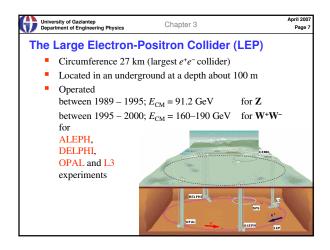
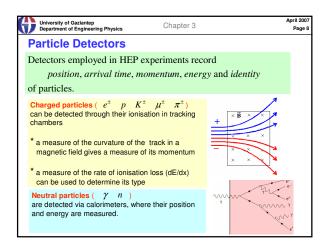
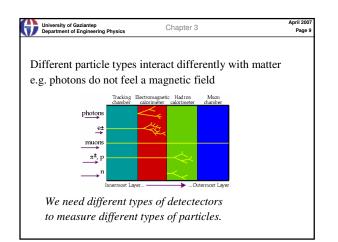
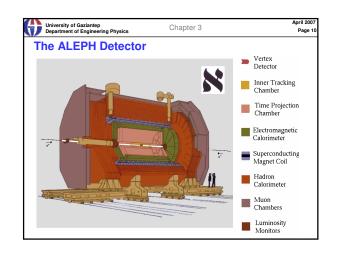
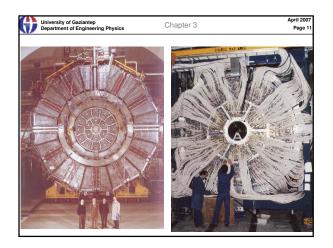

Ahmet BİNGÜL April 2007

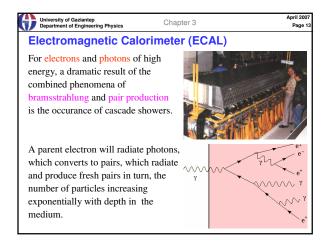


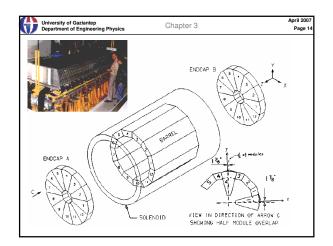


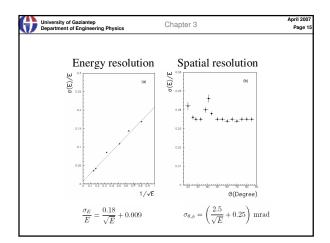

University of Gazia Department of Eng	ineering Physics		ter 1-2		April : Pa
The Stand	ard Mode	l			
Table 2.1:	The particle	s and force	s of th	ne Standa	rd Model.
Fern	nions (spin –	$(\frac{1}{2})$		Bosons (s	spin 1)
Que	arks	Leptons	em.	Weak	Strong
$\begin{array}{c} u (up) \\ c (charm) \\ t (top) \end{array}$	d (down) s (strange) b (bottom)	$e^{-} \nu_{e}$ $\mu^{-} \nu_{\mu}$ $\tau^{-} \nu_{\tau}$	γ	W^{\pm}, Z	gluons(8)
	. ,		1	•	

