EP375 Computational Physics

Topic 10
 CURVE FITTING

Department of
Engineering Physics
University of Gaziantep
Feb 2013

Content

1. Introduction
2. Least Square Method for Curve Fitting
3. MATLAB Functions and Tool

Copyright 1984-2004, The MathWorks, Inc.
4. Example Applications

Version 7.0.0.19920 (R14)

 May 06, 2004The Language of Technical Computing

Introduction

- Data is often given for discrete values along a continuum.

The distance required to stop an automobile is a function of its speed. The following data is collected to get this relationship:

- You may require estimates at points between discrete values.

$v(\mathrm{~km} / \mathrm{h})$	$d(\mathrm{~m})$
-------	----
24	4.8
32	6.0
40	10.2
48	12.0
64	18.0
80	27.0

- In this section we will consider how to obtain values between the given experimental points using Least square fitting method.

Least Square Fitting Method

- The method of least squares is a standard approach to the approximate solution of over-determined systems, i.e. sets of equations in which there are more equations than unknowns.
- "Least squares" means that the overall solution minimizes the sum of the squares of the errors made in solving every single equation.
- Least squares problems fall into two categories: linear or non-linear least squares.

- The most important application is in data fitting.
- The best fit in the least-squares sense minimizes the sum of squared residuals defined by:
residual = data - fit_model_function

$$
r_{i}=y_{i}-\hat{y}_{i}
$$

The summed square of residuals is given by
Experimental data

\mathbf{x}	\mathbf{y}
---	$-\mathbf{y}_{1}$
\mathbf{x}_{1}	\mathbf{y}_{1}
\mathbf{x}_{2}	y_{2}

$$
S=\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

where \boldsymbol{n} is the number of data points included in the fit and \boldsymbol{S} is the sum of squares error estimate.

Linear Least Square Method (two parameters)

- Consider we want to fit the a data ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) to a function $\mathbf{y}=\mathbf{a x}+\boldsymbol{b}$ then the square sum of the residuals is:

$$
S=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

- To minimize S, we should solve the following equations simultaneously:

$$
\frac{\partial S}{\partial a}=0 \quad \frac{\partial S}{\partial b}=0
$$

- Solutions are:

$$
a=\frac{n \sum x_{i} y_{i}-\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
$$

$$
b=\frac{\left(\sum x_{i}^{2}\right)\left(\sum y_{i}\right)-\left(\sum x_{i}\right)\left(\sum x_{i} y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
$$

Goodness of the Fit:

$$
r^{2}=\frac{S_{t}-S}{S_{t}}
$$

where

$$
\begin{aligned}
& S=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2} \\
& S_{t}=\sum_{i=1}^{n}\left(y_{i}-y_{m}\right)^{2} \\
& y_{m}=\frac{\sum_{i=1}^{n} y_{i}}{n} \quad \text { (mean value of } \mathrm{y} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow 0 \\
r^{2} & \rightarrow 1
\end{aligned}
$$

For a good fit

Example 3: Linear Fit

The distance required to stop an automobile is a function of its speed. The following data is collected to get this relationship:

$\mathrm{v}(\mathrm{km} / \mathrm{h})$	d (m)
24	4.8
32	6.0
40	10.2
48	12.0
64	18.0
80	27.0

Fit the data to a linear function and compute the goodness of the fit.
fitting.m
\% get the data from the file
\% compute the coefficients
factor $=n * \operatorname{sum}(x . * x)-\operatorname{sum}(x)$ *sum (x);
$a=(n * \operatorname{sum}(x . * y)-\operatorname{sum}(x) * \operatorname{sum}(y)) /$ factor $;$
$b=(\operatorname{sum}(x . * x) * \operatorname{sum}(y)-\operatorname{sum}(x) * \operatorname{sum}(x . * y)) / f a c t o r ;$
\% compute the goodness of the fit
$\mathrm{ym}=\operatorname{sum}(\mathrm{y}) / \mathrm{n}$;
$S=\operatorname{sum}\left((y-a * x-b) .^{\wedge} 2\right)$;
St $=\operatorname{sum}((y-y m) . \wedge 2)$;
r2 $=$ (St-S)/St;
\% print out the results
fprintf('Fit Results ${ }^{\prime}$ ');
fprintf('a = $\left.\% f \backslash n^{\prime}, a\right) ;$
fprintf('b $\left.=\circ f \backslash n^{\prime}, b\right)$;
fprintf('r2= $\% f \backslash n ', r 2)$;
load data.txt
x = data (: , 1) ;
$y=\operatorname{data}(:, 2) ;$
$\mathrm{n}=$ length (x) ;
data.txt

