
1

Sayfa 1

EP578 Computing for Physicists

Department of

Engineering Physics

University of Gaziantep

Oct 2011

Topic 5

Arrays, Pointers &

Vectors

Course web page
www.gantep.edu.tr/~bingul/ep578

Sayfa 2

1. Introduction

This lecture covers the following topics:

• Arrays

• References and Pointers

• Arrays and Pointers

• Arrays and Functions

• Dynamic Memory Management

• C++ Vectors

• Examples

2

Sayfa 3

2. Arrays

 A variable represents a single value; we call this a scalar variable.

double x;

 An array variable can represent more than one value, but still with the

same name and same type.

double x[5];

Variable x can now store 5 values, all of type double.

Each element of the array of variables is accessed with an index:

x[i] with index i = 0, 1, 2, 3, 4.

In general for n elements the index range is i = 0, 1, ... , n-1.

Sayfa 4

The general form of the declaration of an array is:

type name[numberOfElements];

Examples

double mass[10];

The elements are:

mass[0]

mass[1]

mass[2]

mass[3]

mass[4]

mass[5]

mass[6]

mass[7]

mass[8]

mass[9]

int scores[3];

The elements are:

scores[0]

scores[1]

scores[2]

char status[2];

The elements are:

status[0]

status[1]

Array Decleration

3

Sayfa 5

#include <iostream>

using namespace std;

int main () {

const int n = 5;

double a[] = {8.4, 3.6, 9.1, 4.7, 3.9};

int b[n] = {4, 2};

double c[n] = {0.0};

for (int i = 0; i<n; i++)

cout << a[i] << ", "

<< b[i] << ", "

<< c[i] << endl;

return 0;

} 8.4, 4, 0

3.6, 2, 0

9.1, 0, 0

4.7, 0, 0

3.9, 0, 0

Output

Array Initialisation

Sayfa 6

Array Assignment

Consider again the array a containing 5 elements.

double a[5];

At this time, the elements have unpredictable values!

Elements of the array can be assigned (at any time) as follows:

a[0] = 8.4;

a[1] = 3.6;

a[2] = 9.1;

a[4] = 3.9;

Note that element a[3] is still not defined!

8.4 3.6 9.1 ? 3.9

? ? ? ? ?

0 1 2 3 4

0 1 2 3 4

a

a

4

Sayfa 7

#include <iostream>

using namespace std;

int main () {

double a[5];

cout << "Input 5 real numbers:" << endl;

for(int i = 0; i<5; i++) cin >> a[i];

cout << "In reverse order: " << endl;

for(int i = 4; i>=0; i--) cout << a[i] << " ";

}

Input 5 real numbers:

1.2 3.5 -0.4 10.2 7.1

In reverse order:

7.1 10.2 -0.4 3.5 1.2

Output

Assignment can be performed directly from input:

Sayfa 8

#include <iostream>

using namespace std;

int main () {

double a[5], eb;

cout << "Input 5 real numbers:" << endl;

for(int i = 0; i<5; i++) cin >> a[i];

eb = a[0];

for(int i = 1; i<5; i++){

if(a[i]>eb) eb = a[i];

}

cout << "the maximum is: " << eb << endl;

}

Input 5 real numbers:

1.2 3.5 -0.4 10.2 7.1

the maximum is 10.2

Getting the maximum element of an array

5

Sayfa 9

Multidimensional Arrays

double a[5]; // 5-element one-dimensional array

float b[3][5]; // 15-element two-dimensional array

int c[5][4][10]; // 200-element three-dimensional ar.

b[1][3] = 12.34;

Sayfa 10

Passing Arrays to Functions

#include <iostream>

using namespace std;

// returns the sum of first n elements

double sum(double x[], int n) {

double t = 0.0;

for(int i=0; i<n; i++){

t = t + x[i];

}

return t;

}

int main () {

double a[5], s;

cout << "Enter 5 reals: ";

for (int k=0; k<5; k++) cin >> a[k];

s = sum(a, 5);

cout << "sum of the elements is " << s << endl;

}

Enter 5 reals: 1.1 2.2 3.3 4.4 5.5

sum of the elements is 16.5

6

Sayfa 11

3. Variables and Memory Addresses

Computer memory can be considered as a very large

array of bytes.

