1. Introduction

This lecture covers the following topics:

- Function Concept
- Defining & Using Functions
- void Functions
- Arguments passed by value and by reference
- Default Parameters
- Overloading Functions (Polymorphism)
- Macro Functions
- Examples
2. Functions (sub-programs)

- A function is an object that accepts some inputs and then outputs a result depending on the inputs.

3. Defining and Using Functions

- General form of a function declaration

```
type name(parameter 1, parameter2, ...){
    ...
    statements
    ...
}
```

- Example function to compute the area of a triangle

```
double area(double base, double height)
{
    double ar;
    ar = base * height / 2.0;
    return ar;
}
```
```cpp
#include <iostream>
using namespace std;

double area(double base, double height)
{
    double ar;
    ar = base * height / 2.0;
    return ar;
}

ing main()
{
    double a, b = 3.0, h = 4.0;
    a = area(b, h);
    cout << "area = " << a << endl;
    return 0;
}
```

Example: Numerical Integration

- The integral of a function $f(x)$ between the limits a and b is simply the area under the curve between a and b.

- Finding the integral analytically may be difficult and so a numerical solution may be necessary or simply convenient.

- **Problem**: Write a program to evaluate the integral

$$\int_0^2 e^{-x} \, dx$$

using the trapezoidal method for $n = 100$ parts.

Note that analytical solution is: 0.8646647
// Numerical integration via the Extended Trapezoidal Formula (ETF)
#include <cmath>
#include <iostream>
using namespace std;

// integrant function
double f(double x) {
 double y = exp(-x);
 return y;
}

int main() {
 const int n=100;
 const double a=0.0, b=2.0;
 const double h = (b-a)/n;

 double etf = (f(a)+f(b))/2;

 for (int i=1; i<n; i++){
 etf += f(a+i*h);
 }
 etf *= h;

 cout.precision(7);
 cout << "The integral = " << etf << endl;
 return 0;
}
// Numerical integration via the Extended Trapezoidal Formula (ETF)
#include <cmath>
#include <iostream>
using namespace std;

// integrant function
double f(double x) {
 double y = exp(-x);
 return y;
}

// integrate function
double integrate(double a, double b) {
 const int n = 100;
 const double h = (b-a)/n;
 double etf = (f(a)+f(b))/2;
 for (int i=1; i<n; i++)
 etf += f(a+i*h);
 etf *= h;
 return etf;
}

int main() {
 double i = integrate(0.0, 2.0); // function call
 cout.precision(7);
 cout << "The integral = " << i << endl;
}

The integral = 0.8646935

4. void Functions

#include <iostream>
using namespace std;

// no value is returned
void printDouble(int a) {
 cout << "Double of a:" << 2*a;
}

int main() {
 printDouble(5);
}

Double of a: 10

#include <iostream>
using namespace std;

// no value is returned
void Message(void) {
 cout << "I am a function";
}

int main() {
 Message();
}

I am a function
5. Arguments pass by value & pass by ref.

```cpp
#include <iostream>
using namespace std;

// arg. Pass by value
void Decrease(int a, int b){
    a--;
    b--;
}

int main()
{
    int x = 3, y = 8;
    cout << x << "  " << y << endl;
    Decrease(x, y);
    cout << x << "  " << y << endl;
}
```

```cpp
#include <iostream>
using namespace std;

// arg. Pass by reference
void Decrease(int& a, int& b){
    a--;
    b--;
}

int main()
{
    int x=3, y=8;
    cout << x << "  " << y << endl;
    Decrease(x,y);
    cout << x << "  " << y << endl;
}
```

```cpp
#include <iostream>
using namespace std;

void Convert(float, int&, float&);

int main()
{
    float rx, x = 3.2;
    int   ix;

    Convert(x, ix, rx);

    cout << " x = " << x << endl;
    cout << " ix= " << ix << endl;
    cout << " rx= " << rx << endl;
}

void Convert(float num, int& ip, float& rp)
{
    ip = num;
    rp = num - int(num);
}
```

3 8
3 8
3 8
2 7
6. Default Arguments

C++ allows a function to have a variable number of arguments. Consider the second order polynomial function: \(a + bx + cx^2 \)

```cpp
#include <iostream>
using namespace std;

// -- optional parameters must all be listed last --
double p(double x, double a, double b = 0, double c = 0)
{
    return a + b*x + c*x*x;
}

int main()
{
    double x = 1.0;
    cout << p(x, 7) << endl;
    cout << p(x, 7, 6) << endl;
    cout << p(x, 7, 6, 3) << endl;
    return 0;
}
```

Example: Newton-Raphson Method for \(f(x)=0 \)

- For a function \(f(x) \), we can find the root satisfying \(f(x)=0 \) iteratively:

\[
x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
\]

where \(x_0 \) is the initial root estimate

\[
E = \frac{f(x)}{f'(x)}\]

is the error estimate

Iterations are terminated when \(E < \) ‘predefined tolerance’

