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1. Introduction

In this lecture we will learn basic classes in C++.

C and C++ allow you to define your own data types. 

These user-defined data types are created using the 

struct or the class keywords.

In C++, a class is like an array: it is a derived type. 

But unlike an array, the elements of a class may have different 

types. Furthermore, some elements of a class may be 

functions and operators. 
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 The struct keyword is mostly used in the C programming 

language. In C, the elements of struct can be ordinary 

data types and/or other structures. To remain compatible 
with the C language, C++ maintains the struct keyword. 

However, in C++, a struct and a class have the same 

meaning and functionality. 

 Although any storage region in RAM is referred to as an 

object, the word is usually used to describe variables whose 

data type is a class. Thus object-oriented programming

involves programs that use classes. 
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2. Structures in C/C++

 A data structure (or derived data type) is a set of data 

elements grouped together under one name. 

 These data elements, known as members, can have 

different types and different lengths. 

 Here, Student is a new valid type name like the 

fundamental ones int or double. s1 and s2 are objects 

(or variables) derived from this new type.

struct name {

type1 member_name1;

type2 member_name2;

.

.

} object_names; 

struct Student{

string name;

int mt1, mt2, fin;

double avr;

} s1, s2;
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// A basic use of the stucure

#include <iostream>

#include <iomanip>

using namespace std;

struct Fruit{

double weight;

double price;

};

int main(){

Fruit orange, apricot;

orange.price = 2.50; // TL/kg

apricot.price = 3.25; // TL/kg

cout << "Input the amount of orange in kg: ";

cin >> orange.weight;

cout << "Input the amount of apricot in kg: ";

cin >> apricot.weight;

cout << "\nTotal prices (TL):\n";

cout << setprecision(2) << fixed;

cout << "Orange = " << orange.price * orange.weight << endl;

cout << "Apricot = " << apricot.price * apricot.weight << endl;

}

Input the amount of orange in kg: 2

Input the amount of apricot in kg: 1.5

Total prices (TL):

Orange = 5.00

Apricot = 4.88
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3. Basic Classes

 A class is an expanded concept of a data structure in C. 

instead of holding only data, a class can hold both data and 

functions. 

 An object is an instantiation of a class. In terms of variables, 

a class would be the type, and  

an object would be the variable. 

 Classes are decelerated by using class keyword.

class class_name { 

access_specifier_1: 

member1; 

access_specifier_2: 

member2; 

... 

} object_names; 
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 An access specifier is one of the followings:

 private

members of a class are accessible only from within 

other members of the same class

 public 

members are accessible from anywhere where the object 

is visible

 protected

members are accessible from members of their same class 

but also from members of their derived classes

By default, all members of a class declared with the class

keyword have private access for all its members.
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The following class can be used to represent a planet whose mass 

is M and radius is R. 

 declares a class (i.e. a type) called Planet

 The functions: 
SetMassRadius()

Density()        member functions or methods. 

Gravity()

Member M,R and G have (default) private access and 

member functions have public access.

// Example Class

class Planet{ 

public: 

void SetMassRadius(double, double); 

double Density(); 

double Gravity();

private: 

double M, R, G; 

}; 
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Implementation of the Planet Class

 Consider a planet of mass M and equatorial radius R. 

The mean mass density d and equatorial gravity g of 

the planet are given respectively by 

 where G is the universal gravitational constant and has 

the value 6.67428x10-11 m3/kg/s. 
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// A basic use of classes

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

void SetMassRadius(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

int main(){

Planet Mars;

Mars.SetMassRadius(6.4e23, 3.4e6);

cout << "Density = " << Mars.Density() << endl;

cout << "Gravity = " << Mars.Gravity() << endl;

}

// continue ...
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// Set the mass (kg) and

// equatorial radius (m) of the planet

void Planet::SetMassRadius(double mass, double radius){

M = mass;

R = radius;

G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet::Density(){

double d = M/(4.0*M_PI*R*R*R/3);

return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity(){

double g = G*M/(R*R);

return g;

}

Density = 3.88736

Gravity = 3.6951
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 Here Mars is declared to be an object of the Planet class.

 Consequently, Mars has its own internal 

data members M, R, and G and 

has also ability call member functions.

 The mass and radius of Mars are supplied via the 

SetMassRadius() method. 

 Its density and surface gravity are evaluated and output .

 Notice one must use the specifier Planet:: before each 

member function to indicate that these functions are the 

members of the Planet class. 

 The output shows that the density of the Mars is about 3.9 

g/cm3 and its surface gravity is 3.7 m/s2. 
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 public members are accessible from outside the class 

but private members are not. 

