AN
("’ EP578 Computing for Physicists

Topic 7 “
- ‘ .
Basic Classes 4 J
A
Department of w
Engineering Physics Q_‘-_::_; Vo

University of Gaziantep

Course web page
www.gantep.edu. tr/~bingul/ep578

Nov 2011

Sayfa 1

1. Introduction

In this lecture we will learn basic classes in C++.

C and C++ allow you to define your own data types.
These user-defined data types are created using the
struct or the class keywords.

In C++, a class is like an array: it is a derived type.

But unlike an array, the elements of a class may have different
types. Furthermore, some elements of a class may be
functions and operators.

Sayfa 2

= The struct keyword is mostly used in the C programming
language. In C, the elements of struct can be ordinary
data types and/or other structures. To remain compatible
with the C language, C++ maintains the struct keyword.
However, in C++, a struct and a class have the same
meaning and functionality.

= Although any storage region in RAM is referred to as an
object, the word is usually used to describe variables whose
data type is a class. Thus object-oriented programming
involves programs that use classes.

Sayfa 3
2. Structures in C/C++
= A data structure (or derived data type) is a set of data
elements grouped together under one name.
= These data elements, known as members, can have
different types and different lengths.
struct name { struct Student{
typel member namel; string name;
type2 member nameZ2; int mtl, mt2, fin;
double avr;
} sl1, s2;
} object names;

= Here, Student is a new valid type name like the
fundamental ones int or double. s1 and s2 are objects
(or variables) derived from this new type.

Sayfa 4

// A basic use of the stucure
#include <iostream>
#include <iomanip>

using namespace std;

Input the amount of orange in kg: 2

struct Fruit{ Input the amount of apricot in kg: 1.5
double weight;

double price; Total prices (TL):

}i Orange = 5.00

Apricot = 4.88

int main() {
Fruit orange, apricot;

orange.price = 2.50; // TL/kg
apricot.price = 3.25; // TL/kg

cout << "Input the amount of orange in kg: ";
cin >> orange.weight;
cout << "Input the amount of apricot in kg: ";
cin >> apricot.weight;

cout << "\nTotal prices (TL):\n";

cout << setprecision(2) << fixed;

cout << "Orange = " << orange.price * orange.weight << endl;
cout << "Apricot = " << apricot.price * apricot.weight << endl;

3. Basic Classes

» A class is an expanded concept of a data structure in C.
instead of holding only data, a class can hold both data and
functions.

» An object is an instantiation of a class. In terms of variables,
a class would be the type, and
an object would be the variable.

» Classes are decelerated by using class keyword.

class class_name {
access_specifier 1:
memberl;
access_specifier 2:
member2;

} object names;

Sayfa 6

An access specifier is one of the followings:
» private
members of a class are accessible only from within
other members of the same class

» public
members are accessible from anywhere where the object
is visible

» protected
members are accessible from members of their same class

but also from members of their derived classes

By default, all members of a class declared with the class
keyword have private access for all its members.

Sayfa 7

The following class can be used to represent a planet whose mass
is M and radius is R.

// Example Class
class Planet{
public:
void SetMassRadius (double, double) ;
double Density() ;
double Gravity() ;
private:
double M, R, G;

}i
» declares a class (i.e. a type) called Planet

» The functions:

SetMassRadius () ~__
Density () <—— member functions or methods.

Gravity ()
» Member M, R and ¢ have (default) private access and
member functions have public access.

