

Topic 12 Arduino Apps: MPU 6050 IMU Sensor

Department of Engineering Physics

University of Gaziantep

Nov 2014

IMU (Inertial Measurement Unit)

- IMU measures craft's velocity, orientation, and gravitational forces.
- IMU sensors usually consists of two or more parts. accelerometer, gyroscope, magnetometer and altimeter.
- IMU sensors like the MPU 6050 are used in self balancing robots, UAVs, smartphones, etc.
- The MPU 6050 is a 6 DOF (Degrees of Freedom) or a six axis IMU sensor, which means that it gives six values as output.

MPU 6050

- IMU sensors like the MPU 6050 are used in self balancing robots, UAVs, smartphones, etc.
- The MPU 6050 is a 6 DOF (Degrees of Freedom) or a six axis IMU sensor, which means that it gives six values as output. These are:
 Acceleration components: ax, ay, az
 Angular velocity components: wx, wy, wz
- MPU 6050 is a sensor based on MEMS (Micro Electro Mechanical Systems) technology. Both the accelerometer and the gyroscope is embedded inside a single chip. This chip uses I2C (Inter Integrated Circuit) protocol for communication.

MPU 6050

Interfacing

- 1. Download the following two files from course web page: www1.gantep.edu.tr/~bingul/ep486/src/MPU6050.zip www1.gantep.edu.tr/~bingul/ep486/src/I2Cdev.rar
- 2. Unzip/extract these files.
- 3. Paste them inside the arduino's "library" folder.

File Edit Sketch Tools Help		02.Digital	÷			
New	Ctrl+N	03.Analog	F			
Open	Ctrl+O	04.Communication	F			
Sketchbook	Þ	05.Control	F			
Examples		06.Sensors	Þ			
Close	Ctrl+W	07.Display	Þ			
Save	Ctrl+S	08.Strings	Þ			
Save As	Ctrl+Shift+S	09.USB	Þ			
Upload	Ctrl+U	10.StarterKit	Þ			
Upload Using Programmer	Ctrl+Shift+U	ArduinoISP				
Page Setup	Ctrl+Shift+P	toxiclibs-complete-0020	Þ			
Print	Ctrl+P	adxl345driver	Þ			
Preferences	Ctrl+Comma	EEPROM	Þ			
Quit	Ctrl+Q	FreeSixIMU	×			
		Keypad	×			
		LiquidCrystal	×			
		MPU6050	•	Examples	÷	MPU6050_DMP6
		MS561101BA				MPU6050_raw
		OptiMouse	×			
		Password	×			
		PID_v1	×			
		PololuQTRSensors	÷			

- MPU6050_raw: no modification has been done.
- MPU6050_DMP6: contains many useful functions.

Note on modifying raw data:

Each value (ax, ay, az, gx, gy, gz) is in the range [-32768, +32767].

ACCEL_CONFIG = +/- 2g, 4g, 8g or 16g where g = 9.8 m/s² +16384 = +1g (at a sensitivity of 2g) -32768 = -2g (at a sensitivity of 2g)

GYRO_CONFIG = +/- 250, 500, 1000, or 2000 deg/sec. +32767 = +250 deg/sec -32768 = -250 deg/sec

Conversion from raw acceleration (ax) to SI units rax = 2*9.8 * ax / 32767 (m/s²) To get velocity:

vx = vx0 + rax*dt

Conversion from raw gyroscope (gx) to SI units rgx = 250 * gx / 32767 (deg/s)

To get angle:

thetax = thetax0 + rgx*dt