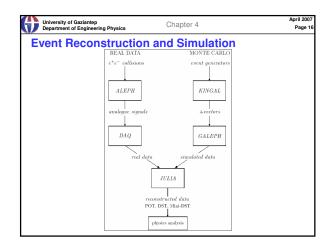


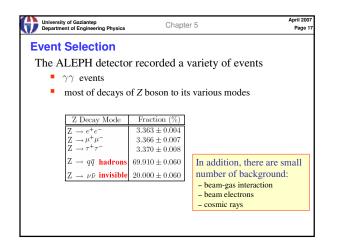


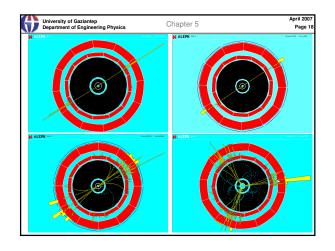


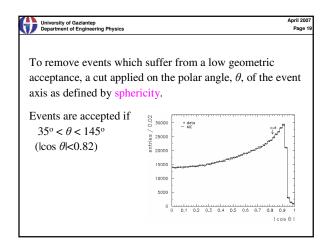


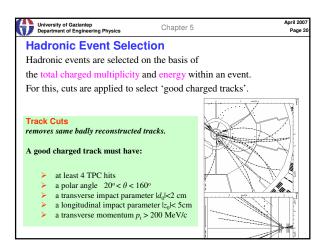


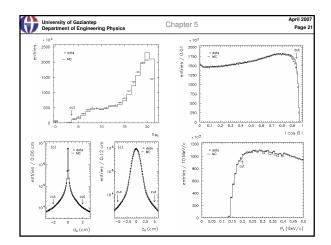


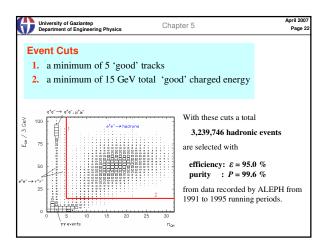

University of Gaziantep Department of Engineerin	g Physics Chapter 3	April 2003 Page 1
Tracking Cha		
Detector	Resolution	Photo
Vertex Detector (VDET)	$\begin{split} \sigma(r,\phi) &= 12 \ \mu \mathrm{m} \\ \sigma(z) &= 10 \ \mu \mathrm{m} \end{split}$	
Inner Tracking Chamber (<mark>ITC</mark>)	$\sigma(r,\phi)=20~\mu{\rm m}$	
Time Projection Chamber (TPC)	$\begin{aligned} \sigma(r,\phi) &= 180 \ \mu \mathrm{m} \\ \sigma(z) &= 1 \ \mathrm{mm} \\ \sigma(p) &= 1.2 \times 10^{-3} p^2 \ \mathrm{GeV/c} \end{aligned}$	

