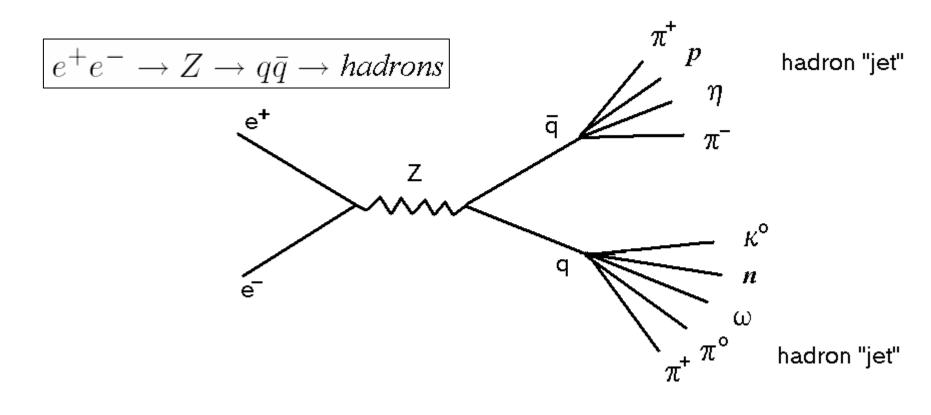
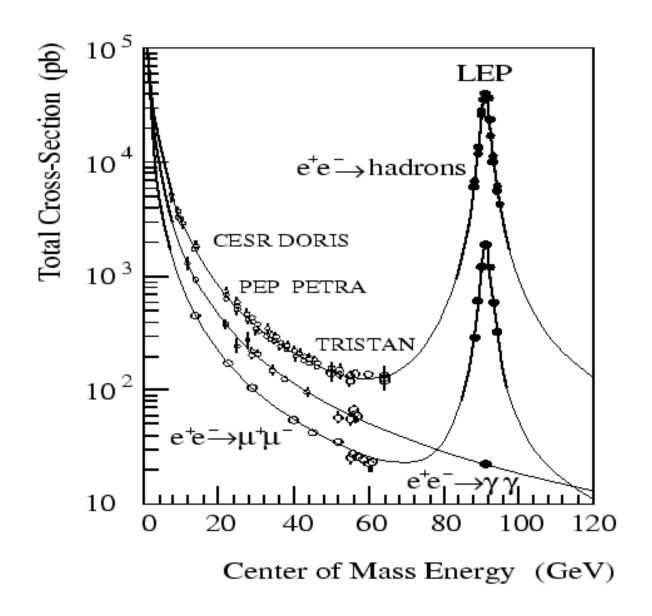


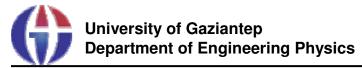
Inclusive Production of the $\rho^{\pm}(770)$ Meson in Hadronic Decays of the Z^0 Boson

Ph.D. Thesis in Engineering Physics University of Gaziantep

Supervisor: Assoc. Prof. Dr. Ayda BEDDALL Co-supervisor: Assist. Prof. Dr. Andrew BEDDALL


By Ahmet BİNGÜL April 2007


Introduction

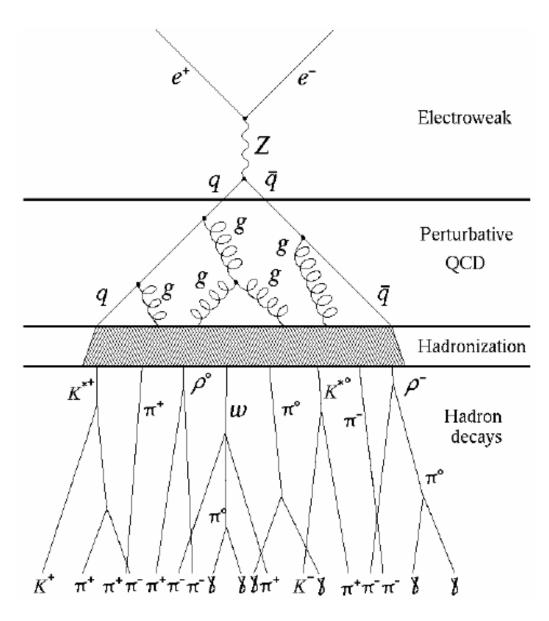

High energy collisions of sub-atomic particles can result in events containing a high multiplicity of hadronic particles.

An example was the production of Z^0 Bosons at LEP an e^+e^- collider with $E_{\rm CM} = 91.2$ GeV ($\approx 1.5 \ge 10^{-8}$ Joules)

The Standard Model

Table 2.1: The particles and forces of the Standard Model.

