EP 324

Applied Optics

Topic 4

Mirrors

Department of

Engineering of Physics

Gaziantep University

Plane Mirror

For most applications, it is necessary that the mirrors be first-surface mirrors, as opposed to ordinary second-surface mirrors.

The first-surface mirror is usually preferable because it does not produce a ghost image as does the second-surface mirror.

First-surface mirrors are usually made with vacuum deposited aluminum films protected by a thin transparent over coating of silicon monoxide or magnesium fluoride.

RetroReflectors

This is a surface that reflects light back to its source with a minimum of scattering.

Corner Refroreflector

Sayfa 4

Reflectors placed by the United States

Name $\quad-$	Mission \uparrow	Date \leqslant	Location \uparrow
Lunar Ranging Retro Reflector (LRRR)	Apollo 11	21 July 1969	-
LRRR	Apollo 14	31 January 1971	$\begin{aligned} & 3.6453^{\circ} \mathrm{S} \\ & 17.471361^{\circ} \mathrm{W} \end{aligned}$
LRRR	Apollo 15	31 July 1971	$26.1^{\circ} \mathrm{N}$ $3.6^{\circ} \mathrm{E}$

Reflectors placed by the Soviet Union

Name $\boldsymbol{*}$	Mission $\boldsymbol{*}$	Location $\quad \hat{}$
Lunokhod 1	Luna 17	$38.17^{\circ} \mathrm{N}, 325.06^{\circ} \mathrm{W}$
Lunokhod 2	Luna 21	$25.85^{\circ} \mathrm{N}, 30.45^{\circ} \mathrm{E}$

en.wikipedia.org

RetroReflectors on Moon

Apollo 11

Apollo 14

Apollo 15

See also video:
https://www.youtube.com/watch?v=IGpNiRkmxSA

Spherical Mirrors

A curved mirror surface has a focal length and is capable of forming images just as a lens does.

The location of the focal point is about $f=R / 2$.

CONCAVE MIRROR (CONVERGING)

CONVEX MIRROR (DIVERGING)

Concave/Convex Mirror

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{s_{o}}+\frac{1}{s_{i}} \\
& m=\frac{h_{i}}{h_{o}}=-\frac{s_{i}}{s_{o}} \\
& f^{2}=x_{o} x_{i}
\end{aligned}
$$

$\mathrm{x}_{0}=$ distace between focus and object.
$x_{i}=$ distance between focus and image.

Sign Conversion for Mirrors

S_{i}

Positive when
object is in front of mirror
image is in front of mirror
mirror is concave
mirror is convex
mirror is concave mirror is convex
image is upright image is inverted

Example

A spherical mirror has a focal length $f=+10 \mathrm{~cm}$.
Locate, describe and draw the image for the object distance (a) 25 cm (b) 10 cm (c) 5 cm .

Ans:
(a) $\mathrm{si}=6.67 \mathrm{~cm}, \mathrm{~m}=-0.668$, image is real and inverted.
(b) si $=$ inf,
(c) $\mathrm{si}=-10 \mathrm{~cm}, \mathrm{~m}=+2, \quad$ image is virtual and upright.

Example

A convex mirror has a radius of curvature $R=-0.5 \mathrm{~m}$. If $\mathrm{s}_{\mathrm{o}}=3 \mathrm{~m}$ find image distance to the mirror and magnification.
[Ans: $\mathrm{si}=-0.23 \mathrm{~cm}, \mathrm{~m}=+0.08$]

Example

A ball approaches a convex mirror at a constant speed of $v=6 \mathrm{~cm} / \mathrm{s}$. (a) Find the speed of its image when $\mathrm{s}_{0}=5 \mathrm{~cm}$. [Ans: (a) $-2.67 \mathrm{~m} / \mathrm{s}$].
(b) Comment on the results when object is very close to the mirror.

Exercises

1. For a thin spherical concave lens find the minimum distance between and object and its image.
2. A ball approaches a convex mirror at a constant speed of $v=6 \mathrm{~cm} / \mathrm{s}$. (a) Find the speed of its image when $\mathrm{s}_{\mathrm{o}}=5 \mathrm{~cm}$. [Ans: (a) $-2.67 \mathrm{~m} / \mathrm{s}$]. (b) Find the speed of its image when object is very close to the mirror.
3. Find a realtion between x, D and R in Figure below.

CONCAVE MIRROR

References

1. Serway, Beichner, Physics for Scientists and Engineers 6th ed, Brooks/Cole
2. W.J.Simith, Modern Optical Engineering, 3rd Ed., McGraw-Hill
3. http://en.wikipedia.org/wiki/Light
4. http://en.wikipedia.org/wiki/Electromagnetic_spectrum
5. http://www.phys.ncku.edu.tw/mirrors/physicsfaq/Relativity/SpeedOfLight/measure_c.html
6. http://www.saburchill.com/physics/chapters3/0007.html