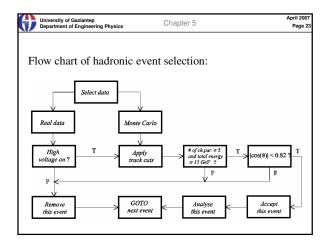


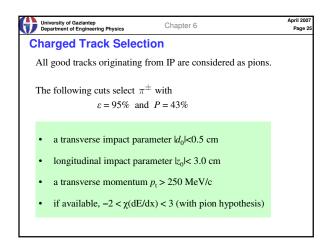


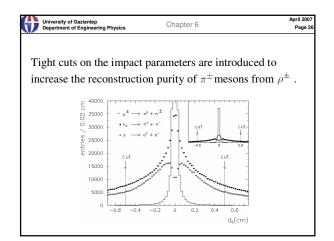


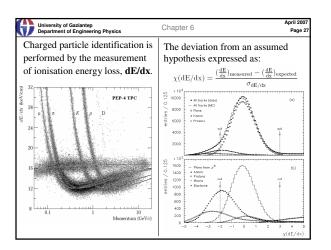


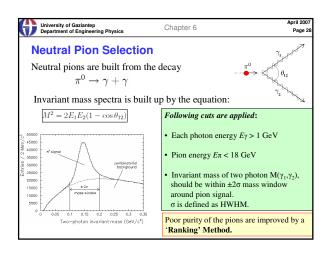


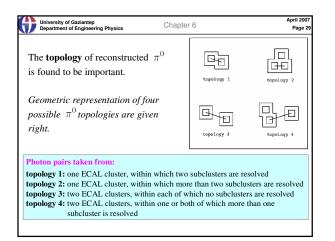


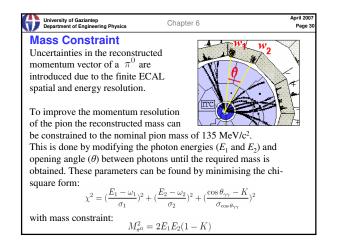


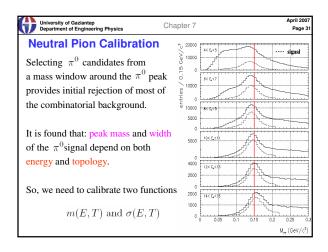


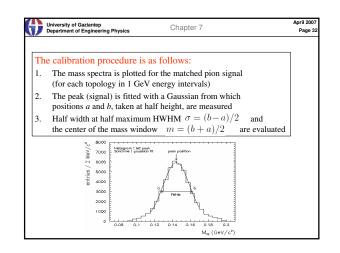


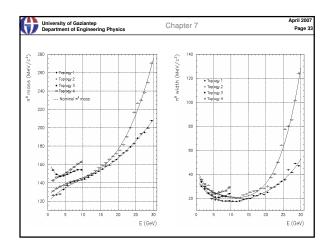


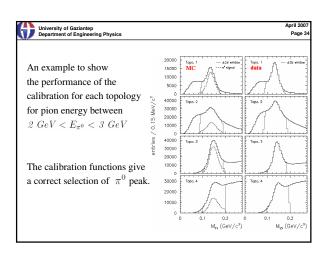

University of Gaziantep Department of Engineering Physics	Chapter 6	April 2007 Page 24
Track Selection		
ρ^{\pm} candidates are re-	constructed from the d	ecay channel:
$\rho^{\pm} \to \pi$	$^{.0} + \pi^{\pm} (BR \approx 100\%)$)
π^{\pm} selection is relatively the selection is relatively the selection is relatively be a selected selection of the selec	tively trivial, while	
π^0 selection and re	construction is more c	omplicated.
All selection perform	mances are determined	from the
Monte Carlo with th	e aim to maximise bot	h
	rity and efficiency.	

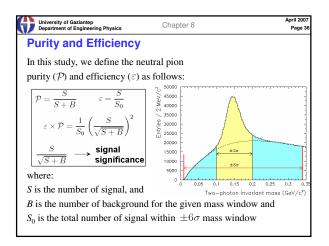


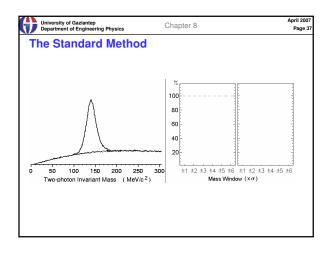


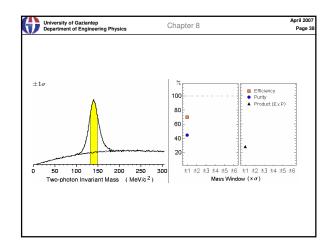


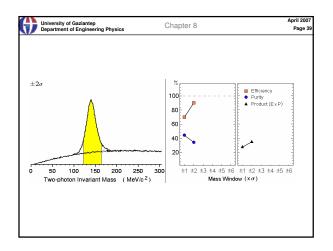


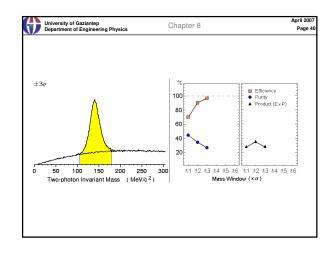


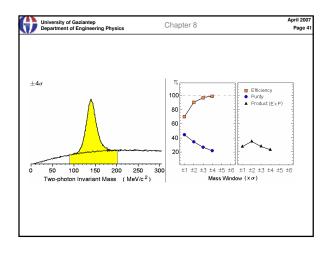


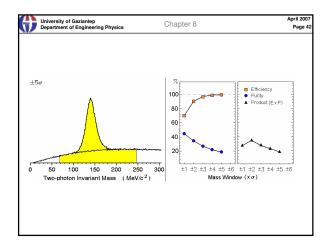


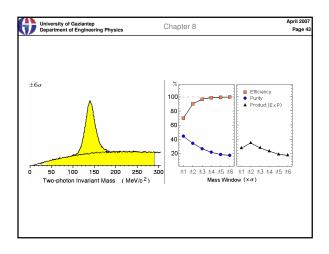


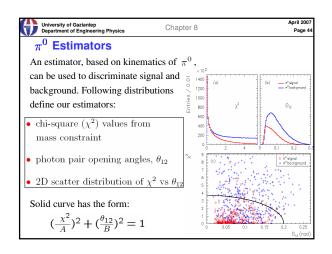


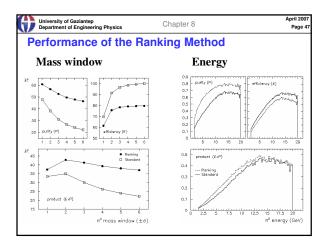

University of Gaziantep Department of Engineering Physics		sics Cha	pter 8 April 2007 Page 3	
ank	ing	Me	thod	
We c	an fo	rm	π^0 candidates	Number of combinations: $C(n,2) = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$
12 2 13 2 14 2	23 34 24 35 25 .	45	(n-1)n	we have $n(n-1)/2$ candidates forming $S+B$ but only $n/2$ of them are true forming S .
				Signal-to-background ratio:
. : 1n	2n			$\frac{S}{B} = \frac{n/2}{n(n-1)/2 - n/2} = \frac{1}{n-2}$
	selle selle	ent of Engineerin anking r n photor We can fo ling photor 12 23 34 13 24 35 14 25 . 15 15 3 n . 2n	ant of Engineering Physe anking Me or n photons ta We can form ling photon pa selected PAIRs 12 23 34 45 13 24 35 . 14 25 . 15 . 15 . 16 . 17 . 18 . 19 . 10 . 10 . 10 . 10 . 10 . 10 . 10 . 10	ant of Engineering Physics Char anking Method or n photons taken from the We can form π^0 candidates ling photon pairs as follows: SELECTED PAIRS (combinations) 12 23 34 45 (n-1)n 13 24 35 14 25 15 4 5

