## Computer Laboratory - lab sheet 3

## Task 1

Copy the program given below. Save (as projectile.cpp), compile and run it.

```
#include <iostream>
#include <cmath>
using namespace std;
/* Program to compute the range of a projectile
    Given the initial speed, and angle of elevation.
    The solution is over simplistic:
    R = v0^2 SIN(2*theta) / g
*/
int main() {
    const double g = 9.8;
    double vO, theta, range;
    // get the values
    cout << "Input the speed (in m/s): ";
    cin >> v0;
    cout << "Input the angle (in degrees): ";
    cin >> theta;
    // convert angle into radian
    theta = theta * M_PI/180.0;
    // calculate range
    range = v0*v0 * sin(2.0*theta)/g;
    cout << "Range = " << range << " m." << endl;
    return 0;
}
```


## Task 2

In the concentration of orange juice, fresh juice containing $s_{1}(\%)$ solids is fed to a vacuum evaporator at a rate of $L(\mathrm{~kg} / \mathrm{hour})$. In the evaporator, water is removed at a rate of $W$ (kg/hour) and the solid content is increased to $s_{2}(\%)$.

Write a C++ program that calculates the outlet concentrated $\mathrm{C}(\mathrm{kg} /$ hour $)$ for the input values $L$, $s_{1}$ and $s_{2}$.

## EXAMPLE:

For $L=1000 \mathrm{~kg} / \mathrm{h}, \mathrm{s} 1=7.08 \%$ and $\mathrm{s} 2=58.0 \%$
Material balance : $1000=W+C$
Mass flow : $1000 * 0.0708=W^{*} 0+C^{*} 0.58$
Solving these two equations gives:
$C=122.1 \mathrm{~kg} / \mathrm{h}$ concentrated juice.
$W=877.9 \mathrm{~kg} / \mathrm{h}$ water .

## Task 3

Write a program that reads a logarithm base, $b$, and value $x$ and outputs the result of $\log _{b} X$. Hint use $\log ()$ or $\log 10()$ function defined in cmath library.

