EP375 Computational Physics

Topic 2
ARRAY MANIPULATION & DATA ANALYSIS

Department of Engineering Physics
University of Gaziantep

Feb 2016
Content

1. 1D Arrays
2. 2D Arrays
3. Array Functions
4. Reading Text files
5. Data Analysis
OneDim Arrays (Vectors)

- We learned before that an array can be created in may ways

```matlab
>> x = [0 0.25 0.5 0.75 1]
x = 0 0.2500 0.5000 0.7500 1.0000

>> x = 0:0.25:1
x = 0 0.2500 0.5000 0.7500 1.0000

>> for i=1:5
    x(i) = (i-1)*0.25;
end
>> x
x = 0 0.2500 0.5000 0.7500 1.0000

>> dizi = 1:7
dizi = 1 2 3 4 5 6 7

>> dizi2 = -5:2:5
dizi2 = -5 -3 -1 1 3 5
```
>> v = [1 2 3] % row vector
v = 1 2 3

>> v = [1; 2; 3] % column vector
v =
 1
 2
 3

>> v = [1 2 3]’ % transpose of a row vector
v =
 1
 2
 3
TwoDim Arrays (Matrices)

>> A = [1 1 1; 2 2 2]

A =
1 1 1
2 2 2

>> A = [1 1 1
 2 2 2]

A =
1 1 1
2 2 2

>> B = A'

B =
1 2
1 2
1 2
>> M = [9 8 7; 6 5 4; 3 2 1]
M =
 9 8 7
 6 5 4
 3 2 1
>> M(2,3)
ans = 4
>> M(:,3)
ans =
 7
 4
 1
>> M(2,:)
ans = 6 5 4
>> M(2,3) = 100
ans =
 9 8 7
 6 5 100
 3 2 1
Some Array Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length(x)</td>
<td>Number of elements of (vector) x</td>
</tr>
<tr>
<td>sum(x)</td>
<td>Sum the elements of x</td>
</tr>
<tr>
<td>mean(x)</td>
<td>Arithmetic mean of x</td>
</tr>
<tr>
<td>std(x)</td>
<td>Standard deviation of x</td>
</tr>
<tr>
<td>prod(x)</td>
<td>Product of the elements of x</td>
</tr>
<tr>
<td>dot(x,y)</td>
<td>Scalar product of x and y</td>
</tr>
<tr>
<td>cross(x,y)</td>
<td>Vector product of x and y</td>
</tr>
<tr>
<td>linspace()</td>
<td>Linearly spaced data</td>
</tr>
<tr>
<td>logspace()</td>
<td>Logarithmically spaced data</td>
</tr>
<tr>
<td>size(A)</td>
<td>Number of rows and of matrix A</td>
</tr>
<tr>
<td>zeros(n)</td>
<td>nxn matrix whose elements are zero</td>
</tr>
<tr>
<td>ones(n)</td>
<td>nxn matrix whose elements are one</td>
</tr>
<tr>
<td>eye(n)</td>
<td>nxn unit matrix</td>
</tr>
<tr>
<td>rand(n)</td>
<td>nxn random matrix</td>
</tr>
<tr>
<td>magic(n)</td>
<td>nxn magic square</td>
</tr>
</tbody>
</table>
- `linspace()` function

```matlab
>> x = 0:0.25:1
x = 0 0.2500 0.5000 0.7500 1.0000
```

```matlab
>> x = linspace(0,1,5)
x = 0 0.2500 0.5000 0.7500 1.0000
```

- `logspace()` function: *logarithmic counterpart of linspace*

```matlab
>> x = logspace(0,1,5)
x = 1.0000 1.7783 3.1623 5.6234 10.0000
```

creates 5 logarithmically spaced elements starting with \(x = 10^0 \) and ending with \(x = 10^1 \).
```matlab
>> x = [0 0.25 0.5 0.75 1];
>> length(x)
ans = 5

>> A = [1 1 1; 2 2 2];
>> size(A)
ans = 2 3

>> x = [1 2 2.5 3 3.1];
>> sum(x)
ans = 11.6000

>> prod(x)
46.5000

>> a = [1 2 4];
>> b = [0 2 5];
>> dot(a,b)
ans = 24
>> cross(a,b)
ans = 2 -5 2
```
zeros(m,n) returns a matrix of m rows and n columns that is filled with zeroes
ones(m,n) returns a matrix of m rows and n columns that is filled with ones
rand(m,n) returns a matrix of m rows and n columns that is filled with uniform random number between [0,1]
eye(n) creates an n x n identity (unit) matrix.