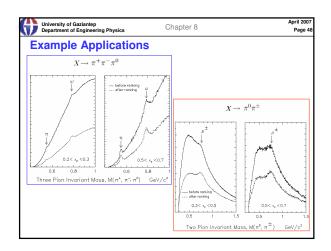




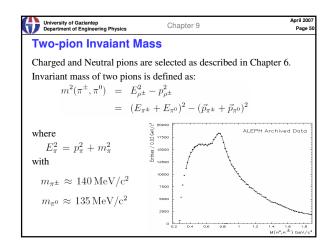


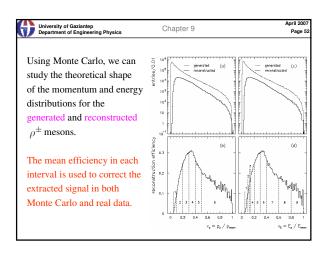


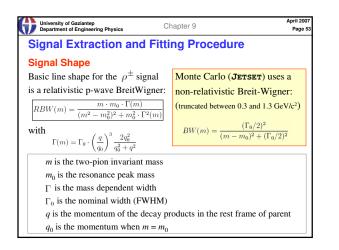


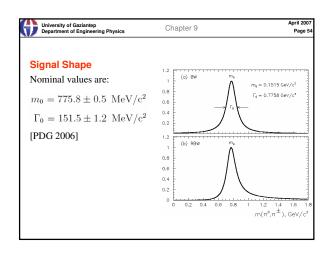


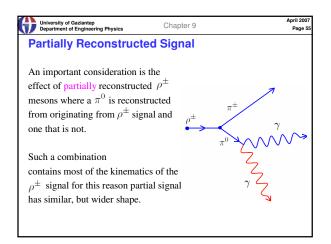
University of Gaziantep Department of Engineering Physics	Chapter 8	April 2007 Page 45
Ranking Method		
After the initial mass wind	ow selection, additional in	provement can
be achived by applying the	estimator indirectly with	a 'Ranking'
method.		
The algorithm is as follows	s:	
1. Pion estimator valu	es are calculated for each	pion in an event
2. Pions candidates ar		
their estimator va	lues	
3. A scan is then made	e through the list for pairs	*
		• hoth
share photons. Whe	e false; the candidate with	

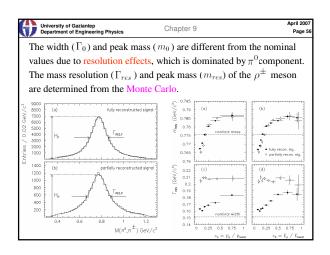

		CANDIDA A <i>NKING</i>	TES		ECTED (<u>ER</u> RAN			ES	
#	Pion est.	Photon 1 2	Truth info.	#	Pion est.		oton 2	Truth info.	
A		A1 A2	TRUE	A	0.05			TRUE	
B X		B1 B2 D1 E1	TRUE	B	0.12			TRUE	
		C1 C2	TRUE	C X				TRUE	
		A1 B2	FALSE		0.20	-		11102	
D	0.63	D1 D2	TRUE						
z	0.87	C2 E2	FALSE						

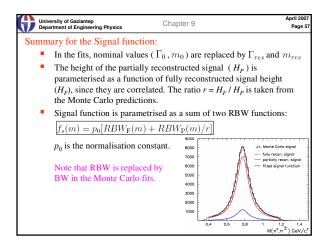


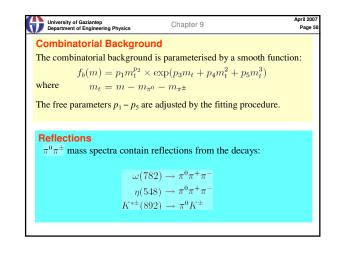

University of Gaziantep Department of Engineering Physics	Chapter 9	April 200 Page 4
Extraction of the $ ho^2$	$\pm(770)$ Signal	
The rate and cross section invariant mass distribution	n of the ρ^{\pm} meson are extract n of its daughter pions,	ed from the
$\rho^{\pm} \to \pi^0$	$0 + \pi^{\pm} (BR \approx 100\%)$	
by fitting the invariant man functions.	ss to a sum of signal and back	ground
Extraction of ρ^{\pm} yield is c the large with reso		
e	her mesons (especially $\omega \rightarrow$	$\pi^0\pi^+\pi^-$)

