
1

Sayfa 1

EP578 Computing for Physicists

Department of

Engineering Physics

University of Gaziantep

Oct 2011

Topic 3

Selection & Loops

Course web page
www.gantep.edu.tr/~bingul/ep578

Sayfa 2

1. Introduction

This lecture covers the following topics:

• Relational and logical operators

• Boolean expressions

• The if structure

• The if .. else structure

• The if .. else if .. else structure

• The while loop structure

• The do..while loop structure

• The for loop structure

• The break and continue statements

• Infinite loops

• Nested loops

• Solved problems

2

Sayfa 3

Control statements use relation operators to compare two objects.

There are six relational operators as follows:

2. Relational Operators

Example:

if (b != 0) c = a/b;

c = a/bb 0 ?

true

false

control structure using

a relational operator

Sayfa 4

The result of a relational operation is either true or false.

The assignment of c in the selection structure

if (b != 0) c = a/b; occurs only if (b!=0) is true.

Example program section:

Output

0.481481

c = 0.25

Note that there is no output from the second
line because the relation (x > y) is false.

double x=1.3, y=2.7, c=0.;

if (x > y) cout << "x is greater than y.";

if (y > 0.) cout << x/y << endl;

if (x+y != 0.) c = 1/(x+y);

cout << "c = " << c << endl;

3

Sayfa 5

Compound relation expressions can be formed by logical operators:

3. Logical Operators

Example:

if (b != 0 && a > 0) c = a/b;

control structure using a

compound relational operator

Sayfa 6

Results for the && and || operators:

X Y X && Y

(AND)

X || Y

(OR)

true true true true

true false false true

false true false true

false false false false

if (b != 0 && a > 0) c = a/b;

4

Sayfa 7

Expressions that evaluate to true or false are called Boolean.

Note that variables u, z, t, and w

are declared as type bool and so

can represent the states true and

false.

Also literal constants true and

false can be used in assignments

and relational operations.

int x=1, y=2, s;

bool u, z = true, t, w;

u = x > 3;

z = x <= y && y > 0;

t = y <= 0 || z;

w = !s;

s = 2 > 1;

4. Boolean Expressions

u = false since 1>3 is false.

z = true since 1<=2 and 2>0 are both true.

t = true since z is true.

w = false since s is true, therefore its negation is false.

s = 1 = true since 2>1 (integer representation! see next).

Results

We can form Boolean expressions inside control statements

(previous page) or in the form of assignments as follows:

Sayfa 8

The if statement allows conditional execution; the general form is:

5. if structure

if (condition) {

statements

.

.

}

If condition is true then the block
defined by the braces {...} is

executed.

if (condition)

single-statement

If statements is a single statement then the braces can be omitted:

if (x+y != 0.) {

c = 1/(x+y);

cout << "c = " << c << endl;

}

if (x+y != 0.)

c = 1/(x+y);

cout << "c = " << c << endl;

Variable c is assigned only if the condition is true.

But, the output statement will be executed in any case.

single-statement
if structure

5

Sayfa 9

The if..else structure allows both outcomes of a selection to be defined.

The general form is:

6. if .. else structure

if (condition) {

statements1

.

.

} else {

statements2

.

.

}

If condition is true then the first block is

executed, otherwise (false) the second

block is executed.

if (x+y != 0.) {

c = 1/(x+y);

cout << "c = " << c << endl;

} else {

cout << "c is undefined! " << endl;

}

Sayfa 10

More levels of selection

can be added with the

else if statement.

7. if .. else if .. else structure

if (condition1) {

.

statements1

.

} else if (condition2) {

.

statements2

.

} else if (condition3) {

.

statements3

.

} else {

.

statements4

.

}

Add as many blocks

as you need.

This is executed if

none of the above

conditions are true.

6

Sayfa 11

Consider the quadratic equation:

f(x) = a x2 + b x + c

The roots are the values of x
such that f(x) = 0.

Analytical solution:

Three cases for the result b2 > 4ac

i) b2 > 4ac there are two roots.

ii) b2 = 4ac there is one root.

iii) b2 < 4ac the roots are imaginary.