Fermions $(spin - \frac{1}{2})$			$Bosons \ (spin \ 1)$			
Qu	arks	Lep	tons	em.	Weak	Strong
u (up)	$d \; (down)$	e^-	ν_e			
c (charm)	s (strange)	μ^{-}	$ u_{\mu}$	γ	W^{\pm}, Z	gluons(8)
t (top)	$b \ (bottom)$	τ^{-}	ν_{τ}			


The transition:

quarks and gluons \rightarrow hadrons

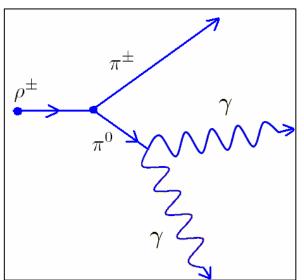
can only be described by *phenomenological models*.

The measurement of inclusive particle production cross sections of *resonant states* (e.g: ω or ρ) improves the description of the *hadronization process*.

LEP was ideal for studying hadronization.

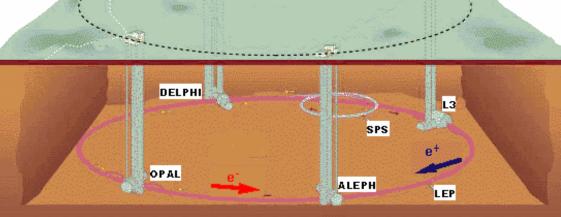
This study describes the ALEPH measurement of

- the production rate and
- the differential cross section


of the $\rho^{\pm}(770)$ meson in hadronic decays of the Z boson.

 ρ^{\pm} candidates are reconstructed from the decay channel:

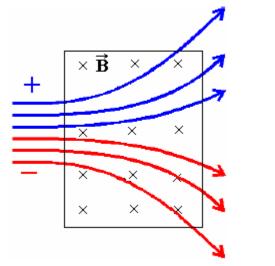
$$\rho^{\pm} \to \pi^0 + \pi^{\pm} \quad (BR \approx 100\%)$$

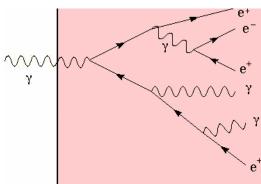

The results are compared with:

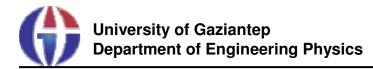
- **JETSET 7.4** (a Monte Carlo event generator software)
- **OPAL** measurement (unique at LEP)

The Large Electron-Positron Collider (LEP)

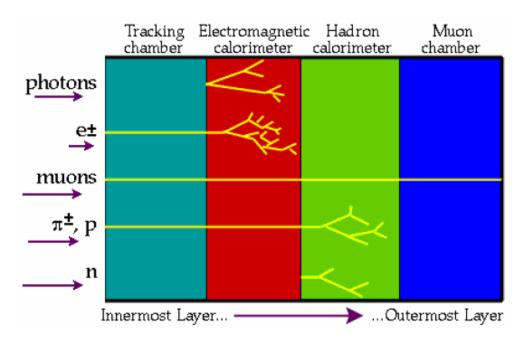
- Circumference 27 km (largest e^+e^- collider)
- Located in an underground at a depth about 100 m
 - Operated between 1989 – 1995; $E_{CM} = 91.2 \text{ GeV}$ for Z between 1995 – 2000; $E_{CM} = 160-190 \text{ GeV}$ for W+Wfor ALEPH, DELPHI, OPAL and L3 experiments

