
Sayfa 1

Department of

Engineering Physics

Gaziantep University

Apr 2016

Topic 12

SOUND

PROCESSING

EP375 Computational Physics

Sayfa 2

Content

1. Introduction

2. Sound

3. Perception of Sound

4. Physics of Sound

5. PC Sound Cards

6. MATLAB Sound Functions

7. Example Applications

Sayfa 3

1. Introduction

 Sound is a sequence of waves of pressure that propagates

through compressible media.

 Sound processing (audio signal processing) is the

intentional alteration of sound (auditory signals).

==> Audio signals may be electronically represented in

either digital or analog format.

 In this section we will consider

how to read / play / plot / manipulate audio signals in

MATLAB.

Sayfa 4

2. Sound

 Sound is a mechanical wave that is an oscillation

of pressure transmitted through a solid, liquid, or gas,

composed of frequencies within the range of hearing and

of a level sufficiently strong to be heard.

 Sound waves can be

reflected, refracted, diffracted, interfered or

attenuated by the medium.

Sayfa 5

Sayfa 6

Sayfa 7

3. Perception of Sound

The perception of sound in any organism is limited to a certain

range of frequencies.

 For humans, hearing is normally limited to frequencies

between about 20 Hz - 20 kHz.

 The upper limit generally decreases with age.

 Dogs can perceive vibrations higher than 20 kHz, but are

deaf to anything below 40 Hz!

Sayfa 8

4. Physics of Sound

 Sound is transmitted through

gases, plasma, and liquids as

longitudinal waves, also called

compression waves.

 Through solids, however, it can

be transmitted as both longitudinal waves

and transverse waves.

 The matter that supports the sound is

called the medium.

Sound cannot travel through a vacuum.

time

Sayfa 9

 The speed of sound depends on the medium the waves

pass through.

In general, the speed of sound (v) is given by the

Newton-Laplace equation:

 K is a coefficient of stiffness*, the bulk modulus

 ρ is the density of the medium.

* Stiffness is the resistance of an elastic body to deformation by an applied force.

K
v

Sayfa 10

 The speed of sound depends on the temperature.

where T is temperature in degrees celcius

 v = 343 m/s in dry air at 20 oC.

 v = 1482 m/s in fresh water at 20 oC

 v = 5960 m/s in steel

(m/s)
15.273

13.331vAIR

T

Sayfa 11

Here Z indicates how

much sound pressure is

generated by the vibration

of molecules of a particular

acoustic medium at a given

frequency.

Acoustic Impedance is

pressure per velocity per

area.

Z = P / (v*A)

Sayfa 12

5. PC Sound Cards

 A PC Sound Card is a computer

hardware device that allow you to

hear sounds and music through

your speakers and provide the

input for microphones.

 Before the invention of the sound card, a PC could make

one sound - a beep.

 Nowadays, sound cards include providing the audio

component for multimedia applications:

* music composition,

* editing video or audio,

* games etc.

Sayfa 13

Microphone (input)
Speaker (output)

Sayfa 14

 Sound card is both

digital-to-analog converter (DAC) and

analog-to-digital converter (ADC).

Sayfa 15

Important properties:

Sampling

 Takes a snapshot of the microphone

(sensor) signal at discrete times.

 Read values from a continuous signal

equally spaced time interval.

Bit Per Sample

 Specify the number of bits the sound card uses to represent each sample.

 It can be 8, 16, or any value between 17 and 32.

 If BitsPerSample = 8, the sound card represents each sample with 8 bits.

i.e: each sample is represented by a number between 0 and 255.

 If BitsPerSample =16, the sound card represents each sample with 16 bits

i.e: each sample is represented by a number between 0 and 65535.

Sayfa 16

Sampling Rate

 is the number of samples made per unit of time

(usually expresses as samples per second or Hertz).

 A low sampling rate will provide a less accurate representation of the

analog signal. Sample size is the range of values used to represent

each sample, usually expressed in bits. The larger the sample size, the

more accurate the digitized signal will be.

 Sound cards commonly use 16 bit samples at sampling rates from about

4000 Hz to 44,000 Hz samples per second.

 The samples may also be contain one channel (mono) or two (stereo).

Sayfa 17

6. MATLAB Functions

 MATLAB provides some functions to process audio signals.

OLD* NEW

--------------- ----------------------

wavread() audioread()

wavrecord() audiorecorder()

wavwrite() audiowrite()

wavplay() audioplay()

 audioinfo()

 sound()

• These functions will be removed in a future releases of MATLAB but

they are still available in Octave. See backup slides for examples.

Sayfa 18

Acquiring Data with a Sound Card

Sayfa 19

Example Applications [sound generation]

% sg1.m

% random noise in the range (0,1)

y = -1 + rand(1,100000);

sound(y,fs)

wavwrite(y)

% sg2.m

% play a specific sound frequency (f)

clear; clc;

fs = 44100; % sampling rate

f = 1000; % frequency

dt = 1/fs; % time steps

t = 0:dt:1; % time

y = sin(2*pi*f*t); % sine profile

sound(y,fs) % play the function

Sayfa 20

% sg3.m

% play signal and noise

clear; clc;

fs = 44100;

f = 1000;

dt = 1/fs;

t = 0:dt:1;

y = sin(2*pi*f*t) + rand(1,length(t))-1;

sound(y,fs)

% write the sound to a file

audiowrite('signal_and_noise.wav', y, fs)

Sayfa 21

 When two sound waves having slightly different frequencies

interfere we hear variations in the loudness called beats.

