
1

Sayfa 1

EP578 Computing for Physicists

Department of

Engineering Physics

University of Gaziantep

Nov 2011

Topic 7

Basic Classes

Course web page
www.gantep.edu.tr/~bingul/ep578

Sayfa 2

1. Introduction

In this lecture we will learn basic classes in C++.

C and C++ allow you to define your own data types.

These user-defined data types are created using the

struct or the class keywords.

In C++, a class is like an array: it is a derived type.

But unlike an array, the elements of a class may have different

types. Furthermore, some elements of a class may be

functions and operators.

2

Sayfa 3

 The struct keyword is mostly used in the C programming

language. In C, the elements of struct can be ordinary

data types and/or other structures. To remain compatible
with the C language, C++ maintains the struct keyword.

However, in C++, a struct and a class have the same

meaning and functionality.

 Although any storage region in RAM is referred to as an

object, the word is usually used to describe variables whose

data type is a class. Thus object-oriented programming

involves programs that use classes.

Sayfa 4

2. Structures in C/C++

 A data structure (or derived data type) is a set of data

elements grouped together under one name.

 These data elements, known as members, can have

different types and different lengths.

 Here, Student is a new valid type name like the

fundamental ones int or double. s1 and s2 are objects

(or variables) derived from this new type.

struct name {

type1 member_name1;

type2 member_name2;

.

.

} object_names;

struct Student{

string name;

int mt1, mt2, fin;

double avr;

} s1, s2;

3

Sayfa 5

// A basic use of the stucure

#include <iostream>

#include <iomanip>

using namespace std;

struct Fruit{

double weight;

double price;

};

int main(){

Fruit orange, apricot;

orange.price = 2.50; // TL/kg

apricot.price = 3.25; // TL/kg

cout << "Input the amount of orange in kg: ";

cin >> orange.weight;

cout << "Input the amount of apricot in kg: ";

cin >> apricot.weight;

cout << "\nTotal prices (TL):\n";

cout << setprecision(2) << fixed;

cout << "Orange = " << orange.price * orange.weight << endl;

cout << "Apricot = " << apricot.price * apricot.weight << endl;

}

Input the amount of orange in kg: 2

Input the amount of apricot in kg: 1.5

Total prices (TL):

Orange = 5.00

Apricot = 4.88

Sayfa 6

3. Basic Classes

 A class is an expanded concept of a data structure in C.

instead of holding only data, a class can hold both data and

functions.

 An object is an instantiation of a class. In terms of variables,

a class would be the type, and

an object would be the variable.

 Classes are decelerated by using class keyword.

class class_name {

access_specifier_1:

member1;

access_specifier_2:

member2;

...

} object_names;

4

Sayfa 7

 An access specifier is one of the followings:

 private

members of a class are accessible only from within

other members of the same class

 public

members are accessible from anywhere where the object

is visible

 protected

members are accessible from members of their same class

but also from members of their derived classes

By default, all members of a class declared with the class

keyword have private access for all its members.

Sayfa 8

The following class can be used to represent a planet whose mass

is M and radius is R.

 declares a class (i.e. a type) called Planet

 The functions:
SetMassRadius()

Density() member functions or methods.

Gravity()

Member M,R and G have (default) private access and

member functions have public access.

// Example Class

class Planet{

public:

void SetMassRadius(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

5

Sayfa 9

Sayfa 10

Implementation of the Planet Class

 Consider a planet of mass M and equatorial radius R.

The mean mass density d and equatorial gravity g of

the planet are given respectively by

 where G is the universal gravitational constant and has

the value 6.67428x10-11 m3/kg/s.

6

Sayfa 11

// A basic use of classes

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

void SetMassRadius(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

int main(){

Planet Mars;

Mars.SetMassRadius(6.4e23, 3.4e6);

cout << "Density = " << Mars.Density() << endl;

cout << "Gravity = " << Mars.Gravity() << endl;

}

// continue ...

Sayfa 12

// Set the mass (kg) and

// equatorial radius (m) of the planet

void Planet::SetMassRadius(double mass, double radius){

M = mass;

R = radius;

G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet::Density(){

double d = M/(4.0*M_PI*R*R*R/3);

return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity(){

double g = G*M/(R*R);

return g;

}

Density = 3.88736

Gravity = 3.6951

7

Sayfa 13

 Here Mars is declared to be an object of the Planet class.

 Consequently, Mars has its own internal

data members M, R, and G and

has also ability call member functions.

 The mass and radius of Mars are supplied via the

SetMassRadius() method.

 Its density and surface gravity are evaluated and output .

 Notice one must use the specifier Planet:: before each

member function to indicate that these functions are the

members of the Planet class.

 The output shows that the density of the Mars is about 3.9

g/cm3 and its surface gravity is 3.7 m/s2.

Sayfa 14

 public members are accessible from outside the class

but private members are not.

