EP486 Microcontroller Applications

Topic 12 Arduino Apps: MPU 6050 IMU Sensor

Department of
Engineering Physics
University of Gaziantep

Nov 2014

IMU (Inertial Measurement Unit)

- IMU measures craft's velocity, orientation, and gravitational forces.
- IMU sensors usually consists of two or more parts. accelerometer, gyroscope, magnetometer and altimeter.
- IMU sensors like the MPU 6050 are used in self balancing robots, UAVs, smartphones, etc.
- The MPU 6050 is a 6 DOF (Degrees of Freedom) or a six axis IMU sensor, which means that it gives six values as output.

MPU 6050

- IMU sensors like the MPU 6050 are used in self balancing robots, UAVs, smartphones, etc.
- The MPU 6050 is a 6 DOF (Degrees of Freedom) or a six axis IMU sensor, which means that it gives six values as output. These are:
Acceleration components: ax, ay, az Angular velocity components: wx, wy, wz
- MPU 6050 is a sensor based on MEMS (Micro Electro Mechanical Systems) technology. Both the accelerometer and the gyroscope is embedded inside a single chip. This chip uses I2C (Inter Integrated Circuit) protocol for communication.

MPU 6050

Interfacing

Coding

1. Download the following two files from course web page: www1.gantep.edu.tr/~bingul/ep486/src/MPU6050.zip www1.gantep.edu.tr/~bingul/ep486/src/l2Cdev.rar
2. Unzip/extract these files.
3. Paste them inside the arduino's "library" folder.

Coding

Coding

- MPU6050_raw: no modification has been done.
- MPU6050_DMP6: contains many useful functions.

Note on modifying raw data:
Each value (ax, ay, az, gx, gy, gz) is in the range [-32768, +32767].

```
ACCEL_CONFIG = +/- 2g, 4g, 8g or 16g where g = 9.8 m/s}\mp@subsup{}{}{2
    +16384 = +1g (at a sensitivity of 2g)
    -32768 = -2g (at a sensitivity of 2g)
GYRO_CONFIG = +/- 250, 500, 1000, or 2000 deg/sec.
    +32767 = +250 deg/sec
    -32768 = -250 deg/sec
```


Coding

Conversion from raw acceleration (ax) to SI units

$$
\operatorname{rax}=2 * 9.8 * \operatorname{ax} / 32767\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

To get velocity:

$$
V X=v X 0+r a x * d t
$$

Conversion from raw gyroscope (gx) to SI units

$$
\text { rgx }=250 * \operatorname{gx} / 32767 \text { (deg/s) }
$$

To get angle:

$$
\text { thetax }=\text { thetax } 0+r g x * d t
$$