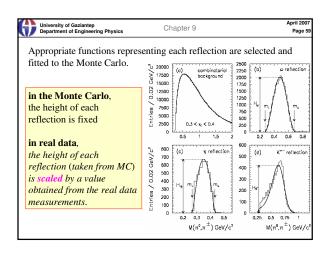

- the partially reconstructed signal
 the large combinatorial background
- the large combinatorial background
- the residual Bose-Einstein correlations that affects both signal and background shape

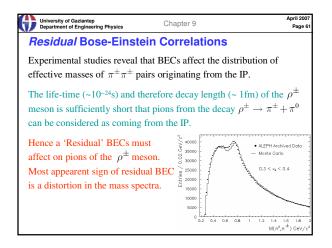


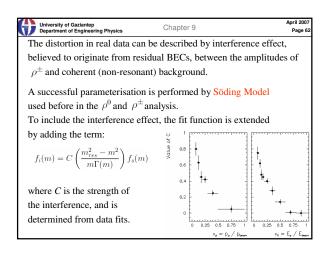

	ty of Gaziantep ent of Engineering Physic	cs Chapte	er 9 April 2007 Page 5
Signa	l Reconstru	uction	
The da	ta is analysed	d in	
• •	six intervals of	scaled momentu	m: $x_p = p_\rho / p_{beam}$
			$x_E = E_{\rho}/E_{beam}$
1	internetivais o	n searce chergy.	$\sim_{E} = 2\rho/20eam$
		(1) 15(0)	
Here p_l	$_{beam} \approx E_{beam}$	(about 45.6 Ge	V) is the LEP momentum.
			V) is the LEP momentum.
Interval	x_p range	x_E range	1
Interval 1	x_p range $0.05 \le x_p < 0.10$	$\frac{x_E \text{ range}}{0.050 \le x_E < 0.100}$	1
Interval 1 2	$x_p \text{ range}$ $0.05 \le x_p < 0.10$ $0.10 \le x_p < 0.20$	$\begin{array}{c} x_E \text{ range} \\ 0.050 \leq x_E < 0.100 \\ 0.100 \leq x_E < 0.125 \end{array}$]
Interval 1 2 3	$\frac{x_p \text{ range}}{0.05 \le x_p < 0.10} \\ 0.10 \le x_p < 0.20 \\ 0.20 \le x_p < 0.30$	$\begin{array}{c} x_E \text{ range} \\ 0.050 \leq x_E < 0.100 \\ 0.100 \leq x_E < 0.125 \\ 0.125 \leq x_E < 0.150 \end{array}$	Note
Interval 1 2	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \end{array}$	$\begin{array}{c} x_E \text{ range} \\ \hline 0.050 \leq x_E < 0.100 \\ 0.100 \leq x_E < 0.125 \\ 0.125 \leq x_E < 0.150 \\ 0.150 \leq x_E < 0.200 \end{array}$	Note
Interval 1 2 3 4 5 6	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Note The results of the measurements
Interval 1 2 3 4 5 6 7	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \\ 0.40 \leq x_p < 0.50 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Note The results of the measurements • in x , intervals are compared
Interval 1 2 3 4 5 6 7 8	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \\ 0.40 \leq x_p < 0.50 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Note The results of the measurements • in x_p intervals are compared with those of ALEPH p^0
Interval 1 2 3 4 5 6 7	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \\ 0.40 \leq x_p < 0.50 \end{array}$	$\begin{array}{c c} \hline x_E \text{ range} \\ \hline 0.050 \leq x_E < 0.100 \\ 0.100 \leq x_E < 0.125 \\ 0.125 \leq x_E < 0.150 \\ 0.150 \leq x_E < 0.200 \\ 0.200 \leq x_E < 0.300 \\ 0.300 \leq x_E < 0.400 \\ 0.400 \leq x_E < 0.600 \\ \end{array}$	Note The results of the measurements • in x _p intervals are compared with those of ALEPH p ⁰ measurement
Interval 1 2 3 4 5 6 7 8	$\begin{array}{c} x_p \text{ range} \\ 0.05 \leq x_p < 0.10 \\ 0.10 \leq x_p < 0.20 \\ 0.20 \leq x_p < 0.30 \\ 0.30 \leq x_p < 0.40 \\ 0.40 \leq x_p < 0.50 \end{array}$	$\begin{array}{c} x_E \text{ range} \\ \hline 0.050 \leq x_E < 0.100 \\ 0.100 \leq x_E < 0.125 \\ 0.125 \leq x_E < 0.050 \\ 0.150 \leq x_E < 0.200 \\ 0.200 \leq x_E < 0.300 \\ 0.300 \leq x_E < 0.400 \\ 0.400 \leq x_E < 0.400 \\ 0.600 \leq x_E < 0.800 \end{array}$	Note The results of the measurements • in x _p intervals are compared with those of ALEPH p ⁰ measurement

