t' &= \gamma(t - \mathbf{v} \cdot \mathbf{r}/c^2)$$

where

$$\beta = v/c$$
, $\beta = v/c$ and $\gamma = \frac{1}{\sqrt{1-v^2/c^2}} = \frac{1}{\sqrt{1-\beta^2}}$

Time Dilation : $t = \gamma t_0$ **Length Contraction:** $L = L_0 / \gamma$ **Relativistic Kinematics** Let rest mass be m_0 and particle speed be u. Then, Gamma factor $\gamma = \frac{1}{\sqrt{1-u^2/c^2}}$ Relativistic mass: $m = \gamma m_0$ Relativistic Momentum: $p = \gamma m_0 u = mu$ Force: F = dp/dtRelativistic Total energy: $E = \gamma m_0 c^2 = mc^2$ Relativistic Kinetic energy: $T = (\gamma - 1)m_0c^2 = mc^2 - m_0c^2$ Energy-momentum relation: $E^2 = p^2c^2 + m_0^2c^4$ Particle speed: $u = pc^2 / E$ For massless particles $(m_0 = 0$, like photon) $\Rightarrow K = E = pc$ and u = c

Lorentz transformations for energy and momentum

in 1D.

$$p_{x}' = \gamma(p_{x} - (v/c)E)$$

$$p_{y}' = p_{y}$$

$$p_{z}' = p_{z}$$

$$E' = \gamma(E - vp_{x})$$
in 3D.

$$\mathbf{p}' = \mathbf{p} + \frac{\gamma \mathbf{v}}{c^{2}} (\frac{\gamma \mathbf{v} \cdot \mathbf{p}}{\gamma + 1} - E)$$

$$E' = \gamma(E - \mathbf{v} \cdot \mathbf{p}c)$$

Doppler shift for light:

Substitute E' = hf and $E = hf = p_x c \rightarrow E' = \gamma(E - \nu E/c) \rightarrow f' = \gamma f(1 - \beta)$

Hints for Decay: $X \rightarrow Y + Z$ For all frames: * $m_X > m_Y + m_Z$ (mass is not conserved) * $E_X = E_Y + E_Z$ * $\mathbf{p}_X = \mathbf{p}_Y + \mathbf{p}_Z$ * Kinetic energy may or may not be conserved

In the rest frame of mother, *X*, (that is $\mathbf{p}_X = 0$) center of mass energies of products are:

Hints for Collision: $1 + 2 \rightarrow 3 + 4$ For all frames: * $m_1 + m_2 \neq m_3 + m_4$ (mass is not conserved) * $E_1 + E_2 = E_3 + E_4$ * $\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_3 + \mathbf{p}_4$ * Kinetic energy may or may not be conserved

 $E_{\rm Y}^{*} = (m_{\rm X}^{2} - m_{\rm Y}^{2} + m_{\rm Z}^{2})c^{2} / 2m_{\rm X}$ $E_{\rm Z}^{*} = (m_{\rm X}^{2} + m_{\rm Y}^{2} - m_{\rm Z}^{2})c^{2} / 2m_{\rm X}$ Invariant mass (W) has the same value in any inertial frame

Invariant mass for single particle:

$$W^2 c^2 = E^2 - p^2 c^2$$

Invariant mass for *n* particles:

$$W^{2}c^{2} = (\sum_{i=1}^{n} E_{i})^{2} - c^{2} (\sum_{i=1}^{n} \mathbf{p}_{i})^{2}$$

$$W^{2}c^{2} = (E_{1} + E_{2} + \dots + E_{n})^{2} - (\mathbf{p}_{1} + \mathbf{p}_{2} + \dots + \mathbf{p}_{n})^{2}c^{2}$$

