

QM

There are three key ideas we want to recall from QM

 physical observables are <u>mathematical operators</u> e.g. Hamiltonian (energy) of a SHO

$$\hat{H} = \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

 the <u>uncertainty relations</u> between the position & momentum operators and energy & time

$$\Delta \hat{x} \, \Delta \hat{p} \ge \frac{\hbar}{2} \qquad \Delta E \, \Delta t \ge \frac{\hbar}{2}$$

the <u>commutation relations</u>. In particular,

$$[\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x} = i\hbar$$

SR

Energy and mass relation:

 $E = mc^2$

- if there is enough energy—that is, enough energy proportional to a given particle's mass—then we can "produce" the particle.
- Due to conservation laws, we <u>actually</u> need twice the particle's mass, so that we can produce a particle and its antiparticle.

So in high energy processes,

- Particle number is not fixed.
- The types of particles present are not fixed.

The last two facts are in direct conflict with nonrelativistic Quantum Mechanics !

Sayfa 7

Schrödinger Equation

In Non-Relativistic Quantum Mechanics (NRQM) we describe the dynamics of a system with the Schrödinger equation, which for a particle moving in one dimension with a potential V = V(x) is

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

- We can extend this formalism to treat the case when several particles are present. However, the number and types of particles are absolutely fixed.
- The Schrödinger equation cannot in any shape or form handle changing particle number or new types of particles appearing and disappearing as relativity allows.

Klein-Gordon Equation

Early attempts to merge QM and SR focused on generating a relativistic version of the Schrödinger equation known as Klein-Gordon Equation (KGE):

$$\frac{1}{c^2}\frac{\partial^2\varphi}{\partial t^2} - \frac{\partial^2\varphi}{\partial x^2} = \frac{m^2c^2}{\hbar^2}\varphi$$

- Schrödinger discarded KGE, because it gave the wrong fine structure for the hydrogen atom.
- KGE appears to give negative probabilities, something that obviously contradicts the spirit of quantum mechanics.
- KGE allows negative energy states!

Sayfa 9

Dirac Equation

The next attempt at a relativistic quantum mechanics was made by Dirac. His famous equation is

$$i\hbar\frac{\partial\psi}{\partial t} = -i\hbar c\vec{\alpha}\cdot\vec{\nabla}\psi + \beta mc^2\psi$$

- Here α and β are actually matrices.
- Dirac Equation (DE) resolves some of the problems of the KGE but also allows for negative energy states.

Q.F.T.

- provides a means whereby particles can be annihilated, created, and transmigrated from one type to another.
- is a relativistic theory, and thus more all encompassing.
- is an extrapolation of non-relativistic quantum mechanics (NRQM) to relativistic quantum mechanics (RQM).

First Quantization (Particle Theories)

Shortly after NRQM theory had been worked out, theorists, led by Paul Dirac, realized that for each pair of quantum operators that had non-zero (zero) commutators, the corresponding pair of classical dynamical variables also had non-zero (zero) Poisson brackets.

- 1. Assume the quantum particle Hamiltonian has the same form as the classical particle Hamiltonian.
- 2. Replace the classical Poisson brackets for conjugate properties with commutator brackets:

$$\{x_i, p_j\} = \delta_j^i \rightarrow [x_i, p_j] = i\hbar \delta_j^i$$

the classical properties (dynamical variables) of position and its conjugate 3-momentum become quantum non-commuting operators.

We will see later ...

Sayfa 15

Second Quantization (Particle Theories)

In QFT, since we have promoted the fields to the status of operators, they must satisfy commutation relations.

- 1. Assume the quantum field Hamiltonian *density* has the same form as the classical field Hamiltonian *density*.
- 2. Replace the classical Poisson brackets for conjugate property densities with commutator brackets:

$$\{x_i, p_j\} = \delta^i_j \rightarrow [x_i, p_j] = i\hbar\delta^i_j \rightarrow [\hat{\phi}(x, t), \hat{\pi}(y, t)] = i\hbar\delta(x - y)$$

- * $\hat{\pi}(y,t)$ (another field) is the conjugate momentum *density* of the field φ and plays the role of momentum in QFT.
- * *x* and *y* are two points in space. if two fields are spatially separated they cannot affect one another

We will see later...

In QM,

position x is an operator while time t is just a parameter.

In SR,

position and time are on a similar footing.

In QFT,

- > Fields ϕ and ψ are operators.
- > They are parameterized by spacetime points (*x*, *t*).
- > Position x and time t are just numbers that fix a point in spacetime—they are not operators.
- > Momentum continues to play a role as an operator.

We will see later ...

	NROM	RQM	OFT
Wave equation	Schroedinger	Klein-Gordon (spin 0)	Same as RQM at left
		Dirac (spin 1/2)	
		Proça (spin 1)	
		Special case of Proça:	
		Maxwell (spin 1 massless)	
Solutions to wave	States	States	Operators that create and
equation			destroy states
Negative energy	No	Yes	No
states?			
Particles per state	Single [*]	Single [*]	Multi-particle
Expectation values	$\overline{\mathcal{O}} = \left\langle \phi \right \mathcal{O} \left \phi \right\rangle$	As at left, but relativistic.	As at left in RQM.
Phenomena:			
1. bound states	Yes, non-relativistic	Yes, relativistic	Yes (usually not studied
	,		in introductory courses)
2. scattering			
a. elastic	a. Yes	a. Yes	a. Yes
b. inelastic	b. No (though some	b. Yes and no. (i.e.,	b. Yes
(transmutation)	models can estimate)	cumbersome, but can be	
		done, though only for	
		particle/antiparticle creation & destruction.)	
3. decay			
a. composite	a. Yes (tunneling)	a. Yes	a. Yes
particles	3,		
b. elementary	b. No	b. No	b. Yes
particles			
4. vacuum	No	Yes and no.	Yes

Lagrangian Field Theory

In QFT, we frequently use tools from classical mechanics to deal with fields. Specifically, we often use the Lagrangian:

$$L = T - V$$

The Lagrangian is important because symmetries (such as rotations) leave the form of the Lagrangian invariant.

The classical path taken by a particle is the one which minimizes the action:

$$S = \int L dt$$

We will see how these methods are applied to fields in later chapters.

References			
[1]. David McMahon, <i>Quantum Field Theory Demistified</i> , (2008), The McGraw-Hill Companies.			
[2]. www.quantumfiledtheory.info			
	Sayfa 22		