>> P = zeros(2,3)
P = 0 0 0
 0 0 0
>> P = ones(2,3)
P = 1 1 1
 1 1 1
>> P = rand(2,3)
P = 0.9501 0.6068 0.8913
 0.2311 0.4860 0.7621
>> I = eye(2)
I = 1 0
 0 1
Vectors and Relational Operators

- Recall the relational operators ==, ~=, <, >, <=, and >=.
- These operators can be applied to vectors element-wise to generate a same-sized vector of logical results.

```
>> X = [1 9 8 4];
>> Y = [4 3 0 4];
>> X>Y
ans = 0 1 1 0

>> X == Y
ans = 0 0 0 1

>> X>Y | Y == 4
ans = 1 1 1 1
```

```
>> X = [1 9 8 4];
>> Y = [4 3 0 4];
>> sum(X>Y)
ans = 2

>> sum(X == Y)
ans = 1

>> sum(X>Y | Y == 4)
ans = 4
```
Reading Text Files

Consider **gravity.txt** (*) contains 1000 measurements of gravitational acceleration \(g\) on the Earth surface at sea level. Find the mean, maximum and minimum values of the data.

We can read this data directly into a vector and process it as follows:

\[
\begin{align*}
\texttt{g} &= \text{load ('gravity.txt');} \\
\texttt{mean(g)} &= 9.8120 \\
\texttt{max(g)} &= 10.4856 \\
\texttt{min(g)} &= 9.0473
\end{align*}
\]

\[
\begin{align*}
\texttt{g} &= \text{textread('gravity.txt');} \\
\texttt{mean(g)} &= 9.8120 \\
\texttt{max(g)} &= 10.4856 \\
\texttt{min(g)} &= 9.0473
\end{align*}
\]

(*) Download the file at:
http://www1.gantep.edu.tr/~bingul/ep375/src/gravity.txt
Data Analysis

Data analysis is a very broad subject covering many techniques and types of data. In this lecture we will study some basic calculations that are commonly performed on sampled data.

Consider again the file gravity.txt. We can plot the histogram of the data:

```matlab
>> g = load('gravity.txt');
>> hist(g,20)
```
The **mean** \bar{x} of the sample is given by:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

The **standard deviation** σ of the sample is defined as:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

For this data, σ is the size of the variation of g about the mean.

```matlab
>> g = load('gravity.txt');
>> mean(g)
ans = 9.8120
>> std(g)
ans = 0.2077
```
For bi-variate data (two variables) the correlation coefficient (ρ) is a measure of the linear dependence between one variable and the other.

Given a sample (size n) of bi-variate data, $Z = \{ (x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n) \}$

\[
\rho = \frac{xy - x.y}{\sigma_x \sigma_y}
\]

\[
xy = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i
\]

\[
\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

\[
\sigma_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]
\[
\rho = \frac{\bar{xy} - \bar{x}\bar{y}}{\sigma_x \sigma_y}
\]

\[-1 \leq \rho \leq 1\]

\[\rho = 0 \quad \text{if there is no correlation}\]

\[\rho = \pm 1 \quad \text{if } X \text{ and } Y \text{ are fully correlated}\]
Consider a heated gas in a fixed volume. The following data (stored in file TP.txt) contains the temperature (T) in oC and the pressure (P) in hPa of the gas.