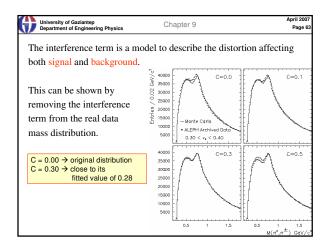


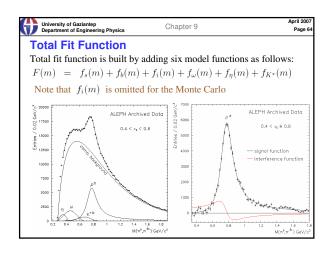


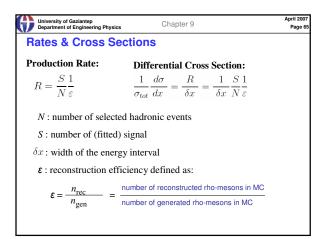


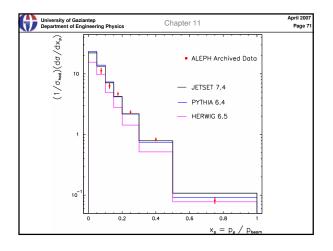


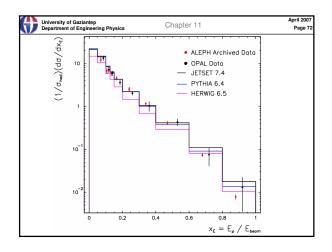


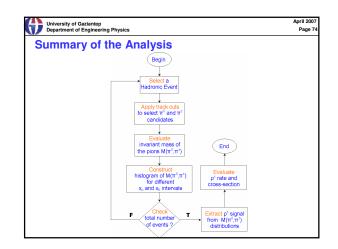




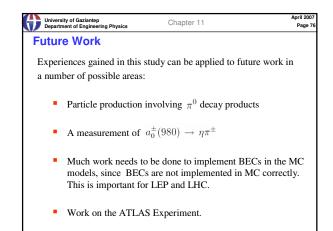

University of Gaziantep Department of Engineering Physics	Chapter 9	April 2007 Page 60
Bose-Einstein Cor	relations	
Bose-Einstein Correlation	s (BECs) are an apparent a	attraction in
phase-space between iden	tical bosons.	
Features of BEC:		
	and only if identical boson other in phase-space.	s (such as pions)
triplets obeying Bo	les generated in hadronic evose statistics. As a result, B ions in the final state.	1
the fragmentaion s	n mechanical effect that mu state. Hence, measurement ding of QCD studies.	
 BECs are not impl 	lemented in MC programs	effectively.

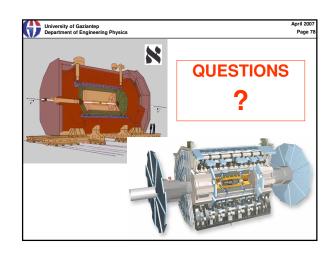

University of Gaziantep Department of Engineering Physics	Chapter 10	April 2007 Page 66
Systematic Error Ana	lysis	
Statistical errors originate fro that result in measured values		
<i>Systematic errors</i> originate fr models, measurement proceed systematically high or low.		
Possible source of systematic	errors:	
 track selection cuts 		
 fitting procedure 		
 reflection models 		
 signal function 		
 efficiency correction 		
 uncertainty in the extrap 	solution to full x_p and x_E rates	inges