For example, a computer with

1 GB of RAM actually contains

an array of

1024 x 1024 x 1024 = 1,073,741,824 B.

0 = 0x00000000

1,073,741,824 = 0x3fffffff

Sayfa 12

When a variable is declared and assigned to a value

four fundamental attributes associated with it:

 its name

 its type

 its value (content)

 its address

e.g.

int n = 25;

7

Sayfa 13

In C/C++ the address operator (&) returns the memory address

of a variable.

int main(){

int n = 33;

cout << " n = " << n << endl;

cout << "&n = " << &n << endl;

}

n = 33

&n = 0x0024fdf0

Sayfa 14

4. References

 The reference is an alias, a synonym for a variable.

 It is decelerated by using the reference operator &.

#include <iostream>

using namespace std;

int main(){

int n = 33;

int &r = n; // r is a reference for n

cout << n << " " << r << endl;

--n;

cout << n << " " << r << endl;

r *= 2;

cout << n << " " << r << endl;

cout << &n << " " << &r << endl;

return 0;

}

33 33

32 32

64 64

0xbfdd8ad4 0xbfdd8ad4

33

0xbfdd8ad4

n,r

int

8

Sayfa 15

#include <iostream>

using namespace std;

void takas(double &x, double &y){

double z;

z = x;

x = y;

y = z;

}

int main(){

double a = 11.1, b = 22.2;

cout << "a b : " << a << " " << b << endl;

takas(a,b);

cout << "a b : " << a << " " << b << endl;

}

a b: 11.1 22.2

a b: 22.2 11.1

Sayfa 16

5. Pointers

 The address operator returns the memory adress of a variable.

 We can store the address in another variable, called pointer.

#include <iostream>

using namespace std;

int main()

{

int n = 33;

int* p = &n; // p holds the address of n

cout << " n = " << n << endl;

cout << "&n = " << &n << endl;

cout << " p = " << p << endl;

cout << "&p = " << &p << endl;

cout << "*p = " << *p << endl;

}

n = 33

&n = 0xbfdd8ad4

p = 0xbfdd8ad4

&p = 0xbffafad0

*p = 33

33

0xbfdd8ad4

n

int

0xbfdd8ad4

0xbfdd8ad0

p

int*

9

Sayfa 17

Pointers and Arrays

 The name of an array is the address of its first element.

 The array name is a constant pointer.

float numbers[20];

float *ptr = &numbers[0]; // valid

The following assignments are equivalent:

numbers[4] = 25.8;

*(ptr+4) = 25.8;

Sayfa 18

6. Dynamic Memory Management

The declaration:

double mass[10]; Array size define at compile-time

Alternatively we can use a named constant;

const int n = 10;

double mass[n]; Array size define at compile-time

Note that “Standard C++” Array size defined at run-time FORBIDDEN!

int n; or int n = 10;

cin >> n; double mass[n];

double mass[n];

* * * This type of arrays are called Static Arrays * * *

Your compiler might allow you to do this, but it is best to use

only standard C++ features so that your program can be
compiled on any platform that has a standard C++ compiler.

10

Sayfa 19

 C++ provides run-time or dynamic arrays for which memory is

allocated during execution.

 To allocate memory dynamically at run-time we use
new operator.

General form:

pointer = new type; // for single element

pointer = new type [number_of_elements];

For example, to request a 10 element block of type int dynamically,

we can use

int * mass;

mass = new int [10];

or
int * mass = new int [10];

Sayfa 20

The delete operator reverses the action of the new operator,

that is it frees the memory allocated by the new operator.

Its form is:

delete pointer; // single element

delete [] pointer; // a block of elements

e.g.

delete [] mass;

11

Sayfa 21

int main (){

double *x, mean, s;

int i, n;

while(true){

cout << "How many elements: "; cin >> n;

if(n<=0) break;

x = new double[n];

s = 0.0;

cout << "Input elements: ";

for(i = 0; i<n; i++){

cin >> x[i];

s += x[i];

}

mean = s/n;

cout << "Mean = " << mean << endl;

delete [] x;

}

} // main

Sayfa 22

How many elements: 3

Input elements: 1 2 3

Mean = 2.0

How many elements: 6

Input elements: 2 4 5 9 1 0

Mean = 3.5

How many elements: 0

Sample output of the previous program:

12

Sayfa 23

* Static Arrays (SA):

 the size of SA cannot be defined at run-time

 the size of SA cannot be changed at run-time

* Dynamic Arrays (DA):

 the size of DA can be defined at run-time

 the size of DA may change at run-time

* Vectors:

C++ provides the vector data class that enables the programmer to create

dynamic arrays:

 the size of a vector can be defined at run-time

 the size of a vector may change at run-time

The vector data class provides many powerful methods for processing

dynamic memory management.

