## EP375 Computational Physics

Topic 7<br>SYSTEM OF LINEAR EQUATIONS



Department of
Engineering Physics
University of Gaziantep
Feb 2014

## Content

1. Linear Algebraic Equations
2. Solutions in MATLAB
3. Example Applications

## Linear Algebraic Equations

- Mathematical formulations of engineering problems often lead to sets of simultaneous linear equations of the form:

$$
\begin{array}{cc}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots a_{1, n} x_{n}=b_{1} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots a_{2, n} x_{n}=b_{2} \\
& \vdots \\
a_{n, 1} x_{1}+a_{n, 2} x_{2}+\cdots a_{n, n} x_{n}=b_{n}
\end{array}
$$

This system can be written in matrix form:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

or simply:

$$
A x=b
$$

Here
A is called the "coefficient matrix"
$\mathbf{x}$ is the "unknown vector"
b is the "constant vector" or "right hand side vector"

The solution of the system

$$
\mathbf{A x}=\mathbf{b}
$$

is

$$
x=A^{-1} b
$$

where $\mathbf{A}^{-1}=\operatorname{adj}(\mathbf{A}) /|\mathbf{A}|$
Here
$\operatorname{adj}(\mathbf{A}) \quad$ is adjoint of the matrix $A$
$|A| \quad$ is the determinant of $A$.

Note that to get the solution the condition:

$$
|\mathbf{A}| \neq 0
$$

must be satisfied.

Example 1: Consider the equation:

$$
\begin{aligned}
& x+y=4 \\
& x-3 y=0
\end{aligned}
$$

which can be written in matrix form: $\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)\binom{x}{y}=\binom{4}{0}$
The solution is: $\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)^{-1}\binom{4}{0}$
Here: $\quad\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)^{-1}=\frac{1}{-4}\left(\begin{array}{cc}-3 & -1 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}3 / 4 & 1 / 4 \\ 1 / 4 & -1 / 4\end{array}\right)$

$$
\binom{x}{y}=\left(\begin{array}{cc}
3 / 4 & 1 / 4 \\
1 / 4 & -1 / 4
\end{array}\right)\binom{4}{0}=\binom{3}{1} \longrightarrow x=3, y=1
$$

- MATLAB solution:

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right)\binom{x}{y}=\binom{4}{0}
$$

$\begin{array}{ll}\gg A=[11 ; 1-3] ; & \text { \% coefficient matix } \\ \gg b=[4 ; 0] ; & \text { \% row vector } \\ \gg x=A \backslash b & \text { o solution vector } \\ \mathbf{x}=3 & \end{array}$
$\begin{array}{ll}\gg A=[11 ; 1-3] ; & \% \text { coefficient matix } \\ \gg b=[40] \prime ; & \% \text { row vector } \\ \gg x=A \backslash b & \% \text { solution vector } \\ x=3 & \end{array}$
>> $A=[11 ; 1$-3]; \% coefficient matix
>> b = [4 0]'; \% row vector
>> $x=\operatorname{inv}(A) * b \quad$ \% solution vector
$x=3$
1

Example 2: Consider the equation:

$$
\begin{aligned}
x+y+z & =6 \\
-2 x+y & =0 \\
3 x+2 y+z & =10
\end{aligned}
$$

which can be written in matrix form:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
0 \\
10
\end{array}\right)
$$

$$
\begin{aligned}
& \text { >> A = [1 1 1; -2 1 0; 3 2 1]; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { >> } \mathrm{x}=\mathrm{A} \mid \mathrm{b} \\
& x=1 \\
& 2 \\
& 3
\end{aligned}
$$

Example 3: Consider the circuit:


Two batteries with $\varepsilon_{1}=3 \mathrm{~V}$ and $\varepsilon_{2}=5 \mathrm{~V}$ are connected with three resistors $R_{1}=10 \Omega, R_{2}=20 \Omega$ and $R_{3}=30 \Omega$.

Using Kirchhoff's laws, find the currents $i_{1}, i_{2}$ and $i_{3}$ passing through the resistors.

## Eigenvalues

$$
\begin{aligned}
& \text { >> } A=\left[\begin{array}{lllllll}
1 & 3 & -2 ; & 5 & 1 ;-2 & 1
\end{array}\right] \\
& \text { A = } \\
& \text { >> [v d] = eig(A) } \\
& \mathrm{v}= \\
& -0.8184-0.3153-0.4804 \\
& 0.4347 \quad 0.2071 \quad-0.8764 \\
& -0.3758 \quad 0.9261 \quad 0.0324 \\
& \mathrm{~d}= \\
& \begin{array}{rrr}
-1.5120 & 0 & 0 \\
0 & 4.9045 & 0 \\
0 & 0 & 6.6076
\end{array}
\end{aligned}
$$

HW 1: Consider the circuit:


Write a MATLAB function of the form
function potdiff(a,b)
to find (return) the potential difference between point a and b
where $\mathrm{a}, \mathrm{b}=1,2,3,4,5$ or 6 . For example,
>> V = potdiff $(1,6)$
>> $\mathrm{V}=200$

HW 2: Consider the circuit:


Find the current flowing in each branch of this circuit.

## HW 3:

An upward force of 25 N is applied at the top of a tripod as shown in figure. Determine the forces in the legs of the tripod.


## References

[1]. http://www.mathworks.com/products/matlab
[2]. Numerical Methods in Engineering with MATLAB, J. Kiusalaas, Cambridge University Press (2005)
[3]. Numerical Methods for Engineers, 6th Ed.
S.C. Chapra, Mc Graw Hill (2010)