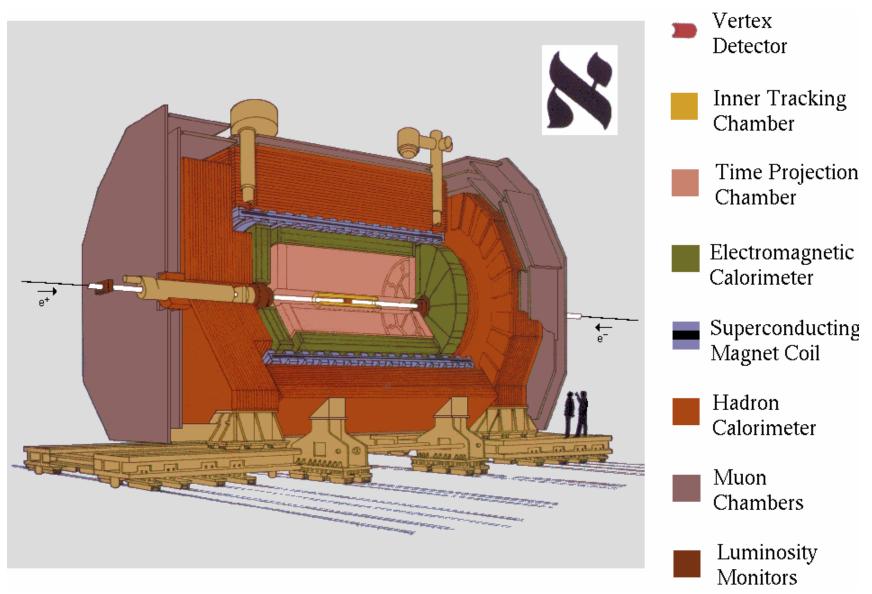

Particle Detectors

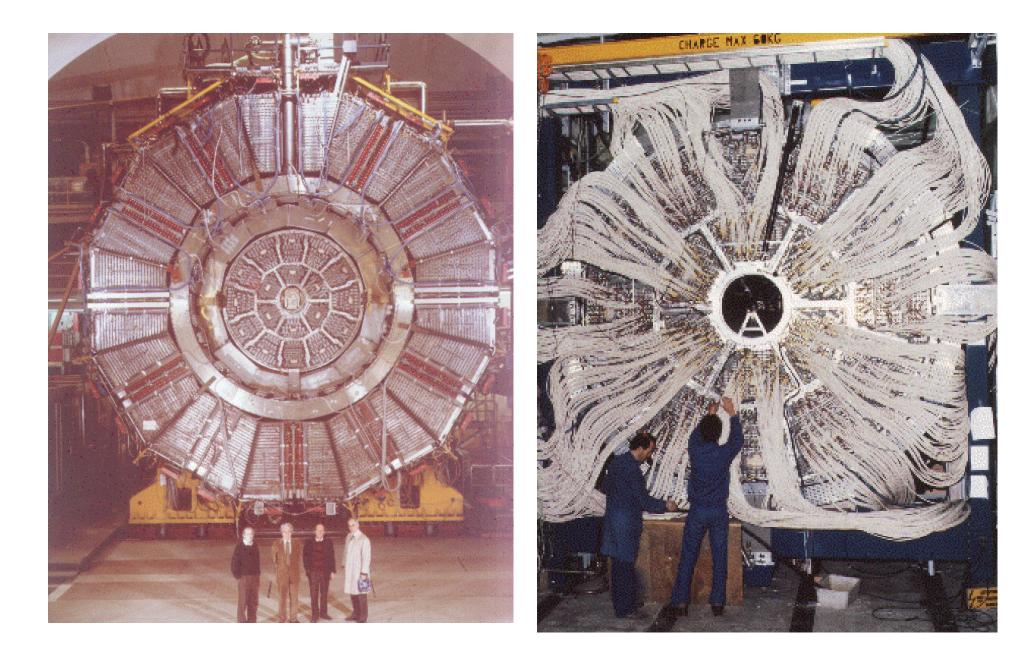

Detectors employed in HEP experiments record *position, arrival time, momentum, energy* and *identity* of particles.


Charged particles (e^{\pm} p K^{\pm} μ^{\pm} π^{\pm}) can be detected through their ionisation in tracking chambers

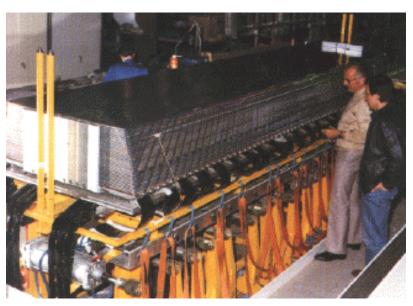
- * a measure of the curvature of the track in a magnetic field gives a measure of its momentum
- * a measure of the rate of ionisation loss (dE/dx) can be used to determine its type

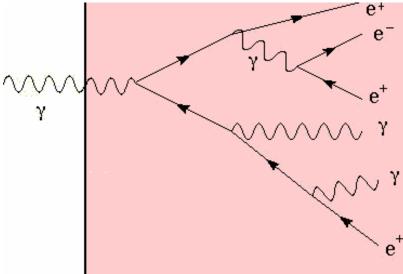

Neutral particles (γn) are detected via calorimeters, where their position and energy are measured.


