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Introduction 

 The Fourier transform is a mathematical operation that 

decomposes a function into its constituent frequencies, known as 

its frequency spectrum. 

 For instance, the transform of a musical chord made up of pure 

notes is a mathematical representation of the amplitudes and 

phases of the individual notes that make it up.  

 

 The composite waveform depends on time, and therefore is called 

the time domain representation. The frequency spectrum is a 

function of frequency and is called the frequency domain 

representation.  

 Each value of the function is a complex number (called complex 

amplitude) that encodes both a magnitude and phase component. 

The term "Fourier transform" refers to both the transform 

operation and to the complex-valued function it produces. 
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Continues Fourier Transform 

Any periodic function f(t) = f(t+T) = f(t+2T) = f(t+2T)= … 

can be written as a sum of simple harmonic (sinusoidal) functions 

having various frequencies as follows: 

 

 

 

 

 

 

 

or 

 

 

where T is the period and  w = 2pi/T. 
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Here the numerical constants can be found from: 
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By using Euler equations: 

 

 

One can get the complex form of the exapnsion: 

 

 

 

where 

 

 

 

Fourier transform of f(t) is basically finding the coefficients ck. 
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Discrete Fourier Transform (DFT) 

 In engineering, we often encounter with finite set of discrete 

values.  

 Suppose you have a signal stored as a series of N data points  

(tn , fn) equally spaced in time by time interval T 

from t = 0 to t = tfinal = (N-1)T. 
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 For totally N points then: 

 

 

 

 

 

 

 

where w = 2pi/N.  

 

Vector c is full of complex numbers because c stores the phase 

relationship between frequency components as well as amplitude 

information, just like the Fourier transform. 
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Basic DFT Algorithm 

Define fn  (vector of N-discreate values) 

Define w = 2*pi/N 

for k=0, N-1 

  real = 0 

  imag = 0 

  for n=0, N-1 

     A = k*w*n 

     real = real + fn * cos(A) 

     imag = imag + fn * sin(A) 

  end 

  ck = complex(real,imag) 

end 
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A MATLAB DFT Function 

function c = dft(x, npoints) 

  if nargin==1 

     N = length(x); 

  else 

     N = npoints; 

  end 

  c = zeros(N-1, 1); % c_k is the fourier trasform of x 

  w = 2*pi/N; 

  for k = 0:N-1 

    real = 0; 

    imag = 0; 

    for n = 0:N-1 

      A = k*w*n; 

      real = real + x(n+1) * cos(A); 

      imag = imag - x(n+1) * sin(A); 

    end 

    c(k+1) = complex(real, imag); 

  end 

end 
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A C++ DFT Function 

std::vector< std::complex<double> >  

dft(std::vector<double> x, int npoints=-1) 

{ 

  const double pi = 3.141592654; 

  int N = x.size(); 

  if(npoints !=-1 && npoint<N) N = npoints; 

  std::vector< complex<double> > c; // c_k is the fourier trasform of x 

  double w = 2.0*pi/N, real, imag; 

  for(int k=0; k<N-1; k++){ 

     real = imag = 0.0; 

     for(int n=0; n<N-1; n++){ 

       double A = k*w*n; 

       real = real + x[n] * cos(A); 

       imag = imag - x[n] * sin(A); 

     } 

     c.push_back( std::complex<double>(real, imag) ); 

  } 

  return c; 

} 
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In MATLAB we can use the build-in function (fft())  

to perform Fast Fourier Transform. 

 

Y = fft(X)  

  returns the discrete Fourier transform (DFT) of vector X, 

  computed with a fast Fourier transform (FFT) algorithm. 

 

Y = fft(X,n)  

  returns the n-point DFT.  

MATLAB fft() function 
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 The functions X = fft(x) and x = ifft(X) implement the 

transform and inverse transform pair given for vectors of length N 

by: 
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is an N root of unity. 
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Both dft() and fft() functions returns a list of complex values: 

 

>> c = fft(x) 

 

Here vector c is full of complex numbers because it stores the phase  

relationship between frequency components as well as amplitude  

information, just like the Fourier transform. 

 

When we don’t care about the phase information contained in c 

we can work instead with the power spectrum P = |c|2.  

 

There are many applications of Power Spectra such as 

Vibration Analysis, Quantum Mechanics, Signal Processing, … 

 

 

Power Spectrum 
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Power of a signal is defined as: 

 

 

 

In MATLAB: 

 

>> c = fft(x) 

>> P = abs(c).^2 
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dt= 0.001; 

% time 

t = 0:dt:0.4;  

% signal (time domain) 

x = sin(2*pi*100*t) + sin(2*pi*200*t);  

 

subplot(2,1,1) 

plot(t, x) 

xlabel('time (seconds)') 

 

subplot(2,1,2) 

c = fft(x); 

N = length(c); 

% frequency 

f = (1/dt) * (1:N)/N;  

% power (frequency domain) 

P = abs(c).^2; 

plot(f, P) 

xlabel('frequency (Hz)') 

fft1.m 
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dt= 0.001; 

% time 

t = 0:dt:0.4;  

% signal (time domain) 

x = sin(2*pi*100*t) + sin(2*pi*200*t);  

 

subplot(2,1,1) 

plot(t, x) 

xlabel('time (seconds)') 

 

subplot(2,1,2) 

c = fft(x); 

N = length(c); 

% frequency 

f = (1/dt) * (1:N/2)/N;  

% power (frequency domain) 

P = abs(c).^2; 

plot(f, P(1:N/2)) 

xlabel('frequency (Hz)') 

fft2.m 
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dt= 0.001; 

% time 

t = 0:dt:0.4; 

% signal (time domain) 

x = sin(2*pi*100*t) + sin(2*pi*200*t); 

% random noise 

x = x + 2*randn(1,length(t)); 

 

subplot(2,1,1) 

plot(t, x) 

xlabel('time (seconds)') 

 

subplot(2,1,2) 

c = fft(x); 

N = length(c); 

% frequency 

f = (1/dt) * (1:N/2)/N; 

% power (frequency domain) 

P = abs(c).^2; 

plot(f,P(1:N/2)) 

xlabel('frequency (Hz)') 

fft3.m 
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