EP 228 Particle Physics, Midterm Exam Questions

These are the first midterm exam question of the course.
Here is the instructions for sending your solutions after downloading this file.

S1. Print this document
S2. Write your solution steps clearly in the space provided.
S3. Scan your solution papers and save it into one pdf
file named ep228-mid-yourIdNo.pdf
such as ep228-mid-12345691.pdf
S4. Send this file to EmailAddress bingul@gantep.edu.tr
S5. Subject (konu) of your email must be ep228 mid yourIdNo

Deadline date time : 1 Dec 2020 / 17:00

If you do not obey one of the rules above, your paper won't be considered as an exam paper!

Fill in the blanks below:

Name :

Surname :
Studen ID No :

EP 228 Particle Physics, Midterm Exam Questions

1. (a) Write down postulates of Einstein for the Theory of Special Relativity.
(b) Show that Lorentz coordinate transformations (between two frames, S and S, where S is at rest and S^{\prime} is moving in $+x$ axis at a constant velocity v with respect to S, and the origins of both frames are coincide at $t=t^{\prime}=0$) are given by:

$$
x^{\prime}=\gamma(x-v t), t^{\prime}=\gamma\left(t-v x / c^{2}\right), y^{\prime}=y \text { and } z^{\prime}=z
$$

EP 228 Particle Physics, Midterm Exam Questions

2. (a) Drive a Lorentz velocity transformation only in x-direction.
(b) An outlaws escape in their getaway car which moves at $3 c / 4$. The police fires a bullet from the his car which only moves at $c / 2$. The muzzle velocity (speed relative to gun) of the bullet is $c / 2$. Does the bullet reach its target (i) According to prerelativistic physics? (ii) According to relativity?

EP 228 Particle Physics, Midterm Exam Questions

3. Consider π^{0} is moving in x-direction and decays as $\pi^{0} \rightarrow \gamma+\gamma$.
(a) What is the angle between photons if the photon energies are measured to be $E_{1}=2 \mathrm{GeV}$ and $E_{2}=6 \mathrm{GeV}$?
4. (a) A particle of mass M, at rest, decays into two pieces, each of mass m. Show that the speed of each piece is given by $\mathrm{v}=c \sqrt{1-(2 m / M)^{2}} \quad M$ before

m m
(b) For the decay, $K_{S}^{0} \rightarrow \pi^{+}+\pi^{-}$, compute the speed of each decay product (pions) if the mother particle is at rest.

EP 228 Particle Physics, Midterm Exam Questions

5. In the following reactions, what particles are possible for the unknown particle X ?
(a) $\pi^{+} \rightarrow e^{+}+X$ (weak decay)
6. The earth is constantly bombarded with high-energy particles coming from outer space. These particles are called the primary cosmic rays and most of them are protons. Flux of primary cosmic rays averaged over the earth surface is about $1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and their average kinetic energy is 3 GeV . Calculate the average power transferred (in Watts) to Earth whose radius is 6400 km .
(c) $\pi^{0} \rightarrow \gamma+e^{+}+X \quad$ (electromagnetic decay)