Example: Quadratic Roots

Examples
we can use these results to

validate our program

i) (x-4)(x+2) = 0
when x = 4, x = -2

f(x) = x2 - 2 x – 8
a = 1, b = -2, c = -8

x = 2/2 sqrt(36)/2
= 1 3 = 4 and -2

ii) (x-2)(x-2) = 0
when x=2

f(x) = x2 - 4 x + 4
a = 1, b = -4, c = -4

x = 4/2 sqrt(0)/2 = 2

Sayfa 12

Remember the results:
i) (x-4)(x+2) = 0 when x = 4, x = -2 ii) (x-2)(x-2) = 0 when x=2

#include <iostream>

#include <cmath>

using namespace std;

int main() {

double a, b, c;

cin >> a >> b >> c;

double Delta = b*b - 4*a*c;

if (Delta < 0.) {

cout << "The roots are imaginary!" << endl;

} else if (Delta == 0.) {

double x1 = -b / (2*a);

cout << "The root is " << x1 << endl;

} else {

double x1 = (-b - sqrt(Delta)) / (2*a);

double x2 = (-b + sqrt(Delta)) / (2*a);

cout << "The two roots are "<< x1<< " and " << x2<< endl;

}

}

Write a computer program that inputs

the coefficients a, b, c of a quadratic

equation, and outputs the root(s).

7

Sayfa 13

Consider the composite function:

f(x) = 2 for x < 3
f(x) = 2x/3 for 3 ≤ x ≤ 6
f(x) = 4 for x> 6

Example: Composite functions

f(x)

x

Write a program that inputs a
value for x and outputs the

corresponding value of f(x)

Sayfa 14

#include <iostream>

using namespace std;

int main() {

double x, f;

cout << "input x: ";

cin >> x;

if (x < 3.) f = 2.0;

else if (x < 6.) f = 2.0/3.0*x;

else f = 4.0;

cout << "f(" << x << ") = "

<< f << endl;

return 0;

}

f(x) = 2 for x < 3

f(x) = 2x/3 for 3 ≤ x < 6

f(x) = 4 for x ≥ 6
input x: 0

f(0) = 2

input x: 1

f(1) = 2

input x: 2

f(2) = 2

input x: 3

f(3) = 2

input x: 4

f(4) = 2.66667

input x: 5

f(5) = 3.33333

input x: 6

f(6) = 4

input x: 7

f(7) = 4

Example outputs

8

Sayfa 15

This is an alternative for the if .. else if .. else

structure. General form:

switch (expression)

{

case constant1:

group of statements 1;

break;

case constant2:

group of statements 2;

break;

.

.

.

default:

default group of statements;

}

8. switch Statement

Sayfa 16

int classCode;

cin >> classCode;

switch(classCode){

case 1:

cout << "Freshman\n";

break;

case 2:

cout << "Sophmore\n";

break;

case 3:

cout << "Junior\n";

break;

case 4:

cout << "Graduate\n";

break;

default:

cout << "bad code\n";

}

int classCode;

cin >> classCode;

if(classCode==1){

cout << "Freshman\n";

}

else if(classCode==2){

cout << "Sophmore\n";

}

else if(classCode==3){

cout << "Junior\n";

}

else if(classCode==4){

cout << "Graduate\n";

}

else{

cout << "bad code\n";

}

9

Sayfa 17

The ? operator (conditional expression operator) provides a

concise form of the if .. else structure.

The general form is:

(condition) ? expression1 : expression2;

The value produced by this operation is either expression1 or
expression2 depending on condition being true or false.

Example:

max = (x > y) ? x : y;

is equivalent to

if (x > y)

max = x;

else

max = y;

9. ? Operator

Sayfa 18

The while loop has the general form:

10. while loop structure

statements
condi-

tion

T

F

while (condition) {

statements

.

.

}

Here the block of statements is
executed while condition is true.

Note that condition is tested at

the start of the loop.

10

Sayfa 19

This program calculates the series sum: 1 + 2 + 3 + 4 + 5 + + n.

#include <iostream>

using namespace std;

int main() {

cout << "Input n: ";

int n;

cin >> n;

int k=1, s=0;

while (k<=n) {

s = s + k;

k++;

}

cout << "The series sum is "

<< s << endl;

}

Input n: 8

The series sum is 36

Output

Note that on the first iteration
of the loop, k=1 and on the

final execution k=n.

Sayfa 20

The do..while loop has the general form:

11. do..while loop structure

do {

statements

.

.

} while (condition);

Here the block of statements is
executed while condition is true.

Note that condition is tested at

the end of the loop.

statements

condi-

tion

T

F

11

Sayfa 21

This program calculates the product: 1 * 2 * 3 * 4 * 5 * * n.

