
Introductory Lecture Notes on Computer Programming Page 1 / 4

Introductory Lecture Notes
on Computer Programming

These notes are for students taking a computer programming course in the University of
Gaziantep. Here, the basic parts of a computer and ideas about problem solving with
computers are introduced. A definition of flowcharts and algorithms are given at the end.

1. Course Resources

Web:

 Course web page  www.gantep.edu.tr/~bingul/ep241

 University of Gaziantep C++ resource page  cpp.gantep.edu.tr
(you are responsible for everything under the tutorial link)

 C++ Resources Network  www.cplusplus.com

 C++ Reference  www.cppreference.com

 Türkçe „C Programlama Dili‟ne Giriş‟: www.gantep.edu.tr/~bingul/c/

Books:

 Programming with C++, John R. Hubbard, Schaum Outline Series (2000)

 Practical C++ Programming, Steve Qualline, O‟Reilly Media (2003)

2. Computers and Programming

A computer is an automatic device that performs calculations, making decisions, and has
capacity for storing and processing vast amounts of information. A computer can be
divided into two main parts: hardware and software.

Hardware (=Donanım)
Hardware is the electronic and mechanical parts of the computer.

Examples of common hardware is given below:

Storage Units

Input Units

These are used in both input and output of data:
HDD (“Hard Disk Drive”) – high capacity.

RAM (“Random Access Memory”) – low capacity, expensive, but very fast.

Others: Flash memory (memory cards, USB flash drives), CD, DVD.

Used for input of data:
Keyboard, Mouse, Touch screen/pad, RAM, HDD, Flash memory.

Output Units

Process Unit

Used for output of data:
Monitor, Printer, Speaker, RAM, HDD, Flash Memory

CPU: Central Processing Unit. This coordinates the operation
 of computer system and performs arithmetic logic operations.

Introductory Lecture Notes on Computer Programming Page 2 / 4

Figure 1 shows the general block diagram of the hardware parts of a computer. Data is
input to the CPU, results of computations are output.

Figure 1: General block diagram for the hardware parts of a digital computer

Figure 2 shows a more specific block diagram where a program is input from an HDD(1)
and executed in RAM(2). Data is input from a keyboard(3) which is again stored in
RAM(4). The CPU operates on the program and data in RAM(5) and outputs results to the
HDD(6) as well as the monitor(7). This is all controlled by the CPU requiring only basic
data flow instructions from the programmer.

Figure 2: Specific example of hardware involved in a computation.

Software (=Yazılım)
Software consists of programs loaded from storage units. The programs execute on the
computer hardware forming, for example, the Operating System, Compilers, device drivers
and Application Programs:

Operating System
(OS)

The OS is a program written to interface between the computer
and it‟s user. All other software runs under the OS.
Examples are: Windows 7, Linux, Mac OS X.

Compilers Many programming languages require a compiler to translate
the statements of program written in a high level language into a
low level language (machine code).
Examples are: Fortran, C, C++, Java, Pascal, Basic.

Application Programs

Device drivers

These are (usually compiled) programs written to perform a
specific task.
Examples are: Miscrosoft Word, AutoCAD, Mozilla Firefox.

These programs are written to interface devices with the OS. For
example a mouse, keyboard, HDD, or USB device.

Firmware (=)
A third kind of “computer ware” is firmware. This is usually a small permanent program that
controls hardware at a low level such as a computer BIOS or HDD.

CPU Input

Units
Output

Units

5

CPU Keyboard Monitor

RAM

HDD

2 4

6

3 7

1

Introductory Lecture Notes on Computer Programming Page 3 / 4

3. Creating and Running a Program

Editing, Compiling, and Running
To create and execute a program you need to invoke three environments; the first is the
editor environment where you will create the program source code, the second is the
compilation environment where your source program will be converted into a machine
code, the third is the execution environment where your program will be run. In the
lectures, we will use the Dev-C++ compiler under Windows XP/Vista/7.

Steps of Program Development
A program consists of a set of instructions written by the programmer. Normally a high
level language (such as Basic, C, C++, Pascal, Fortran) is used to create a plain-text

source code, for example stored in the file hello.cpp. The file extension .cpp indicates

that this is a C++ program source (use could also use .cxx or .c++). The following is an

example for a simple C++ program source code; is is stored in the file hello.cpp.

 // A simple C++ program

 #include <iostream>

 using namespace std;

 int main(){

 cout << "Hello World!";

 return 0;

 }

A compiler is then used to translate this source code into machine code, the compiled
code is called the object code. The object code may require an additional stage where it is
linked with other object code that readies the program for execution. The machine code
created by the linker is called the executable code or executable program. Instructions in
the program are finally executed when the executable program is executed (run). During
the stages of compilation, linking, and running, error messages may occur that require the
programmer to make corrections to the program source (debugging). The cycle of
modifying the source code, compiling, linking, and running continues until the program is
complete and free of errors. The Steps of executable program generation for the source

code hello.cpp complition steps are shown in Figure 3.

Figure 3: Compiling a source code into and executable machine program.

4. Problem Solving with Computers

A knowledge of using and programming computers is essential for scientists and
engineers. The strength of the computer lies in its ability to manipulate and store data. The
speed at which computers can manipulate data, and the amount of data they can store,
has increased dramatically over the years doubling about every 18 months!

See: http://en.wikipedia.org/wiki/Moores_law

Introductory Lecture Notes on Computer Programming Page 4 / 4

Problem solving with computers involves several steps:

 1. Clearly define the problem.
 2. Analyze the problem and formulate a method to solve it (see also “validation”).
 3. Describe the solution in the form of an algorithm.
 4. Draw a flowchart of the algorithm.
 5. Write the computer program.
 6. Compile and run the program (debugging).
 7. Test the program (debugging) (see also “verification”).
 8. Interpretation of results.

Verification and Validation
If the program has an important application, for example to calculate student grades or
guide a rocket, then it is important to test the program to make sure it does what the
programmer intends it to do and that it is actually a valid solution to the problem. The tests
are commonly divided as follows:

 Verification verify that program does what you intended it to do; steps 7(8) above attempt to do this.

 Validation does the program actual solve the original problem i.e. is it valid? This goes back to steps
1 and 2 - if you get these steps wrong then your program is not a valid solution.

5. Algorithms

The algorithm gives a step-by-step description of the solution. This may be written in a
non-formal language and structure. An example is given in the lecture.

6. Flow Charts

A flow chart gives the logical flow of the solution in a diagrammatic form, and provides a
plan from which the computer program can be written. The logical flow of an algorithm can
be seen by tracing through the flowchart. Some standard symbols used in the formation of
flow charts are given below.

An oval is used to indicate the beginning

or end of an algorithm.
A parallelogram indicates the input
or output of information.

A rectangle indicates a computation, with the
result of the computation assigned to a variable.

A diamond indicates a point where a decision is made.

A hexagon indicates the beginning of a repetition structure.

An arrow indicates the direction of flow of the algorithm.
Circles with arrows connect the flowchart between pages.

