

Topic 6

Numerical and Symbolic Differentiation & Integration

Department of Engineering Physics

University of Gaziantep

Feb 2013

Content

- **1.** Introduction
- 2. Differentiation
- 3. Integration

Introduction

In engineering problems, we have mostly deal with the differentiation and integration of the functions of single- or multi-variables.

In this chapter,

- We will first consider numerical derivative and integration.
- Then we will use MATLAB built-in functions
 diff() to evaluate finite difference or derivative
 int() to evaluate the definite or indefinite integrals.

Numerical Derivatives

flx) f(2+4) f(x-4) x-h × x+h $CDA = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)$ Proof: Taylor's expansion, $f(z+h) = f(z) + hf'(z) + hf'(x) + hf'(x) + hf'(x) + \dots$ $f(x-h) = f(x) - h \frac{f'(x)}{h} + h \frac{f'(x)}{2} - h \frac{f'''(x)}{2} + \cdots$ =) $COA = f'(2e) + \frac{h}{6}f'''(2e) + O(h^4)$ i.e CDA ≈ f'(x) the error ~ h f" (20).

Numerical Derivatives

For a function f(x)

 \approx

 $\partial x \hat{c}$

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$
$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Partial derivatives for a function f(x, y, z)

$$\frac{\partial f}{\partial x} \approx \frac{f(x+h, y, z) - f(x-h, y, z)}{2h}$$

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x+h, y, z) - 2f(x, y, z) + f(x-h, y, z)}{h^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{f(x+h, y+h, z) - f(x-h, y+h, z) - f(x+h, y-h, z) + f(x-h, y-h, z)}{h^2}$$

 $4h^2$

Example 1:

Find the first and second derivative of the function

 $f(x) = x^2 + exp(-x)$ at x = 3 for h = 0.01.

>> edit derivative.m

```
function [d1 d2] = derivative(x,h)
    d1 = (f(x+h)-f(x-h))/(2*h);
    d2 = (f(x+h)+f(x-h)-2*f(x))/h^2;
end
```

```
function y = f(x)

y = x^2 + exp(-x);

end
```

>> [d1 d2] = derivative(3, 0.01)
d1 = 5.9502
d2 = 2.0498

Numerical Integration

The integral of a function f(x) between the limits a and b is simply the area under the curve between a and b.

$$Area = \int_{a}^{b} f(x)dx$$

. / \

- Sometimes, finding the integral analytically can be difficult or *impossible*.
- So a numerical solution may be necessary or simply convenient.

Trapezoidal Method

we want the integral (fbc) doc. First consider approximating with five trapezoids: \$(x) 5 intervals D x2 h= 25-26, $A = \frac{h}{2} (f(x_0) + f(x_1))$ $B = \frac{h}{2}(f(x_i) + f(x_i))$ $c = \frac{h}{2} (f(x_1) + f(x_3))$ $D = \frac{h}{2} \left(f(x_3) + f(x_4) \right)$ $let f_i = f(x_i)$ $\varepsilon = \frac{h}{2} \left(f(x_4) + f(x_5) \right)$

 $\begin{array}{l} A+B+C+D+E = Extended Trapezoidal Formula \\ h(fo/2+f_1+f_2+f_3+f_4+f_5/2) & (ETF) \\ \hline for n intervals \\ ETF = h(\frac{fo}{2}+f_1+f_2+f_3+\cdots+f_{N-1}+\frac{f_N}{2}) \\ with h = b-a \quad \mathcal{X}_c = a+ih, \ i=0,1,2,\cdots,n \\ \end{array}$

$$\int_{a}^{b} f(x)dx \approx h\left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(a + ih)\right)$$
$$h = \frac{b-a}{n}$$

Simpson's Method

Trapezoids are replaced by the quadratic polynomials!

Suppose that the interval [a, b] is split up in n subintervals, with n an even number. Then, the composite Simpson's rule is given by

$$\int_{a}^{b} f(x) \, dx \approx \frac{h}{3} \Big[f(x_0) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \Big],$$
where $x_j = a + jh$ for $j = 0, 1, ..., n - 1, n$ with $h = (b - a)/n$; in particular, $x_0 = a$ and $x_n = b$.

>> edit integral.m

```
function integ = integral(a,b,n)
 h = (b-a)/n;
  s = (f(a)+f(b))/2.0;
  for i=1:n-1
      s = s + f(a+i*h);
  end
  integ = h*s;
end
function y = f(x)
  y = sqrt(x);
end
```

>> integral(0,3,100) ans = 3.4630

Symbolic Derivative

diff(S)

differentiates a symbolic expression S with respect to its free variable.

```
diff(S,'v') Or diff(S, sym('v'))
```

differentiates S with respect to v.

diff(S,n)

for a positive integer n, differentiates S n times.

```
diff(S,'v',n) and diff(S,n,'v')
  are also acceptable.
```

Example 3:

Find the first and second derivative of the function $f(x) = x^2 + exp(-x)$

```
>> syms x
>> diff(x^2+exp(-x)) % first derivative
ans = 2*x-exp(-x)
>> diff(x^2+exp(-x),2) % second derivative
ans = 2+exp(-x)
```

Example 4:

Find the first derivative of the function $f(x) = x^2 + \exp(-x)$ at x=3.

```
>> syms x
>> d = diff(x^2+exp(-x));
>> x = 3;
>> eval(d)
ans = 5.9502
```

Example 5:

Find the derivatives for the function $\partial f/\partial x$ and $\partial f/\partial y$ f(x,y) = yx² + exp(-x*y)

```
>> syms x y
>> diff(y*x^2+exp(-x*y),'x') % df/dx
ans = 2*x*y-y*exp(-x*y)
>> diff(y*x^2+exp(-x*y),'y') % df/dy
ans = x^2-x*exp(-x*y)
```

Symbolic Integration

int(S)

returns the indefinite integral of S with respect to its symbolic variable

int(S,v)

returns the indefinite integral of S with respect to the symbolic scalar variable v.

int(S,a,b)

returns the definite integral of S from a to b

Example 6:

Find the indefinite integral and definite for the range [1, 2] of the function $f(x) = x^2 + \exp(-x)$.

<pre>>> syms x >> int(x^2+exp(-x)) ans = 1/3*x^3-exp(-x)</pre>	<pre>% indefinite integral</pre>
<pre>>> int(x^2+exp(-x),1,2) ans = 7/3-exp(-2)+exp(-1)</pre>	<pre>% definite integral</pre>

Example 7:

Evaluate the integral:

$$\int_{0}^{4} \int_{-1}^{2} (x^{2} + y^{2}) dx dy$$

References:

[1]. http://www.mathworks.com/products/matlab

[2]. Numerical Methods in Engineering with MATLAB, J. Kiusalaas, Cambridge University Press (2005)

[3]. Numerical Methods for Engineers, 6th Ed. S.C. Chapra, Mc Graw Hill (2010)

[4]. http://en.wikipedia.org/wiki/Trapezoidal_rule

[5]. http://en.wikipedia.org/wiki/Simpson%27s_rule