Sayfa 8

Planets and Pluto: Physical Characteristics

IThis table contains selected physical characteristics of the planets and Pluto

Equatorial Mean Bulk Sidereal Sidereal Geometric | Equatorial | Escape

Planet Radius Radius Mass Density | Rotation Period | Orbit Period | V(1,0) Albedo Gravity |Velocity

ikm))| @ 10M kg | (gem))) {mag) ms?) | kms")

Mercury | 24397 [O1| 24397 1010330104 Fl| 5427 [0 586462 D1 | 02408487 1B | -0 60 El 0.106 & 3700 4250

+1.0 +1.0 +.000036 +.007 +0.10
Venus 60518 O 60518 01| 485732 (61| 524371 -243018 01| 061519726 B] | 447 [E 065 6] 887 M| 103610
+1.0 +1.0 +.00049 +003 +0.07

Earth 637814 [0 6371.00 01| 597219 H (55134 [1| 0.99726968 B 1.0000174 B -3.86 Bl| 0367 @ 9300 1118 10
+01 =01 + 00060 +£.0008

Mars 3396.19 [0 338950 101 | 0.641693 139340 1| 102595676 01| 18308476 B -152 Bl| 0150 @ 37 503nm
1 +32 +.000064 | £.0008

Jupiter 71482 01| 69911 01| 1838.13 M| 1.3262 11 041354 1| 11.862615 B -9.40 [E] 0528 247911 680.20 1
4 *65 +.18 +.0004

Saturn 60268 01| 58232 [0 568319 M| 06871 [1 044401 [O1| 29447498 1B | -8.83 El 047 B 1044 11| 26.09 [
4 *65 + 057 +£.0002

Uranus 25669 01 25362 0] 868103 L| 1270101 -0.71833 D1 | 84.016846 B | -7.19 E 0.51 B 8871 213810
4 7 + 0087 +001

MNeptune | 24764 [01| 24622 01| 102410 M| 1638 [1 067125 0| 16479132 [B]| -6.87 [E] 041 8 111511 2356 1
+15 +19 +010 +004

Pluto 1151 1€ 1151 1€ 01309 ™ 20510 63872 01| 24792085 B -1.0 0318 066 M| 1230
+65 +65 + 00018 +04

Sayfa 9

Implementation of the Planet Class

= Consider a planet of mass M and equatorial radius R.
The mean mass density d and equatorial gravity g of
the planet are given respectively by
GM

~R?

p M
" 4mR3/3

Y

= where G is the universal gravitational constant and has
the value 6.67428x1011 m3/kg/s.

Sayfa 10

// A basic use of classes
#include <iostream>
#include <cmath>

using namespace std;

class Planet({
public:
void SetMassRadius (double, double) ;
double Density() ;
double Gravity() ;
private:
double M, R, G;
|

int main() {
Planet Mars;
Mars.SetMassRadius (6.4e23, 3.4e6);
cout << "Density = " << Mars.Density() << endl;
cout << "Gravity = " << Mars.Gravity() << endl;
}

// continue

Sayfa 11

// Set the mass (kg) and

// equatorial radius (m) of the planet

void Planet: :SetMassRadius (double mass, double radius) {
M = mass;
R = radius;
G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet: :Density() {

double d = M/ (4.0*M PI*R*R*R/3) ;
return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity() {
double g = G*M/ (R*R) ;
return g;

}

3.88736

Density

| | Gravity = 3.6951

Sayfa 12

Here Mars is declared to be an object of the Planet class.
Consequently, Mars has its own internal

data members M, R, and G and

has also ability call member functions.

The mass and radius of Mars are supplied via the
SetMassRadius () method.

Its density and surface gravity are evaluated and output .

Notice one must use the specifier Planet: : before each
member function to indicate that these functions are the
members of the Planet class.

The output shows that the density of the Mars is about 3.9
g/cm?3 and its surface gravity is 3.7 m/s2.

Sayfa 13

public members are accessible from outside the class
but private members are not.