- **Problem:** Write a program to evaluate the root of the function:

\[
f(x) = x^2 - e^{-x} = 0
\]

Note that there is no analytical solution!
// Finding the root of the equation f(x) = x*x - exp(-x)=0
#include <cmath>
#include <iostream>
using namespace std;

double f(double x) { // the function
 double y = x*x - exp(-x);
 return y;
}
double d(double x){ // the derivative
 return 2*x+exp(-x);
}
double findRoot(double x=1.0){ // the root finder
 while(1){
 double err = f(x) / d(x);
 x = x - err;
 if(fabs(err)<1.e-6) break;
 }
 return x;
}

int main() {
 cout << findRoot() << endl; // function call
}

7. Overloading Functions (Polymorphism)
#include <iostream>
using namespace std;

int topla(int x, int y)
{
 return x + y;
}

toplal(int x, int y, int z)
{
 return x + y + z;
}
double topla(double x, double y)
{
 return x + y;
}

int main()
{
 cout <<"topla(9,7) = " << topla(9, 7) << "endl;
 cout <<"topla(3,6,2) = " << topla(3, 6, 2) << "endl;
 cout <<"topla(3.1,4.7)= " << topla(3.1, 4.7) << "endl;
 return 0;
}
8. Macro Functions

A macro function, which is actually not a function, is defined by using `#define` preprocessor command.

The following macro function definitions are valid in C/C++:

```c
#define square(x) (x)*(x)
#define hypotenuse(x,y) sqrt((x)*(x)+(y)*(y))
#define delta(a,b,c) ((b)*(b) - 4*(a)*(c))
#define max(a,b) ((a>b) ? a:b)
```

// Finding Pythagorean Triples
```c
#include <iostream>
#include <cmath>
using namespace std;

// macro function definition
#define hypotenuse(x,y) sqrt((x)*(x) + (y)*(y))

// symbolic constant definition
#define N 50

int main (){  
    int a, b, c;

    cout << "Pythagorean Triples less than N = 50" << endl;

    for (a=1; a<=N; a++)
        for (b=a; b<=N; b++)
            for (c=1; c<=N; c++)
                if( c == hypotenuse(a,b) )
                    cout << "("
                        << a << ", " << b << ", " << c
                        << ")" << endl;

    return 0;
}
```
Pythagorean Triples less than $N = 50$

$(3, 4, 5) \\
(5, 12, 13) \\
(6, 8, 10) \\
(7, 24, 25) \\
(8, 15, 17) \\
(9, 12, 15) \\
(9, 40, 41) \\
(10, 24, 26) \\
(12, 16, 20) \\
(12, 35, 37) \\
(14, 48, 50) \\
(15, 20, 25) \\
(15, 36, 39) \\
(16, 30, 34) \\
(18, 24, 30) \\
(20, 21, 29) \\
(21, 28, 35) \\
(24, 32, 40) \\
(27, 36, 45) \\
(30, 40, 50)$

Homeworks

Solve the following problems. You have to prepare a pdf document and sent it to me until next lecture.

E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

1. Write a function named `double perimeter(double r)` which returns the circumference of a circle of radius r. Use the function in a main program.

2. Write a macro function named `deBroglie(p)` which returns the de Broglie wavelength in meter of a particle whose momentum is p in kg.m/s. Use the function in a main program.

3. Write your own `pow(x, y)` by using `log()` and `exp()` functions.
4. Write only a function whose prototype is `double sum(int n)` that returns the sum first n terms of the series
\[1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + \ldots \]

5. In mathematics the Stirling's approximation (or Stirling's formula) is an approximation for large factorials. The formula is written as:
\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

Write a function named `sfact(n)` to calculate n! according to Stirling approximation. Note that return value of the function must be `double` since the formula generates real values. Use this function in a main program to output the integer numbers \(k = 1, 2, \ldots, 100 \) and their factorials.

6. Using Plank's formula for a black-body radiator, write a C++ program to derive Wein law:
\[k_B T \lambda_{\text{max}} = 0.2014 \]

or
\[\lambda_{\text{max}} T = 0.0029 \ \text{m} \cdot \text{K} \]

Hint: Plank formula is given by:
\[u(\lambda) = \frac{8\pi hc}{\lambda^5} \frac{1}{\exp(hc / (k_B T \lambda)) - 1} \]

use dimensionless variable: \(x = \frac{hc}{k_B T \lambda} \)

and solve x satisfying:
\[\frac{du}{dx} = 0 \]

7. Modify the second integration program to normalize ground state
the wave-function of the electron in an infinite square well
problem for $L = 1$ nm. That is find the constant A given below:

$$\Psi'(x) = A \sin\left(\frac{\pi x}{L}\right)$$