 Therefore, the following accesses are forbidden: 

cout << Mars.M << endl; // forbidden 

cout << Mars.R << endl; // forbidden 
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Contained Implementation
// Self contained implementation in a class

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

void SetMassRadius(double mass, double radius){

M = mass; R = radius; G = 6.67428e-11;

}

double Density(){

return 1.0e-3 * M/(4.0*M_PI*R*R*R/3);

}

double Gravity(){ return G*M/(R*R); }

private:

double M, R, G;

};

int main(){

Planet Mars;

Mars.SetMassRadius(6.4e23, 3.4e6);

cout << "Density = " << Mars.Density() << endl;

cout << "Gravity = " << Mars.Gravity() << endl;

}
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Constructors and Destructors

 The Planet class uses the SetMassRadius() function to 

initialize its objects. However, you can initialize the values 

when the object is declared like ordinary variables 

int p = 35;

string name = "Bjarne"; 

 This is done by means of a constructor function which is a 

member function called automatically when an object is 

declared. 

 A constructor function must have the same name as the 

class name and have no return type. 
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// A basic use of class constructor

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

Planet(double, double);

double Density();

double Gravity();

private:

double M, R, G;

};

int main(){

Planet Mars(6.4e23, 3.4e6), Jupiter(1.9e27, 7.0e7);

cout << "Mars Density = " << Mars.Density() << endl;

cout << "Mars Gravity = " << Mars.Gravity() << endl;

cout << "Jupiter Density = " << Jupiter.Density() << endl;

cout << "Jupiter Gravity = " << Jupiter.Gravity() << endl;

}

// continue ...
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// Set the mass (kg) and

// equatorial radius (m) of the planet

Planet::Planet(double mass, double radius){

M = mass;

R = radius;

G = 6.67428e-11;

}

// Mass density in g/cm3

double Planet::Density(){

double d = M/(4.0*M_PI*R*R*R/3);

return d * 1.0e-3;

}

// Surface gravity in m/s2

double Planet::Gravity(){

double g = G*M/(R*R);

return g;

}

Mars Density = 3.88736

Mars Gravity = 3.6951

Jupiter Density = 1.32242

Jupiter Gravity = 25.8799
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Pointers to Classes

It is perfectly valid to create pointers that point to classes. 

For example: 

is a pointer to an object of class Planet.

In order to refer directly to a member of an object pointed by a 

pointer we can use the arrow operator (->) of indirection. 

Planet *p;
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Planet *p;

// Pointer to a class

#include <iostream>

#include <cmath>

using namespace std;

class Planet{

public:

Planet(double mass, double radius){

M = mass; R = radius; G = 6.67428e-11;

}

double Density(){ return 1.0e-3 * M/(4.0*M_PI*R*R*R/3); }

double Gravity(){ return G*M/(R*R); }

private:

double M, R, G;

};

int main(){

Planet *gezegen = new Planet(6.4e23, 3.4e6);

cout << "Density = " << gezegen->Density() << endl;

cout << "Gravity = " << gezegen->Gravity() << endl;

}
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Example: ‘A Cat class’

Each object of this class will represent a cat. The class includes 

* a constructor function whose prototype is 

Cat(int Age=1, double Mass=2.0);

to set (initialize) the age and weight of the cat.

* a member function named void speak() that outputs a "meow“ message.

* a member function named void kill() that reduces the cat's lives by one 

(the cat has nine lives).

* a member function named double getMass() to get the mass of the cat.

* a member function named int getAge() to get the age of the cat.

* a member function named int getLife() to get the remaining life(s) of the cat.

Solution: http://www1.gantep.edu.tr/~cpp/tutorialadvanced.php?topic=3#09
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Including a Class from a File

The contents of the main program, and of the class(es), can be 

placed into separate files. 

Then, using the #include directive you can use the class(es) 

required. 

In general, the files containing classes (or functions) are called 

header files. Usually headers have the extension ".h" or ".hpp". 
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// Planet.h

#ifndef PLANET_H

#define PLANET_H

class Planet{ 

public: Planet(double, double); 

double Density(); 

double Gravity(); 

private: 

double M, R, G; 

}; 

// Constructor function to set the mass and radius of the planet 

// By default the planet is assumed to be Earth

Planet::Planet(double mass = 6.0e24, double radius = 6.4e6){ 

M = mass; R = radius; 

G = 6.67428e-11; 

}

// Mass density in g/cm3 

double Planet::Density(){ 

return M/(4.0*M_PI*R*R*R/3) * 1.0e-3; 

}

// Surface gravity in m/s2 

double Planet::Gravity(){

return G*M/(R*R); 

}

#endif
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// Including a class from a file 

#include <iostream> 

#include <cmath>

using namespace std; 

#include "Planet.h" 

int main(){ 

Planet Mars(6.4e23, 3.4e6), Jupiter(1.9e27, 7.0e7); 

cout << "Mars Density = " << Mars.Density() << endl; 

cout << "Mars Gravity = " << Mars.Gravity() << endl; 

cout << "Jupiter Density = " << Jupiter.Density() << endl; 

cout << "Jupiter Gravity = " << Jupiter.Gravity() << endl; 

}
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Homeworks

Solve the following problems. You have to prepare a pdf

document and sent it to me until next lecture.

E-mail: bingul[at]gantep.edu.tr (replace [at] with @)

******************************************

Please put only

Circle.h and RCCircuit.h

into your pdf document

******************************************
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