

EP375 Computational Physics

Topic 7 SYSTEM OF LINEAR EQUATIONS

Department of Engineering Physics

University of Gaziantep

Feb 2014

Content

- **1.** Linear Algebraic Equations
- **2.** Solutions in MATLAB
- **3. Example Applications**

Version 7.0.0.19920 (R14) May 06, 2004 License Number: 0 Ahmet GU

Linear Algebraic Equations

 Mathematical formulations of engineering problems often lead to sets of simultaneous linear equations of the form:

$$a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2$$

$$\vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \cdots + a_{n,n}x_n = b_n$$

This system can be written in matrix form:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

or simply:

$$A x = b$$

Here

- **A** is called the "coefficient matrix"
- **x** is the "unknown vector"
- **b** is the "constant vector" or "right hand side vector"

The solution of the system

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$

is

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$$

where $A^{-1} = adj(A) / |A|$

Here

- adj(A) is adjoint of the matrix A
- **|A|** is the determinant of A.

Note that to get the solution the condition:

|A| ≠ 0

must be satisfied.

Example 1: Consider the equation:

$$x + y = 4$$

$$x - 3y = 0$$

written in matrix form:
$$\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

which can be

$$\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

The solution is:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

He

ere:
$$\begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}^{-1} = \frac{1}{-4} \begin{pmatrix} -3 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & -1/4 \end{pmatrix}$$

 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & -1/4 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \longrightarrow x = 3, y = 1$

 MATLAB solution: 	$ \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} $
<pre>>> A = [1 1; 1 -3]; >> b = [4 ; 0]; >> x = A\b x = 3 1</pre>	<pre>% coefficient matix % row vector % solution vector</pre>
<pre>>> A = [1 1; 1 -3]; >> b = [4 0]'; >> x = A\b x = 3 1</pre>	<pre>% coefficient matix % row vector % solution vector</pre>
<pre>>> A = [1 1; 1 -3]; >> b = [4 0]'; >> x = inv(A)*b x = 3 1</pre>	<pre>% coefficient matix % row vector % solution vector</pre>

Example 2: Consider the equation:

$$x + y + z = 6$$

 $-2x + y = 0$
 $3x + 2y + z = 10$

which can be written in matrix form:

$$\begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 10 \end{pmatrix}$$

;

>> A =
$$\begin{bmatrix} 1 & 1 & 1 & ; & -2 & 1 & 0 & ; & 3 & 2 & 1 \end{bmatrix}$$

>> b = $\begin{bmatrix} 6 & 0 & 10 \end{bmatrix}';$
>> x = A\b
x = 1
2
3

Example 3: Consider the circuit:

Two batteries with $\varepsilon_1 = 3$ V and $\varepsilon_2 = 5$ V are connected with three resistors $R_1 = 10 \Omega$, $R_2 = 20 \Omega$ and $R_3 = 30 \Omega$.

Using Kirchhoff's laws, find the currents i_1 , i_2 and i_3 passing through the resistors.

Eigenvalues

>>	A = [1]	3 -2	; 3 5 1;	-2 1 4]
A =	=			
	1	3	-2	
	3	5	1	
	-2	1	4	
>> [v d] = eig(A)				
v =	=			
	-0.8184	- 1	0.3153	-0.4804
	0.4347	7	0.2071	-0.8764
	-0.3758	3	0.9261	0.0324
d =	=			
	-1.5120)	0	0
	C)	4.9045	0
	C)	0	6.6076

HW 1: Consider the circuit:

Write a MATLAB function of the form function potdiff(a,b)

to find (return) the potential difference between point a and b where a, b = 1, 2, 3, 4, 5 or 6. For example,

>> V = potdiff(1,6) >> V = 200

HW 2: Consider the circuit:

Find the current flowing in each branch of this circuit.

HW 3:

An upward force of 25 N is applied at the top of a tripod as shown in figure. Determine the forces in the legs of the tripod.

References

[1]. http://www.mathworks.com/products/matlab

[2]. Numerical Methods in Engineering with MATLAB, J. Kiusalaas, Cambridge University Press (2005)

[3]. Numerical Methods for Engineers, 6th Ed. S.C. Chapra, Mc Graw Hill (2010)