f Gaziantep of Engineering Physics		(Chapte	er 10				April Pa
10.4: Systematic and statistical errors for the ρ^{\pm} rate in each ntum interval. All values are expressed in % rounded to one dec								
Source of error		<i>m</i>	easure		nterv			
	e_{all}	1	2	- 3	4	5	6	
Fit range	1.9	0.4	2.4	2.1	4.4	0.8	6.8	
Eff. correction	0.1	0.2	0.2	0.2	0.2	0.2	0.4	
Signal width	1.6	3.6	3.2	2.1	2.8	3.5	5.6	
Partial signal	*3.0	2.7	3.4	3.5	3.3	3.0	2.1	
ω rate	$^{*1.5}$	2.0	1.7	1.5	0.7	0.3	0.8	
η rate	*0.3	0.0	0.0	0.5	1.1	0.2	0.0	
$K^{*\pm}$ rate	$^{+}0.7$	0.0	1.2	2.7	0.1	0.1	2.8	
π^0 matching	*0.7	0.6	0.7	0.8	0.7	0.9	0.6	
E_{γ}	2.6	6.0	6.1	3.1	3.2	3.2	3.0	
$E_{\pi^{0}}$	1.5	3.5	3.7	2.4	1.5	1.6	4.6	
π^{0} mass window	1.3	2.6	3.1	2.7	3.5	2.3	3.3	
$\chi(dE/dx)$	1.1	2.8	1.3	1.7	0.7	1.6	2.6	
d_0	2.0	5.2	1.9	2.7	0.8	0.4	3.7	
Systematic error								
(e_{tot})	5.7	10.7	10.0	8.0	8.1	6.5	12.3	
Statistical error	1.1	2.5	2.2	1.6	0.9	0.9	2.2	
Total error	5.8	11.0	10.2	8.1	8.1	6.6	12.5	


University of Gaziantep Department of Engineering F	Physics			Chap	ter 10)				A	April 2 Pag
Table 10.5: System energy interval. All											
Source of Error				measu	ired x	E inte	rval				
	e_{all}	1	2	3	4	5	6	7	8	9	
Fit range	1.9	4.7	2.6	3.9	3.3	1.5	2.2	3.7	2.8	2.5	
Eff. correction	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.6	1.8	
Signal width	1.6	3.4	3.9	3.8	3.4	3.5	3.3	3.4	3.6	2.8	
Partial signal	*3.2	2.9	3.6	3.5	3.7	3.4	3.0	2.7	1.3	1.9	
ω rate	*1.7	1.6	2.9	3.2	1.0	2.2	0.3	0.4	0.2	0.1	
η rate	*1.5	1.7	2.3	2.5	2.2	0.3	0.2	0.2	1.2	0.0	
$K^{*\pm}$ rate	*0.5	0.0	2.7	1.6	0.3	0.1	0.1	0.3	1.9	2.6	
π^0 matching	*0.7	0.6	0.7	0.7	0.8	0.7	0.8	0.8	0.6	0.5	
E_{γ}	2.8	6.3	5.0	4.0	4.5	6.4	3.8	4.3	2.5	4.4	
E_{π^0}	1.2	3.0	2.4	3.5	0.7	0.4	1.0	3.1	0.2	8.8	
π^0 mass window	2.0	4.7	4.7	4.3	3.8	2.8	2.2	3.0	2.2	5.9	
$\chi(dE/dx)$	1.1	2.3	4.9	2.5	1.7	0.6	2.1	1.0	4.1	5.7	
d_0	0.8	1.7	4.0	2.5	0.7	0.4	0.2	0.4	1.1	3.2	
Systematic error											
(e_{tot})	6.1	11.3	12.3	11.0	9.0	9.0	7.1	8.5	7.6	14.2	
Statistical error	1.0	2.3	2.7	2.4	1.2	0.9	1.2	1.2	3.4	6.3	
Total error	6.2	11.5	12.6	11.3	9.1	9.1	7.2	8.6	8.3	15.5	

