## Computer Laboratory - lab sheet 2

## Task 1

Copy the program given below. Save (as lc.cpp), compile and run it.

```
// Length Converter
// converts a given length in meter (m)
// into: mm, cm, dm, ft, yd and in.
#include <iostream>
using namespace std;
#define FT 3.280839895013 // foot
#define YD 1.093613298338 // yard
int main()
{
    double x;
    const double IN = 1.0e+2/2.54; // inch
    enum { MM = 1000, CM = 100, DM = 10 };
    cout << "Input a length in meters: ";
    cin >> x;
    cout << "This length is " << endl;
    cout << x*MM << " mm" << endl;
    cout << x*CM << " cm" << endl;
    cout << x*DM << " dm" << endl;
    cout << x*IN << " inch" << endl;
    cout << x*FT << " foot" << endl;
    cout << x*YD << " yard" << endl;
    return 0;
```

\}

## Task 2

i) Write a program to compute the result of the equation:

$$
z=\frac{x^{3}+2 y-4}{y+5}
$$

where x and y are input of type double and z is the output.
ii) Test your program with the values in the table given below.

| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ |
| ---: | ---: | :--- |
| -- | $-\mathbf{-}$ | ---- |
| 11 | 22 | 50.7778 |
| 0 | 0 | -0.8 |
| 8 | -5 | inf |

## Task 3

For the given circuit, write a C++ program to input the potential difference between points $a$ and $b(V a b)$ and to output the current passing through each resistor.

In the program, using const keyword define the resistances which are assumed to be $R_{1}=1 \mathrm{k} \Omega, \quad R_{2}=2 \mathrm{k} \Omega$ and $R_{3}=3 \mathrm{k} \Omega$.

An example output is given below:

```
Input potential difference, Vab: 150
Calculated currents in Ampere
i1 = 0.0272727
i2 = 0.0136364
i3 = 0.0409091
```