24	4.8
32	6.0
40	10.2
48	12.0
64	18.0
80	27.0

Command window:
>> fitting
Fit Results
$a=0.394853$
$\mathrm{b}=-5.952941$
r2 $=0.980287$

Weighted Linear Least Square Method

- Weighted least squares regression minimizes the error estimate:

$$
S=\sum_{i=1}^{n} w_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

where w_{i} are the weights which determine how much
each response value influences the final parameter estimates.

- If you know the variances of your data, then the weights are given by:

$$
w_{i}=1 / \sigma_{i}^{2}
$$

Example 4: Weighted Linear Fit

The distance required to stop an automobile is a function of its speed. The following data is collected to get this relationship:

$\mathrm{v}(\mathrm{km} / \mathrm{h})$	d (m)
24	$4.8+-0.3$
32	6.0 +- 0.4
40	$10.2+-1.0$
48	12.0 +- 1.1
64	18.0 +- 1.4
80	27.0 +- 1.5

The +- value represents the measurement error (one standard deviation).
Fit the data to a linear function and compute the goodness of the fit.
fitting.m
\% get the data from the file
load data.txt
x = data(: 1);
y = data(: 2);
w = 1/data(: , 3) .^2;
$\mathrm{n}=$ length (x);
\% compute the coefficients
data.txt

24	4.8	0.3
32	6.0	0.4
40	10.2	1.0
48	12.0	1.1
64	18.0	1.4
80	27.0	1.5

Non-Linear Least Square Method (Generalized)

- In general, error estimate (S) can be written as:

$$
S(\mathbf{a})=\sum_{i=1}^{n} w_{i}\left(y_{i}-f\left(x_{i}, \mathbf{a}\right)\right)^{2}=\sum_{i=1}^{n}\left(\frac{y_{i}-f\left(x_{i}, \mathbf{a}\right)}{\sigma_{i}}\right)^{2}
$$

where \mathbf{a} is a vector of coefficients: $\mathbf{a}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

- To minimize S, we should solve the following m equations simultaneously:

$$
\frac{\partial S}{\partial a_{j}}=0 \quad j=1,2, \cdots, m
$$

- To get the solution, one can apply the following iterative method that we used before in Optimization:

$$
\mathbf{a}_{i+1}=\mathbf{a}_{i}-\mathbf{H}_{i}^{-1} \nabla S_{i}
$$

where
$\mathbf{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{m}\end{array}\right) \quad \mathbf{H}=\left(\begin{array}{cccc}\frac{\partial^{2} S}{\partial a_{1}^{2}} & \frac{\partial^{2} S}{\partial a_{1} \partial a_{2}} & \cdots & \frac{\partial^{2} S}{\partial a_{1} \partial a_{m}} \\ \frac{\partial^{2} S}{\partial a_{2} \partial a_{1}} & \frac{\partial^{2} S}{\partial a_{2}^{2}} & \cdots & \frac{\partial^{2} S}{\partial a_{2} \partial a_{m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} S}{\partial a_{m} \partial a_{1}} & \frac{\partial^{2} S}{\partial a_{m} \partial a_{2}} & \cdots & \frac{\partial^{2} S}{\partial a_{m}^{2}}\end{array}\right) \nabla S=\left(\begin{array}{c}\partial S / \partial a_{1} \\ \partial S / \partial a_{2} \\ \vdots \\ \partial S / \partial a_{m}\end{array}\right)$