% sg4.m

% Beat_frequency = |f1-f2|

clear; clc;

fs = 44100;

f1 = 500;

f2 = 502;

dt = 1/fs;

t = 0:dt:3;

y = sin(2*pi*f1*t) + sin(2*pi*f2*t);% sine profile

plot(t,y)

sound(y,fs)

Sayfa 22

% sg5.m

% play left and right

clear; clc;

fs = 44100;

f1 = 500;

f2 = 510;

dt = 1/fs;

t = 0:dt:3;

y1 = sin(2*pi*f1*t); % left

y2 = sin(2*pi*f2*t); % right

y = [y1' y2'];

sound(y,fs)

Sayfa 23

% sg6.m

% pulse generator

clear; clc;

...

Sayfa 24

Example Applications [accessing sound files]

The following function call assumes that the file ‘hucum.wav'

İs in a location in the Matlab path.

>> audioinfo('hucum.wav');

Filename: 'C:\Users\Ahmet\Desktop\MATLAB\hucum.wav'

 CompressionMethod: 'Uncompressed'

 NumChannels: 2

 SampleRate: 44100

 TotalSamples: 853776

 Duration: 19.3600

 Title: []

 Comment: []

 Artist: []

 BitsPerSample: 16

Sayfa 25

Reading and playing the sound file

>> [y, fs] = audioread('hucum.wav');

>> disp(fs)

44100

>> sound(y,fs) % play at orig. sampleRate

>> sound(y,fs/2) % play at half of orig. sampleRate

Sayfa 26

Ploting the sound file

>> [y, fs] = wavread('hucum.wav');

>> size(y) % size of data matrix

ans = 2 % 1: mono, 2: stereo

>> left = y(:,1); % left channel signal

>> right = y(:,2); % left channel signal

>> tmax = length(left)/fs; % plot entire data

>> t = linspace(0, tmax, length(left));

>> plot(t, left);

>> time = 3000/fs; % plot a portion of data

>> t = linspace(0, tmax, 3000);

>> plot(t,left(1:3000))

Sayfa 27

Example Applications [Recording sound]

% sr1.m

% Record your voice for 3 seconds.

clear; clc;

ar = audiorecorder;

disp('Start speaking...')

recordblocking(ar, 3);

disp('End of recording.');

% Play back the recording.

play(ar);

% Store data in double-precision array.

y = getaudiodata(ar);

% Plot the waveform.

plot(y);

Sayfa 28

% sr2.m

% Record your voice and plot it forever

clear; clc;

Fs = 11025; % sampling rate

T = 0.1; % total sampling time

% Start recorder for 16-bit, mono(1) [stero(2)]

ar = audiorecorder(Fs,16,2);

while 1

 recordblocking(ar, T);

 y = getaudiodata(ar); % Store sound array

 t = linspace(0,T,length(y)); % time array

 p = plot(t,y); % Plot the waveform

 axis([0 T -0.5 0.5]); % setup the axis ranges

 title('time-domain sound data')

 xlabel('time (s)')

 %pause(0.01);

 %delete(p);

end

Sayfa 29

% sr3.m

% Record sound data plot time and frequency domains

clear; clc;

Fs = 11025; % sampling rate

T = 0.1; % total sampling time

 ar = audiorecorder(Fs,16,1);

while 1

 recordblocking(ar, T);

 y = getaudiodata(ar);

 N = length(y);

 t = linspace(0,T,N);

 subplot(2,1,1)

 p1 = plot(t,y);

 axis([0 T -0.5 0.5]);

 xlabel('time (s)');

 % Get and plot the frequency componets

 Y = fft(y);

 df= Fs / length(y);

 f = (1:length(Y)) * df;

 N = uint32(N/2);

 subplot(2,1,2);

 p2 = plot(f(1:N), abs(Y(1:N)));

 axis([0 Fs/2 0 2000]);

 xlabel('Frequency domain (Hz)');

end

Sayfa 30

% sr4.m

% Record sound data open notepad for a specific frequency

Fs = 11025; % sampling rate

T = 3; % total sampling time

ar = audiorecorder(Fs,16,1);

recordblocking(ar, T);

y = getaudiodata(ar);

N = length(y);

t = linspace(0,T,N);

subplot(2,1,1); p1 = plot(t,y); xlabel('Time domain (s)');

axis([0 T -1.0 1.0]);

Y = fft(y);

df= Fs / length(y);

f = (1:length(Y)) * df;

N = uint32(N/2);

subplot(2,1,2); p2 = plot(f(1:N),abs(Y(1:N)));xlabel('Freq. (Hz)');

axis([0 Fs/2 0 2000]);