7. C++ Vectors

Sayfa 24

Vector Declaration and Initialisation

First, to use the vector class the following header must be included:

#include <vector>

The general form of the declaration of a vector array is:

vector<type> name(numberOfElements);

Examples

Note that the indexing of the

elements of vectors is the

same as that of arrays.

vector<double> mass(6);

The elements are:

mass[0]

mass[1]

mass[2]

mass[3]

mass[4]

mass[5]

vector<int> scores;

This is an empty vector!

The size is zero and so
there are no elements.

13

Sayfa 25

Vector Initialisation

The general form of vector declaration:

vector<type> name(numberOfElements);

initialises all elements of the vector to zero.

Alternatively an initialiser can be given at declaration:

vector<type> name(numberOfElements, value);

initialises all elements of the vector to value.

Examples

vector<double> mass(6);

all elements of mass are initialised to 0.0

vector<double> mass(6, 1.8);

all elements of mass are initialised to 1.8

Sayfa 26

Vector Assignment

Consider the vector declaration:

vector<double> a(5);

At this time, the elements are all automatically initialised to zero.

Elements of a vector array can be assigned (at any time) as follows:

a[0] = 8.4;

a[1] = 3.6;

a[2] = 9.1; Note that vector assignment is performed

a[4] = 3.9; in the same way as array assignment.

Note that the value of element a[3] is still 0.0

8.4 3.6 9.1 0.0 3.9

0 1 2 3 4

0.0 0.0 0.0 0.0 0.0

0 1 2 3 4

a

a

14

Sayfa 27

#include <iostream>

#include <vector>

using namespace std;

int main () {

int n;

cout << " Input n: "; cin >> n;

vector<double> a(n);

cout << "Input " << n << " real numbers:" << endl;

for(int i=0; i<n; i++)

cin >> a[i];

cout << "In reverse order: " << endl;

for(int i=n-1; i>=0; i--)

cout << a[i] << " ";

}

Input n: 5

Input 5 real numbers:

1.2 3.5 -0.4 10.2 7.1

In reverse order:

7.1 10.2 -0.4 3.5 1.2

You could also use DA arrays:

replace vector<double> a(n);

with double *a = new double [n];

Sayfa 28

Processing Vectors

Vectors can be processed in the same way as arrays.

#include <iostream>

#include <vector>

using namespace std;

int main () {

int n = 5;

vector<double> a(n);

a[0]=1.7; a[1]=4.1; a[2]=5.6; a[3]=3.4; a[4]=3.1;

double s2 = 0.0;

for (int i=0; i<n; i++)

s2 = s2 + a[i]*a[i];

cout << "The sum of the squares is " << s2 << endl;

}

The sum of the squares is 72.23Output:

i

ias 2

2

Note that we can define the

size of the vector at run-time!

15

Sayfa 29

Dynamic Processing of Vectors

There are many powerful methods available for dynamic processing

of vectors; we will look at just five of them:

name.size(); returns the size of vector name

name.push_back(x); adds value x to the end of the vector

(increasing the size by one)

name.pop_back(); removes a value from the end of the

vector (decreasing the size by one)

name.clear(); removes all values from the vector

(leaving a vector of size zero)

name.resize(s); resizes the vector to size s

Sayfa 30

Using the .size() method

vector<double> mass(5);

for (unsigned int i=0; i<mass.size(); i++) {

mass[i] = i*i;

}

Note that the .size() method returns an unsigned int

and so the counter i is also defined as type unsigned int.

In time, you will discover more uses for this method...

