Computer Laboratory - lab sheet 7

Task 1

Copy the program given below. Save (as maxArray.cpp), compile and run it.

```
// Determine the maximum value in an array
#include <iostream>
using namespace std;
int main ()
{
    const int n = 5; // number of elements in the array
    double x[n], max;
    // get the elements of the array
    cout << "input " << n << " numbers" << endl;
    for(int i=0; i<n; ++i)
        cin >> x[i];
    // first element is assumed to be maximum
    max = x[0];
    for (int i=1; i<n; i++) {
        if ( x[i] > max ) max = x[i];
    }
    cout << "maximum is " << max << endl;
    return 0;
}
```


Task 2

Modify the program given in Task 2 in order to find also the minimum element of the array.

Task 3

Write a C++ function named double maxPos (double x[], int size); that returns the position of the maximum element of an array x of given size. Use this function in a main program.

Task 4

Write a C++ program that reads components of two vectors $\mathbf{A}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{B}=\left(b_{1}, b_{2}, b_{3}\right)$ and outputs the dot (scalar) product and the angle in degrees between the vectors.

Task 5

Write a program that reads the elements of two square matrix of size nxn, (say \mathbf{A} and \mathbf{B}) and calculates the matrix multiplication of them, and then assigns the result to the matrix $\mathbf{C}=\mathbf{A} \times \mathbf{B}$.
Hint: If the matrices are given by $\mathbf{A}=\left[a_{\mathrm{ij}}\right]_{\mathrm{nxn}}$ and $\mathbf{B}=\left[b_{\mathrm{ij}}\right]_{\mathrm{nxn}}$ then their multiplication matrix $\left(\mathbf{C}=\left[c_{\mathrm{ij}}\right]_{\mathrm{nxn}}\right)$ is defined as:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Test your program with the following examples:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
-1 & 3
\end{array}\right) \times\left(\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
3 & 2
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 2 & 4 \\
1 & 3 & 5 \\
1 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
5 & 8 & 20 \\
11 & 23 & 53 \\
17 & 38 & 86
\end{array}\right)
\end{aligned}
$$