Therefore, the following accesses are forbidden:

cout << Mars.M << endl; // forbidden
cout << Mars.R << endl; // forbidden

Sayfa 14

// Self contained implementation in a class
#include <iostream>

#include <cmath>

using namespace std;

class Planet({
public:
void SetMassRadius (double mass, double radius) {
M = mass; R = radius; G = 6.67428e-11;
}
double Density () {
return 1.0e-3 * M/ (4.0*M PI*R*R*R/3);
}
double Gravity(){ return G*M/ (R*R); }
private:
double M, R, G;
};

int main() {
Planet Mars;
Mars.SetMassRadius (6.4e23, 3.4e6);

cout << "Density
cout << "Gravity

}

" << Mars.Density() << endl;
" << Mars.Gravity() << endl;

Sayfa 15

Constructors and Destructors

= The Planet class uses the SetMassRadius () function to
initialize its objects. However, you can initialize the values

when the object is declared like ordinary variables

int p = 35;

string name = "Bjarne";

= This is done by means of a constructor function which is a
member function called automatically when an object is

declared.

= A constructor function must have the same name as the

class name and have no return type.

Sayfa 16

// A basic use of class constructor
#include <iostream>

#include <cmath>

using namespace std;

class Planet({
public:
Planet (double, double) ;
double Density() ;
double Gravity() ;
private:
double M, R, G;
|

int main() {
Planet Mars(6.4e23, 3.4e6), Jupiter(l.9e27, 7.0e7);

cout << "Mars Density " << Mars.Density() << endl;
cout << "Mars Gravity = " << Mars.Gravity() << endl;

cout << "Jupiter Density " << Jupiter.Density() <<
cout << "Jupiter Gravity = " << Jupiter.Gravity() <<
}

// continue

endl;
endl;

// Set the mass (kg) and
// equatorial radius (m) of the planet
Planet: :Planet (double mass, double radius) {
M = mass;
R = radius;
G = 6.67428e-11;
}

// Mass density in g/cm3

double Planet: :Density() {

double d = M/ (4.0*M PI*R*R*R/3) ;
return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity() {
double g = G*M/ (R*R) ;
return g;

}

Mars Density = 3.88736
Mars Gravity = 3.6951
Jupiter Density = 1.32

Jupiter Gravity = 25.8

242
799

Pointers to Classes

It is perfectly valid to create pointers that point to classes.

For example:

Planet *p;

is a pointer to an object of class planet.

In order to refer directly to a member of an object pointed by a
pointer we can use the arrow operator (->) of indirection.

Sayfa 19

// Pointer to a class
#include <iostream>
#include <cmath>
using namespace std;

class Planet({
public:
Planet (double mass, double radius) {
M = mass; R = radius; G = 6.67428e-11;
}
double Density(){ return 1.0e-3 * M/ (4.0*M PI*R*R*R/3); }
double Gravity(){ return G*M/ (R*R); }
private:
double M, R, G;
};

int main() {
Planet *gezegen = new Planet(6.4e23, 3.4e6);

cout << "Density
cout << "Gravity
}

" << gezegen->Density () << endl;
" << gezegen->Gravity () << endl;

Sayfa 20

10

Example: ‘A Cat class’

Each object of this class will represent a cat. The class includes
* a constructor function whose prototype is
Cat(int Age=1, double Mass=2.0) ;

to set (initialize) the age and weight of the cat.
* a member function named void speak () that outputs a "meow" message.

*a member function named void kill () thatreduces the cat's lives by one
(the cat has nine lives).

* a member function named double getMass () to getthe mass of the cat.

* a member function named int getAge () to get the age of the cat.

* a member function named int getLife () to get the remaining life(s) of the cat.

Solution: http://wwwl.gantep.edu.tr/~cpp/tutorialadvanced.php?topic=3#09

Sayfa 21

Including a Class from a File
The contents of the main program, and of the class(es), can be

placed into separate files.

Then, using the #include directive you can use the class(es)

required.

In general, the files containing classes (or functions) are called

header files. Usually headers have the extension ".h" or ".hpp".