#include <iostream>

using namespace std;

int main() {

cout << "Input n: ";

int n;

cin >> n;

int k=1, f=1;

do{

f = f * k;

k++;

}while(k<=n);

cout << "The product is "

<< f << endl;

}

Input n: 4

The product is 24

Output

Sayfa 22

12. for loop structure

for (int i=1; i<=5; i++) {

cout << i << " " << i*i << endl;

}

Example program section:

for (initialisation; condition; increment) {

statements

.

.

}

The for statement allows you to execute a block of code

a specified number of times.

The general form is:

1 1

2 4

3 9

4 16

5 25

Output

12

Sayfa 23

for (int i=1; i<=5; i++) {

cout << i << endl;

}

1

2

3

4

5

Output

Declare counter i as type

int and initialise it to 1

Repeat while counter i is

less than or equal to 5

Increment counter i by 1

at the end of each iteration

Sayfa 24

This program calculates the series sum:1 + 1/2 + 1/4 + 1/8 + 1/16 + + 1/2n

#include <iostream>

using namespace std;

int main() {

cout << "Input n: ";

int n;

cin >> n;

int s=0;

for (int k=0; k<=n; k++) {

s = s + 1.0/pow(2.0,k);

}

cout << "The series sum is "

<< s << endl;

}

Input n: 30

The series sum is 2

Output

13

Sayfa 25

http://en.wikipedia.org/wiki/Compton_scattering

In a Compton Scattering experiment, X-rays of wavelength λ = 10 pm

are scattered from a target. Write a program to find the wavelength in pm of

the x-rays scattered through the angle θ for the range from 0o to 180o.

Example: Compton Scattering

Sayfa 26

#include <iostream>

#include <cmath>

using namespace std;

int main(){

double lambda1, lambda2, theta;

// compton wavelength in pm

const double cw = 2.426;

lambda1 = 10.0; // pm

for(int deg=0; deg<=180; deg +=10)

{

theta = deg * M_PI/180.0;

lambda2 = lambda1 + cw*(1.0-cos(theta));

cout << deg << "\t" << lambda2 << endl;

}

}

14

Sayfa 27

0 10

10 10.0369

20 10.1463

30 10.325

40 10.5676

50 10.8666

60 11.213

70 11.5963

80 12.0047

90 12.426

100 12.8473

110 13.2557

120 13.639

130 13.9854

140 14.2844

150 14.527

160 14.7057

170 14.8151

180 14.852

Output

Sayfa 28

// continue statement

#include <iostream>

using namespace std;

int main()

{

double x;

for(int i = -3; i<=3; i++)

{

if(i==0) continue;

x = 1.0/i;

cout << x << endl;

}

}

-0.3333

-0.5

-1

1

0.5

0.3333

// break statement

#include <iostream>

using namespace std;

int main()

{

double x;

for(int i = -3; i<=3; i++)

{

if(i==0) break;

x = 1.0/i;

cout << x << endl;

}

}

-0.3333

-0.5

-1

13. Jump Statements

15

Sayfa 29

If the condition of a loop is always true, then the

loop will iterate infinitely, i.e. it will loop forever!

14. Infinite loops

while (true) {

cout << "infinite loop!" << endl;

}

while (1) {

cout << "infinite loop!" << endl;

}

do {

cout << "infinite loop!" << endl;

} while (7>3);

It is sometimes useful to

create infinite loops like

these, but with the
addition of a condition

for breaking out of the

loop.

A “break out” can be
achieved with the break

statement together with
an if structure.....

for (; ;) {

cout << "infinite loop!" << endl;

}

Sayfa 30

This program continually inputs values and outputs their reciprocal.

Example use of the break statement in an infinite loop

#include <iostream>

using namespace std;

int main() {

while(1) {

cout << "Input x: ";

double x;

cin >> x;

if (x==0.) break;

cout << "The reciprocal is "

<< 1/x << endl;

}

cout << "Bye." << endl;

}

Input x: 34.2

The reciprocal is 0.0292398

Input x: 0.8

The reciprocal is 1.25

Input x: 3.4

The reciprocal is 0.294118

Input x: 3.0

The reciprocal is 0.333333

Input x: 0.2

The reciprocal is 5

Input x: 0

Bye.

Output

The program terminates

when the input is zero.