The .size() method provides a simple and consistent way to

loop over all elements in a vector without the need to keep track

of the vector’s size:

16

Sayfa 31

Using the .push_back() and .pop_back() methods

A vector can be considered as a stack of values.

add a value

to the stack

remove a value

from the stack

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

6

The top of the

stack is the end

of the vector

Sayfa 32

Using the .push_back() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

vector<double> x(3, 8.3);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

x.push_back(5.9);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

} The size is 3

The content is: 8.3 8.3 8.3

The size is 4

The content is: 8.3 8.3 8.3 5.9

17

Sayfa 33

Using the .pop_back() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

vector<double> x(3, 8.3);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

x.pop_back();

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

} The size is 3

The content is: 8.3 8.3 8.3

The size is 2

The content is: 8.3 8.3

Sayfa 34

Using the .clear() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

vector<double> x(3, 8.3);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

x.clear();

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 0

The content is:

18

Sayfa 35

Using the .resize() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

vector<double> x(3, 8.3);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

x.resize(5);

cout << "The size is " << x.size() << endl;

cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 5

The content is: 8.3 8.3 8.3 0.0 0.0

Sayfa 36

#include <iostream>

#include <vector>

using namespace std;

int main() {

int n;

vector<int> iv;

while(true) {

cout << "Input an integer: ";

cin >> n;

if (n==0) break;

iv.push_back(n);

}

cout << "iv is:" << endl;

for(unsigned int i=0; i<iv.size(); i++)

cout << " iv[" << i << "] = " << iv[i] << endl;

}

input an integer: 34

input an integer: 65

input an integer: 89

input an integer: 23

input an integer: 56

input an integer: 0

iv is:

iv[0] = 34

iv[1] = 65

iv[2] = 89

iv[3] = 23

iv[4] = 56

Output

This program builds a vector from values input from the keyboard.

The size of the vector increases until a zero is input.

19

Sayfa 37

#include <iostream>

#include <vector>

using namespace std;

double max(vector<double> v){

double eb = v[0];

for(int i=0; i<v.size(); i++){

if(v[i]>eb) eb = v[i];

}

return eb;

}

int main() {

int n;

cout << "Input n: ";

cin >> n;

vector<double> x(n);

for(unsigned int i=0; i<x.size(); i++) cin >> x[i];

cout << "maximum element is: " << max(x) << endl;

}

Using vectors with functions

Input n: 4

1.1

2.2

-4.3

0.4

maximum element is: 2.2

Output

Sayfa 38

Homeworks

Solve the following problems. You have to prepare a pdf

document and sent it to me until next lecture.

E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

1. What is the difference between the reference operator and address

operator?

2. What is the difference between the indirection operator and the

dereference operator?

3. What are the actions of the new and delete operators?

20

Sayfa 39

4. What is wrong with the following code?
int &r = 35;

5. What is wrong with the following code?
int* p = &35;

6. What is wrong with the following code?
int *r = new [35];

7. Write a program that reads 10-element double type static array

and outputs the maximum and minimum elements to the screen.

8. A vector is given as follows: B={3,-5,-2,4,-7,9,22,-8}.

Write a program to remove the negative elements from the

vector.

Sayfa 40

9. Write a program to do followings:

a) Input n

b) Input elements of an integer dynamic array of size n

(use new operator)

c) Sort the elements in increasing order and output the

sorted values to the user screen.

Example output for n=5:

input n: 5

input elements: 5 -4 7 9 1

Sorting: -4 1 5 7 9

21

Sayfa 41

10.Write a program to find the mean, mode and median of an

n-element integer vector. You must read elements of the

vector from keyboard.

The median is the number in the middle and the mode is the most frequent

number in a data set.

For example:

For the data set {3, 4, 4, 5, 6, 8, 8, 8, 10},

median = 6 and mod = 8.

For the data set {5, 5, 7, 9, 11, 12, 18, 18},

median = (9+11)/2 = 10 and mod = 18.

Mode of the set: {2, 2, 5, 9, 9, 9, 10, 10, 11 12 18} is 9. (unimodal data)

Mode of the set: {2, 3, 4, 4, 4, 5, 7, 7, 7, 9} is 4 and 7 (bimodal set of data)

Mode of the set: {1, 2, 3, 8, 9, 10, 12, 14, 18} is ? (data has no mode)

