Computer Laboratory - lab sheet 5

Task 1

Copy the program given below. Save (as trigo.cpp), compile and run it.

```
// Trigonometric Table
#include <iostream>
#include <cmath>
using namespace std;
int main(){
    cout.precision(3);
    cout << fixed;
    for(int deg=0; deg <= 90; deg += 5){
        double x = deg * M PI/180.0;
        cout << deg << '\t' << sin(x) << '\t' << cos(x) << endl;
    }
}
```


Task 2

Copy the program given below. Save (as mean. cpp), compile and run it.

```
// Mean of n numbers
#include <iostream>
using namespace std;
int main() {
    int n;
    cout << "How many values will you input? ";
    cin >> n;
    double x, mean, total = 0.0;
    for (int i=1; i<=n; ++i) {
        cout << "Input value " << i << ": ";
        cin >> x;
        total = total + x;
    }
    mean = total/n;
    cout << "The sum is " << total << endl;
    cout << "The mean is " << mean << endl;
    return 0;
}
```


Task 3

Modify the program in Task 2 in order to calculate also geometric mean of n numbers. The geometric mean of the data set $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ are given by

$$
G=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}=\sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

Task 4

Write programs to prove the following relation:
$\sum_{k=1}^{n} k(k+1)=1.2+2.3+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$

Task 5

An Armstrong number is an integer such that the sum of the cubes of its digits is equal to the number itself. For example, 371 is an Armstrong number since $3^{3}+7^{3}+1^{3}=371$.
Write a $\mathrm{C}_{+}+$program to find all Armstrong numbers in the range of 0 and 999.