 Therefore, the following accesses are forbidden:

cout << Mars.M << endl; // forbidden

cout << Mars.R << endl; // forbidden

8

Sayfa 15

Contained Implementation
// Self contained implementation in a class

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

void SetMassRadius(double mass, double radius){

M = mass; R = radius; G = 6.67428e-11;

}

double Density(){

return 1.0e-3 * M/(4.0*M_PI*R*R*R/3);

}

double Gravity(){ return G*M/(R*R); }

private:

double M, R, G;

};

int main(){

Planet Mars;

Mars.SetMassRadius(6.4e23, 3.4e6);

cout << "Density = " << Mars.Density() << endl;

cout << "Gravity = " << Mars.Gravity() << endl;

}

Sayfa 16

Constructors and Destructors

 The Planet class uses the SetMassRadius() function to

initialize its objects. However, you can initialize the values

when the object is declared like ordinary variables

int p = 35;

string name = "Bjarne";

 This is done by means of a constructor function which is a

member function called automatically when an object is

declared.

 A constructor function must have the same name as the

class name and have no return type.

9

Sayfa 17

// A basic use of class constructor

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

Planet(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

int main(){

Planet Mars(6.4e23, 3.4e6), Jupiter(1.9e27, 7.0e7);

cout << "Mars Density = " << Mars.Density() << endl;

cout << "Mars Gravity = " << Mars.Gravity() << endl;

cout << "Jupiter Density = " << Jupiter.Density() << endl;

cout << "Jupiter Gravity = " << Jupiter.Gravity() << endl;

}

// continue ...

Sayfa 18

// Set the mass (kg) and

// equatorial radius (m) of the planet

Planet::Planet(double mass, double radius){

M = mass;

R = radius;

G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet::Density(){

double d = M/(4.0*M_PI*R*R*R/3);

return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity(){

double g = G*M/(R*R);

return g;

}

Mars Density = 3.88736

Mars Gravity = 3.6951

Jupiter Density = 1.32242

Jupiter Gravity = 25.8799

10

Sayfa 19

Pointers to Classes

It is perfectly valid to create pointers that point to classes.

For example:

is a pointer to an object of class Planet.

In order to refer directly to a member of an object pointed by a

pointer we can use the arrow operator (->) of indirection.

Planet *p;

Sayfa 20

Planet *p;

// Pointer to a class

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

Planet(double mass, double radius){

M = mass; R = radius; G = 6.67428e-11;

}

double Density(){ return 1.0e-3 * M/(4.0*M_PI*R*R*R/3); }

double Gravity(){ return G*M/(R*R); }

private:

double M, R, G;

};

int main(){

Planet *gezegen = new Planet(6.4e23, 3.4e6);

cout << "Density = " << gezegen->Density() << endl;

cout << "Gravity = " << gezegen->Gravity() << endl;

}

11

Sayfa 21

Example: ‘A Cat class’

Each object of this class will represent a cat. The class includes

* a constructor function whose prototype is

Cat(int Age=1, double Mass=2.0);

to set (initialize) the age and weight of the cat.

* a member function named void speak() that outputs a "meow“ message.

* a member function named void kill() that reduces the cat's lives by one

(the cat has nine lives).

* a member function named double getMass() to get the mass of the cat.

* a member function named int getAge() to get the age of the cat.

* a member function named int getLife() to get the remaining life(s) of the cat.

Solution: http://www1.gantep.edu.tr/~cpp/tutorialadvanced.php?topic=3#09

Sayfa 22

Including a Class from a File

The contents of the main program, and of the class(es), can be

placed into separate files.

Then, using the #include directive you can use the class(es)

required.

In general, the files containing classes (or functions) are called

header files. Usually headers have the extension ".h" or ".hpp".

12

Sayfa 23

// Planet.h

#ifndef PLANET_H

#define PLANET_H

class Planet{

public: Planet(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

// Constructor function to set the mass and radius of the planet

// By default the planet is assumed to be Earth

Planet::Planet(double mass = 6.0e24, double radius = 6.4e6){

M = mass; R = radius;

G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet::Density(){

return M/(4.0*M_PI*R*R*R/3) * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity(){

return G*M/(R*R);

}

#endif

Sayfa 24

// Including a class from a file

#include <iostream>

#include <cmath>

using namespace std;

#include "Planet.h"

int main(){

Planet Mars(6.4e23, 3.4e6), Jupiter(1.9e27, 7.0e7);

cout << "Mars Density = " << Mars.Density() << endl;

cout << "Mars Gravity = " << Mars.Gravity() << endl;

cout << "Jupiter Density = " << Jupiter.Density() << endl;

cout << "Jupiter Gravity = " << Jupiter.Gravity() << endl;

}

13

Sayfa 25

Homeworks

Solve the following problems. You have to prepare a pdf

document and sent it to me until next lecture.

E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

**

Please put only

Circle.h and RCCircuit.h

into your pdf document

**

Sayfa 26

14

Sayfa 27