Sayfa 22

11

// Planet.h
#ifndef PLANET H
#define PLANET H

class Planet{
public: Planet (double, double) ;
double Density() ;
double Gravity();
private:
double M, R, G;
}i
// Constructor function to set the mass and radius of the planet
// By default the planet is assumed to be Earth
Planet: :Planet (double mass = 6.0e24, double radius = 6.4e6) {
M = mass; R = radius;
G 6.67428e-11;
}
// Mass density in g/cm3
double Planet: :Density () {
return M/ (4.0*M PI*R*R*R/3) * 1.0e-3;

}

// Surface gravity in m/s2

double Planet: :Gravity () {
return G*M/ (R*R) ;

}

#endif

// Including a class from a file
#include <iostream>

#include <cmath>

using namespace std;

#include "Planet.h"

int main () {
Planet Mars(6.4e23, 3.4e6), Jupiter(1.9e27, 7.0e7);

cout << "Mars Density = " << Mars.Density() << endl;
cout << "Mars Gravity = " << Mars.Gravity() << endl;
cout << "Jupiter Density = " << Jupiter.Density() << endl;
cout << "Jupiter Gravity = " << Jupiter.Gravity() << endl;

Sayfa 24

12

Homeworks

Solve the following problems. You have to prepare a pdf
document and sent it to me until next lecture.
E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

kkx
Please put only
Circle.h and RCCircuit.h
into your pdf document

kkkkkkkkkkkkkhkkkkkkkkkhkhkkhhkkhkkkkkrkkkhkkkhkk

Sayfa 25

In the x-y plane, the general equation of a circle of radius ris given by: {x - 032 +{y-b) =)

mplementa cirele class. Each object of this class will represent a circle, storing its radius (v} and the o and b coordinates of its center as doubles.
The class mustinclude

* 3 default constructer function whose prototype is
Circle(double radius, double centerZ, double centerY);
to set (initialize) radius and center coordinates.

& amember function namad double area() thatreturns the area of the circle.

* a member function named double circ() thatreturns circumference.

* a3 member function named bool isTnside(double x, double y) thatretums true if the given point(x, y) is inside the circle and
returns false otherwise.

lAssume that the class decleration and its members/methods are stored in the file Circle. b An example usage of
the circle is given below:
P(x.y)
[finclude <iostream> r
sing nemespace std; ¥-b
Ciab) xa

jfinclude "Circle.h™
fint maini { —

/4 a pircle whose center is origin \

Cirele guzelCexker (10.0, 0.0, 0.0; (x-ap+ U;' bR =r

cout << guzelCewber.areal) << endl;
cout << guzelCewber.circi) << endl;
cout << guzelCewber.isTnside(1.5, 2.7} << endl;

return 0;

Sayfa 26

Implement an Reeireuit class. Each object of this class will represent a simple charging RC circuit.
IThe class mustinclude

a default constructor function whose prototype is
RCeircuit(double R, doukle ©, double VO);

[Assume that the class decleration and its members/methods are stored in the file RoCircuit. h

Example usage of the Recireuit class is given below

#include <iostresm:
using namespace std;

#include "RCCircuit.h™
int maini) {

RCcircuit *Devrem = new RCcircuit(2.Ze+6, 1.0e-6, 12.);
doukle time = 0.0;

cout << "time constant: " << Devrem—>taul) << endl;
dof
cout << Devrem—>current (time) << "\t"
<« Devrem—>VC (time) < "L
<« Devrem—>VER(time) < endl;

time += 0.1;
jwhile (time < 5*Devrem—>tau(});

return 0;

to initialize the values of resistance (R} in Ohms, capaciter (C) in Farads and the potential difference across DC voltage source (V0] in Velts.
a member function named double current({double t) thatreturns the currentin the circuit at given time (in seconds) where t > 0.

a member function named double VC(double t) thatreturns potential across the capacitor at given time (in seconds) where t > 0.

a member function named double VR(double t) that potential across the capacitor at given time (in seconds) where t > 0.

a member function named double tau(} that returns the time constant of the circuit defined by T=R*C.

R

Sayfa 27

14