Solved Problems [1]. As measured by O, an event occurs at $x = 100$ km, $y = 10$ km, $z = 1$ km at $t = 5 \times 10^{-4}$ s. What are the coordinates x',y',z' and t' of this event as determined by by a second observer, O', moving relative to O at $-0.8c$ along the common x - x' axis? (Ans: $x'=367$ km, $y'=10$ km, $z'=1$ km, $t'=12.8 \times 10^{-4}$ s)	[4]. It takes 10^5 years for light to reach us from the most distant part of our galaxy. Could a human travel there, at a constant speed, in 50 years? (Yes. the speed is $v = 0.9999999875c$)
[2]. An airplane is moving with respect to earth at constant speed of 600 m/s. Its proper length is 50 m. By how much will it appear to be shortened to an observer on earth? (Ans: 10^{-10} m)	
	[5]. Rocket A travels to right and rocket B travels to left, with velocities 0.8 <i>c</i> and 0.6 <i>c</i> respectively, relative to the earth. What is the velocity of rocket A measured from rocket B? (Ans: 0.946 <i>c</i>)
[3]. Atmospheric muons (μ) are created at an altitude around 25-30 km. Muons are unstable particles since they decay (are converted) to electrons. In the rest frame of muons, mean lifetime of muons are about $2x10^{-6}$ s. The speed of a muon is $0.99c$ on average. How far can a muon travel in the atmosphere before it decays (a) if relativistic effects are ignored?(Ans: about 600 m)	
(b) if relativistic effects are not ignored? (Ans: about 30 km)	[6]. Rocket A travels to right and a laser beam travels to left, with velocities 0.8 <i>c</i> and <i>c</i> respectively, relative to the earth. What is the velocity of laser beam measured by rocket A? (Ans: <i>c</i>)

[7]. Mass of the proton is 1.67×10^{-27} kg. Calculate the rest mass of a proton in GeV/c ² . (Ans: 0.938 GeV/c ²)	[9]. Doppler shift. For which value of velocity v you can you see a red light as green in a traffic?			
[8]. Kinetic energy of an electron is 10 MeV. Calculate (a) total energy of the electron in MeV	[10]. Find the energies of the decay products in the decay $X \rightarrow Y + Z$ if the mother particle is at rest.			
(b) the momentum of the electron in MeV/c				
(c) the speed of the electron in m/s				
(d) the relativistic mass of the electron in MeV/c^2				
(e) the relativistic mass of the electron in kg				

[11]. Consider a neutrino originating from the decay $\pi \rightarrow \mu + \nu$. (a) What is the speed of the muon if pion is at rest?	[12]. What is the wavelength of each photon (gamma ray) emitted from $\pi^0 \rightarrow \gamma + \gamma$ decay where neutral pion is at rest?
(b) What are the minimum and maximum speeds of the muon if pion has momentum of 10 GeV/c?	[13]. Consider π^0 is flying in <i>x</i> -direction in the decay $\pi^0 \rightarrow \gamma + \gamma$ decay. What is the angle between photons if photon energies are measured as $E_1 = 2$ GeV and $E_2 = 6$ GeV?

[14]. The Bevatron at Berkeley was built with the idea of producing antiprotons by the reaction $p + p \rightarrow p + p + p + \bar{p}$ That is, a high-energy proton strikes a proton at rest, creating (in addition to the original particles) a proton-antiproton pair. What is the threshold energy for this reaction (i.e., the minimum energy of the incident proton)? Let mass of a proton is <i>m</i> . (Ans: $E = 7mc^2 \approx 7$ GeV)	[15]. Two lumps of clay, each of mass <i>m</i> , collide head-on at $3c/5$. They stick together. What is the mass <i>M</i> of the final composite lump? (Ans: $M = 2.5m$)	3c/5 ⊖→ m	3c/5 ↔⊖ m	ОО М
		before		after
	[16]. A particle of mass <i>M</i> , initially at rest, decays into two pieces, each of mass <i>m</i> . What is the speed of each piece as it flies off? (Ans: $v = c\sqrt{1 - (2m/M)^2}$)	at rest <i>M</i> before	v	$\begin{array}{c} \longleftrightarrow \\ m \\ m \\ after \end{array}$