	University of Gazi Department of En		Chapter 11	April 2007 Page 6
R	esults	gineering i hysics		
	intervals. Th including extr	e result of summing of	d differential cross-sections for the ρ^{\pm} in ver the measured x_p intervals is also give age with an additional error due to the v	en,
	x _p range	$Multiplicity \rho^{\pm}(770)$	$Z decay = 1/\sigma_{had} d\sigma/dx_p$	-
	0.05-0.10	$0.5622 \pm 0.0142 \pm 0.0$	0603 11.2434 ± 0.2840 ± 1.2069	-
	0.10 - 0.15	$0.3162 \pm 0.0068 \pm 0.0$	$6.3246 \pm 0.1364 \pm 0.6299$	
	0.15 - 0.20	$0.2338 \pm 0.0037 \pm 0.0037$	$4.6756 \pm 0.0736 \pm 0.3731$	
	0.20 - 0.30	$0.2335 \pm 0.0022 \pm 0.0$	$2.3347 \pm 0.0216 \pm 0.1889$	
	0.30 - 0.50	$0.1663 \pm 0.0015 \pm 0.0015$	$0.8316 \pm 0.0073 \pm 0.0545$	
	0.50 - 1.00	$0.0412 \pm 0.0009 \pm 0.0009$	$0.0823 \pm 0.0018 \pm 0.0102$	
	0.05 - 1.00	$1.5532 \pm 0.0164 \pm 0.0$	0880	
	all x_p	$2.5872 \pm 0.0273 \pm 0.1$	466 ± 0.0428	


	y of Gaziar ent of Engi	ntep Cha ineering Physics	apter 11	April 200 Page 7
x_E integriven,	ervals. includin	The result of summing over	rential cross-sections for the ρ^{\pm} in the measured x_E intervals is also ge with an additional error due to	
$x_E r_e$	ange	Multiplicity $\rho^{\pm}(770)/Z$ dec	$ay = 1/\sigma_{had} d\sigma/dx_E$	
	0-0.100	$0.6050 \pm 0.0137 \pm 0.0683$	$12.0992 \pm 0.2740 \pm 1.3650$	
0.100	-0.125	$0.1679 \pm 0.0046 \pm 0.0206$	$6.7153 \pm 0.1840 \pm 0.8237$	
0.125	5-0.150	$0.1450 \pm 0.0035 \pm 0.0160$	$5.7990 \pm 0.1400 \pm 0.6407$	
0.150	0-0.200	$0.2258 \pm 0.0027 \pm 0.0204$	$4.5151 \pm 0.1090 \pm 0.4072$	
0.200	-0.300	$0.2506 \pm 0.0023 \pm 0.0226$	$2.5056 \pm 0.0230 \pm 0.2259$	
0.300	-0.400	$0.1151 \pm 0.0014 \pm 0.0082$	$1.1511 \pm 0.0140 \pm 0.0820$	
0.400	-0.600	$0.0820 \pm 0.0010 \pm 0.0070$	$0.4102 \pm 0.0050 \pm 0.0349$	
0.600	0-0.800	$0.0146 \pm 0.0005 \pm 0.0011$	$0.0729 \pm 0.0025 \pm 0.0055$	
0.800	-1.000	$0.0016 \pm 0.0001 \pm 0.0002$	$0.0078 \pm 0.0005 \pm 0.0011$	
0.050	-1.000	$1.6076 \pm 0.0154 \pm 0.0981$		
all x	E	$2.5878 \pm 0.0248 \pm 0.1579 \pm 0.0248 \pm 0.1579 \pm 0.0000$	0.0408	



	rsity of Gaziantep tment of Engineering Physics	Chapter 11	April 2007 Page 75	
Conc	Conclusion			
1		n of the ρ^{\pm} mesons in had with the ALEPH detector.	lronic Z decays	
ľ		differential cross-section a AL measurements within	0	
1		btained from JETSET and real data measurements of nents.		
ľ		used in our study is same fully describes distortion i		

🕖 Depai	tment of Engineering Physics	Page 77
Publ	ications	
1	A. Beddall, A. Beddall, A. Bingül, Y. Durmaz A Comparison of Multi-Variate PDE Methods in Neutral Pion	
	Discrimination , Acta Physica Polonica B, 38 187-195 (2007).	
1	A. Beddall, A. Beddall, A. Bingül, Y. Durmaz Smoothed multi-variate histogrammed PDEs, and \$chi^2\$ optimisation, Computer Physics Communications, 175 700-707 (2)	:006).
1	A. Beddall, A. Beddall, A. Bingül Reducing systematic errors in the selection of signals from two photon mass spectra, Nuclear Inst. and Methods in Phy. Res A, 5: 469-473 (2005).	
	A. Beddall, A. Beddall, A. Bingül A Ranking Method for Neural Pion Selection in High Multiplic Hadronic Events, Nuclear Inst. and Methods in Phy. Res A 482, 5 527 (2002).	•
	king Method for Neutral Pion and Eta Selection in Hadronic Events, TFD 22 (2 ve Production of rho+- mesons in Hadronic Z Decays, AIP 899 (2007)	2004)

