EP375 Computational Physics

Topic 5
 MATLAB TUTORIAL DIFFERENTIATION \& INTEGRATION

Department of
Engineering Physics
University of Gaziantep
Feb 2014

Content

1. Introduction

2. Differentiation
3. Integration

Introduction

- In engineering problems, we have mostly deal with the differentiation and integration of the functions of single- or multi-variables.
- In MATLAB there are some build-in functions to perform these operations:
$\operatorname{diff}() \quad$ to evaluate finite difference or derivative int () to evaluate the definite or indefinite integrals

Derivative

diff(S)
differentiates a symbolic expression S with respect to its free variable.
$\operatorname{diff}(S, ' v ')$ or diff(S,sym('v')) differentiates S with respect to v.
$\operatorname{diff}(S, n)$
for a positive integer n, differentiates $S n$ times.
$\operatorname{diff}\left(S, v^{\prime}, \mathrm{n}\right)$ and $\operatorname{diff}\left(\mathrm{S}, \mathrm{n}, \mathrm{V}^{\prime} \mathrm{v}^{\prime}\right)$
are also acceptable.

Example 1:

Find the first and second derivative of the function $f(x)=x^{2}+\exp (-x)$

```
>> syms x
>> diff(x^2+exp(-x)) % first derivative
ans = 2*x-exp (-x)
>> diff(x^2+exp(-x),2) % second derivative
ans = 2+exp(-x)
```


Example 2:

Find the first derivative of the function $f(x)=x^{2}+\exp (-x)$ at $x=3$.

```
>> syms x
>> d = diff(2*x^2);
>> x = 3;
>> eval(d)
ans = 12
```


Example 3:

Find the derivatives for the function $\partial f / \partial x$ and $\partial f / \partial y$
$f(x, y)=y x^{2}+\exp \left(-x^{*} y\right)$

```
>> syms x y
>> diff(y*x^2+exp(-x*y),'x') % df/dx
ans = 2*x*y-y*exp(-x*y)
>> diff(y*x^2+exp(-x*y),'y') % df/dy
ans = x^2-x*exp(-x*y)
```


Integration

int(S)
returns the indefinite integral of S with respect to
its symbolic variable
int (S, v)
returns the indefinite integral of S with respect to the symbolic scalar variable v.
int (S, a,b)
returns the definite integral of S from a to b

Example 4:

Find the indefinite integral and definite for the range [1, 2] of the function $f(x)=x^{2}+\exp (-x)$.

```
>> syms x
>> int(x^2+exp(-x)) % indefinite integral
ans = 1/3*x^3-exp(-x)
>> int(x^2+exp(-x),1,2)
% definite integral
ans = 7/3-exp(-2)+exp(-1)
```

\% indefinite integral
\% definite integral

``` ans \(=7 / 3-\exp (-2)+\exp (-1)\)
```


Example 5:

Evaluate the integral:

$$
\int_{0}^{4} \int_{-1}^{2}\left(x^{2}+y^{2}\right) d x d y
$$

```
>> syms x y
>> int( int(x^2+y^2,x,-1,2),y,0,4 )
ans = 76
```


Symbolic Expansion/Simplification

```
>> syms a b
>> expand((a+b)^3)
ans = a^3+3*a^2*b+3*a*b^2+b^3
```

```
>> syms x a b c
>> simplify(sin(x)^2 + cos(x)^2)
ans = 1
>> simplify(exp(c*log(sqrt(a+b))))
ans = (a+b)^(1/2*c)
```


HW1:

Find the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ at $x=y=1$ for the function $f(x, y)=\sin (x) / y+\cos (y) / x$

HW2:
Evaluate the integral: $\int_{0}^{3} \int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin (\theta) d \phi d \theta d r$

HW3:

Groud state wave function of a particle in an infinite quantum well as shown in figure is given by:

$$
\Psi(x)=A \sin (\pi x / L)
$$

Determine the normalization constant A in terms of L.

References:

[1]. http://www.mathworks.com/products/matlab
[2]. Numerical Methods in Engineering with MATLAB,
J. Kiusalaas, Cambridge University Press (2005)
[3]. Numerical Methods for Engineers, 6th Ed.
S.C. Chapra, Mc Graw Hill (2010)

