[1]. In the given figure, the coefficient of static friction between the inclined plane and mass m 1 is μ.
Assume that the pulleys are frictionless and have no masses. Write MATLAB GUI, to perform a simulation and animation of the system for the given m 1 and m 2 .

[2]. Magnetic field around a long-wire carrying current i can be calculated from:

$$
B(r)=\frac{\mu_{0} i}{2 \pi r}
$$

where r is the distance measured form the wire and is the magnetic permeability constant. Table shows the experimental results of the measured magnetic fields, B, corresponding to the distance r. The current in the wire is $\mathrm{i}=1 \mathrm{~A}$.

Write a program to determine value of μ_{0}
(a) by using LSF method
(b) by using fminsearch() function
(c) by using Monte Carlo method.

Your program must plot both the data and fitting functions on the same axis.
[3]. A woman has N children, the probability of each child being female is 50%. Write a program to determine the probability for $\mathrm{N}=1,2,3, \ldots .12$. Use a billon random events.
[4]. Using sound card, write a Matlab GUI to measure the gravitational acceleration using a simple pendulum.
[5]. Write a program to perform any project that uses the sound card.

