## EP375 Computational Physics

## Topic 8 <br> ROOTS OF EQUATIONS



Department of
Engineering Physics
University of Gaziantep
Feb 2014

## Content

1. Roots of Polynomials
2. MATLAB solve() Function

Copyright 1984-2004, The MathWorks. Ime

## Roots of Polynomials

- $x^{2}-3 x+2=0$ (roots are: 2 and 1 )

```
>> roots([1 -3 2])
ans =
    2
    1
```

- $x^{5}+2 x^{4}-5 x^{3}+x+3=0$

```
>> c = [1 2 -5 0 1 3];
>> roots(c)
ans =
    -3.4473
        1.1730 + 0.3902i
        1.1730 - 0.3902i
    -0.4494 + 0.6062i
    -0.4494 - 0.6062i
```


## MATLAB solve() Function

Alternatively, we can also use solve () function in MATLAB.

```
>> solve('x^2-4=0')
ans =
    2
    -2
```

>> solve('sin $(x)+2-x=0$ ')
ans $=$
2.5541959528370430378296661737919
$\gg$ solve('3*sin (x) $+2-x=0$ ')
ans $=$
-1. $2467199751961775376089438821225-$
. 52620368582988923192255563579236 * $_{i}$

```
>> solve('a*x^2 + b*x + c')
ans =
1/2/a*(-b+(b^2-4*a*c)^(1/2))
1/2/a* (-b- (b^2-4*a*c)^(1/2))
```

>> solve('a*x^2 + b*x $\left.+c^{\prime},{ }^{\prime} b^{\prime}\right)$
ans $=$
$-\left(a * x^{\wedge} 2+c\right) / x$
>> solve('a*x^2 + b*x + c','c')
ans $=$
$-a * x^{\wedge} 2-b * x$

```
>> s = solve('x + y = 1','x - 11*y = 5')
s =
x: [1x1 sym]
y: [1x1 sym]
>> s.x
ans =
4/3
>> s.Y
ans =
-1/3
```

```
>> s =solve(' x^2+y^2-4=0','x* y-1=0')
s =
    x: [4x1 sym]
    y: [4x1 sym]
>> s.x
ans =
    -(1/2*6^ (1/2)+1/2*2^ (1/2))^3+2* 6^ (1/2) +2* 2^ (1/2)
    -(1/2*6^ (1/2) -1/2*2^ (1/2))^3+2* 6^ (1/2) -2* *^ (1/2)
    -(-1/2* 6^ (1/2)+1/2* 2^ (1/2))^^3-2* 6^ (1/2) +2* *^ (1/2)
    -(-1/2* 6^ (1/2) -1/2* 2^ (1/2))^3 3-2* 6^ (1/2) - 2* 2^ (1/2)
```

>>s.y
ans $=$

```
    1/2*6^(1/2)+1/2*2^(1/2)
    1/2*6^(1/2)-1/2*2^(1/2)
-1/2*\mp@subsup{6^}{}{\wedge}(1/2)+1/2*\mp@subsup{2^}{}{\wedge}(1/2)
-1/2* *^ (1/2) -1/2* 2^ (1/2)
```

```
>> coz = solve('sin(x) + y^2 + log(z)-7=0',...
    '3*x + 2^y - z^3 + 1=0',...
    'x + y + z - 5=0')
>> coz.x
ans =
.59905375664056731520568183824539
>> coz.y
ans =
2.3959314023778168490940003756591
>> coz.z
ans =
2.0050148409816158357003177860955
```


## HW 1:

In a region of space the electric potential is given by

$$
V(x, y, z)=2 x z+\sin (x-y)+\left|\exp (x y)-z^{3}\right| \quad(V / m)
$$

where coordinates $\mathrm{x}, \mathrm{y}$ and z is measured in meter.

Write a program that inputs a point ( $x, y, z$ ) from the keyboard and outputs the electric field components $\left(E_{x}, E_{y}, E_{z}\right)$ and magnitude of the electric field $E$ at that point.

Hint use the relation: $\quad \mathbf{E}=-\nabla V$

## HW 2:

Write a MATLAB function named
function [Ex Ey Ez] = efil (@V, x,y,z)
that returns the electric field components ( $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{E}_{\mathrm{z}}$ ) at a point ( $x, y, z$ ) for the given potential function of the form $V=V(x, y, z)$.

## HW 3:

The speed $v$ of a rocket in vertical flight near the surface of earth can be approximated by

$$
v=u \ln \left(\frac{m_{0}}{m_{0}-\dot{m} t}\right)-g t
$$

where
$u=$ velocity of exhaust relative to the rocket ( $2500 \mathrm{~m} / \mathrm{s}$ )
$m_{0}=$ mass of rocket at liftoff ( 3.0 e 6 kg )
$m$-dot $=$ rate of fuel consumption $=13.0 \mathrm{e} 4 \mathrm{~kg} / \mathrm{s}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$t=$ time measured from liftoff
Determine the time when the rocket reaches the speed of sound ( $340 \mathrm{~m} / \mathrm{s}$ ).

## HW 4:

A projectile is launched at point $O$ with the velocity vat the angle $\theta$ to the horizontal. The parametric equation of the trajectory is given by

$$
\begin{aligned}
& x=(v \cos \theta) t \\
& y=(v \sin \theta) t-g t^{2} / 2
\end{aligned}
$$

where $t$ is the time measured from the instant of launch
 and $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

If the projectile is to hit the target at the $45^{\circ}$ angle shown in the figure, determine v, $\theta$ and the time of flight.

## HW 5:

The equation of a circle is

$$
(x-a)^{2}+(y-b)^{2}=R^{2}
$$

where $R$ is the radius and $(a, b)$ are the coordinates of the center. If the coordinates of three points on the circle are

| $\mathbf{x}$ | $\boldsymbol{y}$ |
| :---: | ---: |
| ---- | --- |
| 8.24 | 0.00 |
| 0.32 | 6.62 |
| 5.96 | -1.12 |

Determine $R$, $a$ and $b$.

## References

[1]. http://www.mathworks.com/products/matlab
[2]. Numerical Methods in Engineering with MATLAB, J. Kiusalaas, Cambridge University Press (2005)
[3]. Numerical Methods for Engineers, 6th Ed.
S.C. Chapra, Mc Graw Hill (2010)