Example*: Non-Linear Fit

Consider a charging RC circuit containing a resistance (R) and an initially uncharged capacitor (C). The switch is closed at $t=0$ and using a voltmeter the following experimental data is obtained. Each voltage measurement has constant 0.05 V error.

t (sec)	Vc(Volts)
------1	------
0.5	2.7
1.0	4.7
1.5	6.3
2.0	7.6
2.5	8.6
3.0	9.3

where t is time and $V c$ is potential difference the across the capacitor. Using least square fitting method, determine the time constant of the circuit if $\mathrm{V}_{0}=12 \mathrm{~V}$.

Polynomial Fit

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

```
>> x = [[0 1 2 2 3];
>> y = [ll 5 12 19];
>> polyfit(x,y,1) % first order polynomial
ans = 6.1000 0.1000
```

>> xi = 0:0.1:3;
\gg yi $=6.1 * x i+0.1$;
>> plot(x,y,'o')
>> hold on
>> plot(xi,yi)

$$
\begin{aligned}
& \gg x=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right] ; \\
& \gg y=\left[\begin{array}{llll}
1 & 5 & 8 & 18
\end{array}\right] ;
\end{aligned}
$$

>> polyfit($x, y, 2$) \% second order polynomial

$$
\text { ans }=1.5000 \quad 0.9000 \quad 1.4000
$$

>> xi = 0:0.1:3;
>> yi = 1.5*xi.*xi + 0.9*xi + 1.4;
>> plot(x,y,'o')
>> hold on
>> plot(xi,yi)

MATLAB Curve Fitting Tool

>> cftool

HW 1:

Analytically, fit the given data into function
(a) $y=a x+b$
(b) $y=d x^{2}$
(c) $y=c_{1}+c_{2} x+c_{3} x^{2}$

\mathbf{x}	\mathbf{y}
$--\mathbf{-}$	$-\mathbf{-}$
-3	3
0	1
2	1
4	3

HW 2:

Analytically, fit the given data into function
(a) $y=a x+b$
(b) $y=d x^{2}$
(c) $y=c_{1}+c_{2} x+c_{3} x^{2}$

x		y
-3		+- 0.3
0		+- 0.5
2		+- 0.5
4		+- 0.3

HW 3:

Write a matlab function of the form:

$$
\text { function tau }=\text { capacitor }(t, V c)
$$

end
to return time constant of the circuit using least square fitting method for the same data in the Example*.
Here \mathbf{t} and Vc are vectors of measurement.

HW 4:

The table shows the experimental results of the measured Coulomb Force, F, between two charges, (q_{1} and q_{2}) corresponding to distance r.
General form of the Coulomb Force is:

$$
F(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{n}}
$$

Experimental setup

Determine value of ε_{0} and n using least-square method.

HW 5:

Magnetic field around a long-wire carrying current i can be calculated from:

$$
B(r)=\frac{\mu_{0} i}{2 \pi r}
$$

where r is the distance measured form the wire and
is the magnetic permeability constant. Table shows
the experimental results of the measured magnetic

Determine value of μ_{0} using least-square method.

HW 6:

Table shows a data obtained from a radioactive substance. Here t is the time in seconds and R is the decay rate measured in Bq. Using least weighted square fitting method, determine the half life and the identity of the nucleus. Assume that each decay rate measurement (R) has an associated counting error of sqrt(R).
e.g, for $R=300 \mathrm{~Bq}$ then measurement error is $\operatorname{sqrt}(300)=17.3 \mathrm{~Bq}$.

$t(s)$	$R(\mathrm{~Bq})$
---	----
40	300
100	245
140	210
200	165
240	127
300	110
340	90
400	85
440	58
500	45

References

[1]. http://www.mathworks.com/products/matlab
[2]. Numerical Methods in Engineering with MATLAB, J. Kiusalaas, Cambridge University Press (2005)
[3]. Numerical Methods for Engineers, 6th Ed.
S.C. Chapra, Mc Graw Hill (2010)