We can read this data directly into a vector and process it as follows:

```matlab
>> data = load('TP.txt');
>> T = data(:,1);
>> P = data(:,2);
>> plot(T,P,'*')
```

Download the file at:

http://www1.gantep.edu.tr/~bingul/ep375/src/TP.txt
The correlation between T and P:

There is clearly strong positive dependence on the temperature since $\rho \approx 1$. “A higher temperature leads to a higher pressure”.

```
>> data = load('TP.txt');
>> T = data(:,1);
>> P = data(:,2);
>> plot(T,P,'*')
>> rho = (mean(T.*P)-mean(T)*mean(P))/(std(T)*std(P))
rho = 0.94
```
Figure 19.4 Pressure versus temperature for three dilute gases. Note that, for all gases, the pressure extrapolates to zero at the temperature -273.15°C.
Exercises

1. What is the output of the following program?

```matlab
A = [1 2; 4 5];
det(A)
inv(A)
det(inv(A'))
```

2. What is the output of the following program?

```matlab
a = [1 2 3];
b = [3 2 1];
log10(a)
a + b
3*a
a.*b
a*b'
```
3.

Using the following data:

\[X = \{ 23, 31, 61, 17, 27, 51 \} \]
\[Y = \{ 16, 23, 49, 9, 14, 45 \} \]

Calculate
(a) the mean of \(X \) and \(Y \)
(b) the standard deviation of \(X \) and \(Y \)
(c) the correlation coefficient of \(X \) and \(Y \)
4.
An industrial refrigerator is used to cool food in a processing factor. The factory engineer wishes to determine whether the temperature of the refrigerator is affected by the wind speed near it’s external heat exchanger. An experiment is performed where the wind speed, W (m/s), and temperature, T($^\circ$C), of the refrigerator are sampled at 6 am in the morning every day over a period of twelve days. The results are given in the table. Use the table to calculate the correlation coefficient (comment on the results). Also try to plot Temperature versus WindSpeed to visualise the correlation.

<table>
<thead>
<tr>
<th>W (m/s)</th>
<th>T($^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>1.69</td>
</tr>
<tr>
<td>8.4</td>
<td>1.34</td>
</tr>
<tr>
<td>7.3</td>
<td>1.45</td>
</tr>
<tr>
<td>3.9</td>
<td>1.75</td>
</tr>
<tr>
<td>1.7</td>
<td>1.87</td>
</tr>
<tr>
<td>9.6</td>
<td>1.05</td>
</tr>
<tr>
<td>4.5</td>
<td>1.60</td>
</tr>
<tr>
<td>6.4</td>
<td>1.45</td>
</tr>
<tr>
<td>0.4</td>
<td>2.02</td>
</tr>
<tr>
<td>8.7</td>
<td>1.15</td>
</tr>
<tr>
<td>8.8</td>
<td>1.15</td>
</tr>
<tr>
<td>0.7</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Answer: $\rho = -0.986$

The results show that there is a strong negative correlation between wind speed and refrigerator temperature.
“A higher the wind speed leads to a lower temperature”.

![Graph showing the correlation between wind speed and refrigerator temperature]
5.
A local ice cream shop keeps track of how much ice cream they sell versus the temperature on that day. Table shows their data for the last 10 days. Calculate the correlation coefficient of the data and comment on the result.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Ice Cream Sales (TL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 °C</td>
<td>215</td>
</tr>
<tr>
<td>16 °C</td>
<td>325</td>
</tr>
<tr>
<td>15 °C</td>
<td>332</td>
</tr>
<tr>
<td>18 °C</td>
<td>406</td>
</tr>
<tr>
<td>19 °C</td>
<td>412</td>
</tr>
<tr>
<td>25 °C</td>
<td>614</td>
</tr>
<tr>
<td>23 °C</td>
<td>544</td>
</tr>
<tr>
<td>18 °C</td>
<td>421</td>
</tr>
<tr>
<td>22 °C</td>
<td>445</td>
</tr>
<tr>
<td>17 °C</td>
<td>408</td>
</tr>
</tbody>
</table>
References

[4]. http://wikipedia.org/wiki/Mean