16

Sayfa 31

Nested loops are loops within loops

Nested while loops

15. Nested loops

while (condition1) {

statements1

while (condition2) {

statements2

}

statements3

}

Sayfa 32

Nested for loops

statements1 is repeated n times

statements2 is repeated nm times

i.e. there are nm iterations of the nested loop.

for (i=0; i<n; i++) {

statements1

for (j=0; j<m; j++) {

statements2

}

}

17

Sayfa 33

Example: Nested Loop

#include <iostream>

using namespace std;

int main() {

for (int i=1; i<=8; i++) {

for (int j=1; j<=6; j++) {

cout << i*j << "\t";

}

cout << endl;

}

return 0;

}

Output

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

8 16 24 32 40 48

In this example variable i loops over rows and j loops over columns.

The "\t" (tab) escape

sequence is injected

into the output stream to

improve formatting.

Sayfa 34

Example: Cost Minimization

Consider a box with open top

to carry V = 0.2 m3 waste

water. The cost of material

used to form the box is

Cm = 10 TL/m2 and welding

cost is Cw = 5 TL/m. Design the

box so that its total cost is minimum.

Verify the result analytically.

Solution will be given in lecture.

18

Sayfa 35

Homeworks

Solve the following problems. You have to prepare a pdf

document and sent it to me until next lecture.

E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

1. Write a program to input an integer number and output whether it
is even or not. Use the ? operator.

2. Write a program that reads a grade A, B, C, D, or F and then

prints "excellent", "good", "fair", "poor", or "failure".

Use the switch statement.

Sayfa 36

3. Write a program to input coefficients of a quadratic equation of

the form: ax2 + bx + c = 0 and output the roots of the equation

for all possible the cases: real roots, complex roots and a = 0.

Examples:

* a=1, b=0, c=-4 ==> x1 = 2.0 and x2 = -2.0

* a=0, b=4, c=-2 ==> x1 = x2 = 0.5

* a=1, b=1, c=1 ==> x1= -0.5-0.866i and x2 = -0.5+0.866i

4. A leap year is a year in which one extra day (February 29) is

added to the regular calendar. Most of us know that the leap

years are years that are divisible by 4. For example 1992 and

1996 are leap years. But this rule does not work generally. For

example centennial years are not leap years. For example 1800

and 1900 are not leap years.

A year is called the leap year if

* it is divisible by 4 and but not divisible by 100

* or it is divisible by 400

Write a program that reads a year and outputs whether it is leap

year or not.

19

Sayfa 37

5. Using a for loop, write a program that evaluates and outputs first

300 terms the following series:
1/2 - 2/3 + 3/4 - 4/5 + 5/6 - 6/7 + ...

6. Write a program that reads a positive integer, k, and outputs its

proper divisors. Use a do while loop.

For example, for k = 28, the proper divisors are: 1 2 4 7 14 28

7. Write a program that finds and outputs all integer pairs (x, y)

satisfying the inequality: |2x| + |3y| < 10.

Use two nested for loops.

Sayfa 38

8. The figure shows the cross section of a channel carrying water.

Determine h, b and θ that minimize the length of the wetted

perimeter while maintaining a cross-sectional area of 6 m2.

(Minimizing the wetted perimeter results in least resistance to

the flow.)

Hint:

Use three nested loops to search for the h, b and θ minimizing the

circumference.

20

Sayfa 39

9. In Optics, in an ideal optical system, all rays of light from a point in the object
plane would converge to the same point (called focal point) in the image plane,
forming a clear image. The influences which cause different rays to converge to
different points are called aberrations. Spherical aberrations occur because the
focal points of rays far from the principal axis of a spherical lens (or mirror) are
different from the focal points of rays of the same wavelength passing near the
axis.

Figure shows a monochromatic light ray falling

on a plano-convex lens whose radius of

curvature is R = 20.0 cm, thickness is

x = 1.0 cm and refractive index is n = 1.4.

The distance between parallel ray and the

principle axis of the lens is y. (a) Write a program

to evaluate the focal length (f) of the lens as

a function of the position y. You should evaluate and output the value of f in a loop

for the variable y whose range is between 0 and 12 cm with step 0.1 cm.

The result that you will obtain can explain the spherical aberration in a lens.

(b) Using a graphic program, plot the values of f as a function of y.

See also: http://www1.gantep.edu.tr/~bingul/ep118/docs/ep118-lec09-aberrations.pdf