% get maximum value and its index

[V I] = max(abs(Y(1:N)))

f(I)

if(f(I)>630 & f(I)<650)

 system('start notepad')

end

Sayfa 31

% sr5.m

% frequency analysis of specific files

clear; clc; figure;

% Get and play sound data

% you can find the file at:

% http://www1.gantep.edu.tr/~bingul/ep375/wavfiles/

[data Fs] = audioread('instr_piano.wav');

sound(data, Fs)

% Plot sound data

t = (1:length(data)) / Fs;

subplot(1,2,1)

plot(t, data)

xlabel('Time domain (s)')

% Get and plot the frequency componets of the sound data

Y = fft(data);

df = Fs / length(data);

f = (1:length(Y)) * df;

subplot(1,2,2)

plot(f, abs(Y))

xlabel('Frequency domain (Hz)')

Sayfa 32

Example Application [Use of LDR]

 You can plug in an LDR (Light Dependent Resistor) directly

to microphone input.

 This will give you an output as a function of light intensity!

 Finally using the code sr2.m (in the previous slides), you can

perform some funny (time and light dependent) projects.

(See exercises)

Sayfa 33

Exercises

Sayfa 34

HW 1:

Develop a method to measure the speed of sound in dry air.

You should implement your method using sound card in a PC.

Write a Matlab m-file for your setup and compare

your measurement with v = 343 m/s.

Sayfa 35

HW 2:

Use the matlab sound card functions to measure the

gravitational acceleration using a simple pendulum. Setup is

given below. (R1: LDR, R2: a constant resistor and V0 =1.5 V)

Sayfa 36

HW 3:

Using sound card functions, write a Matlab script to measure

the angular frequency (w) in rad/s and in rpm of a rotating disk.

You can use the same circuit in HW2.

Sayfa 37

HW 4:

Using sound card functions, write a Matlab script

to measure the contact time of a tennis ball. Note that, in

general, the contact time is in the order of a few milli-seconds.

An example setup is given below.

Sayfa 38

References:

1. http://en.wikipedia.org/wiki/Sound

2. http://en.wikipedia.org/wiki/Sound_card

3. http://tldp.org/HOWTO/Sound-HOWTO/x71.html

4. http://computer.howstuffworks.com/sound-card3.htm

5. http://homepages.udayton.edu/~rhardie1/ECE203/sound.htm

6. http://www.aquaphoenix.com/lecture/matlab10/page4.html

7. http://pcsoundcards.org

Sayfa 39

BACKUP SLIDES

 Older sound processing functions in MATLAB.

 These are still available in Ocatave 4.0

Sayfa 40

Example: Recording and playing back sounds:

Fs = 11025; % Set a sampling rate

nbits = 16; % Bit per sample

% Record 3 seconds of 16-bit audio

disp('Recording ...');

y = wavrecord(3*Fs, Fs, 'double');

% Play back the recorded sound

disp('Playing back ...');

wavplay(y, Fs);

% Write it out to a new file.

disp('Writing data to the file ...');

wavwrite(y, Fs, nbits, ...

 'C:\Users\toshiba\Desktop\matlab\newsound.wav');

sound_rec.m

Sayfa 41

Example: Ploting dynamic data (from microphone input):

clear;

figure;

grid on;

hold on;

Fs = 11025; % sampling rate in Hz

dt = 0.1; % duration in seconds

while 1

 y = wavrecord(dt*Fs, Fs, 'double');

 p = plot(y);

 axis([0 dt*Fs -0.5 0.5]);

 pause(0.01);

 delete(p);

end

sound_mic.m

Sayfa 42

Example: Ploting time & frequency domains

clear; figure; grid on; hold on;

Fs = 44100; % sampling rate in Hz

dt = 0.1; % duration in seconds

while 1

 y = wavrecord(dt*Fs, Fs, 'double'); % Noisy time domain

 Y = fft(y, 512); % 512-point fast Fourier trans.

 Pyy = abs(Y).^2; % frequency domain

 f = 1000*(0:256)/512; % Do not draw all data

 subplot(2,1,1); % Plot 'time domain' signal

 p1 = plot(y); %

 axis([0 dt*Fs -0.1 0.1]); %

 subplot(2,1,2); % Plot 'frequency domain’ signal

 p2 = plot(f,Pyy(1:257)); %

 pause(0.01);

 delete(p1);

 delete(p2);

end

sound_mic_fft.m

Sayfa 43

Example: Getting peaks (from microphone input):

clear; figure; grid on; hold on;

Fs = 4000; % sampling rate in Hz

dt = 5; % duration in seconds

% get data

y = wavrecord(dt*Fs, Fs, 'double');

% convert to time (sec)

tmax = length(y)/Fs;

t = linspace(0, tmax, dt*Fs);

% plot

plot(t*1000,y);

axis([0 tmax*1000 -0.2 0.2]);

xlabel('time (ms)');

% --- Analysis ---

j = 1;

for i=1:length(y)

 if y(i)>0.15

 pick(j) = 1000*i/Fs;

 fprintf('%3d --> %8.1f ms\n',j, pick(j));

 j=j+1;

 end

end

sound_peak.m