Different particle types interact differently with matter e.g. photons do not feel a magnetic field

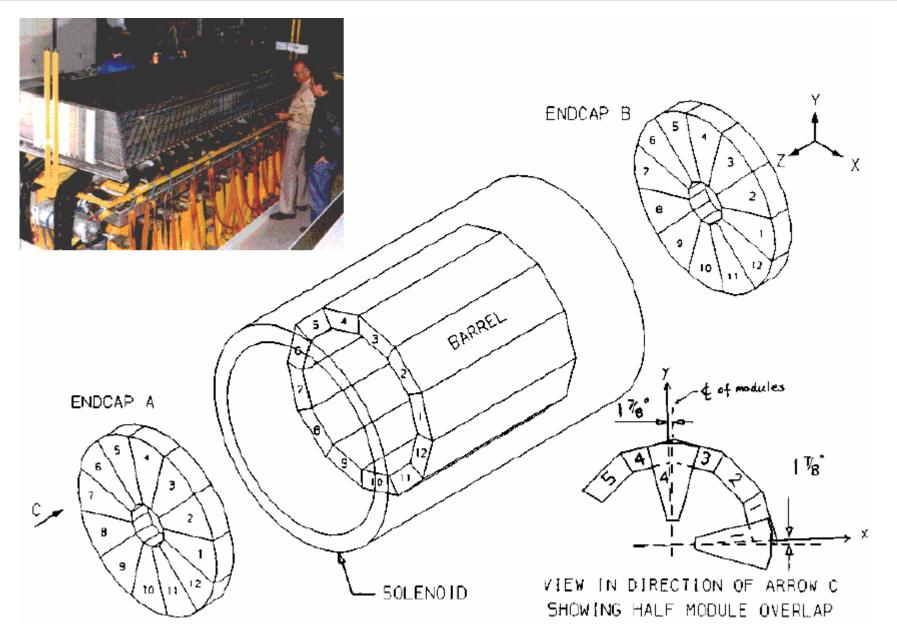

We need different types of detectectors to measure different types of particles.

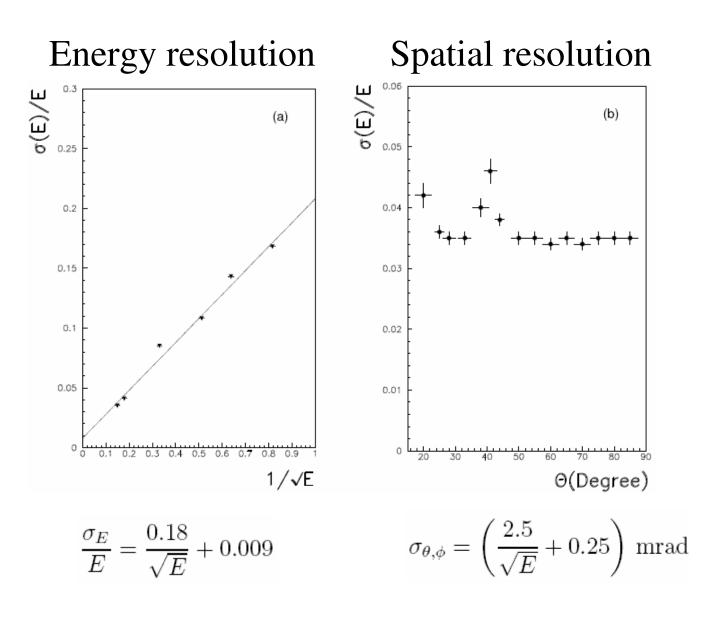
The ALEPH Detector

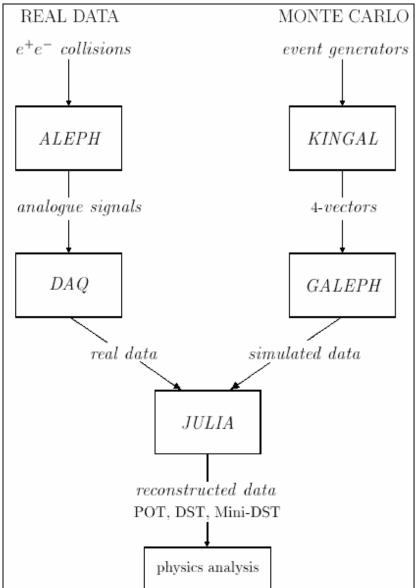

Tracking Chambers


Detector	Resolution	Photo
Vertex Detector (VDET)	$\sigma(r, \phi) = 12 \ \mu m$ $\sigma(z) = 10 \ \mu m$	
Inner Tracking Chamber (ITC)	$\sigma(r,\phi) = 20 \ \mu \mathrm{m}$	
Time Projection Chamber (TPC)	$\begin{split} &\sigma(r,\phi) = 180 \ \mu \mathrm{m} \\ &\sigma(z) = 1 \ \mathrm{mm} \\ &\sigma(p) = 1.2 \times 10^{-3} p^2 \ \mathrm{GeV/c} \end{split}$	

Electromagnetic Calorimeter (ECAL)


For electrons and photons of high energy, a dramatic result of the combined phenomena of bramsstrahlung and pair production is the occurance of cascade showers.


A parent electron will radiate photons, which converts to pairs, which radiate and produce fresh pairs in turn, the number of particles increasing exponentially with depth in the medium.



Event Reconstruction and Simulation

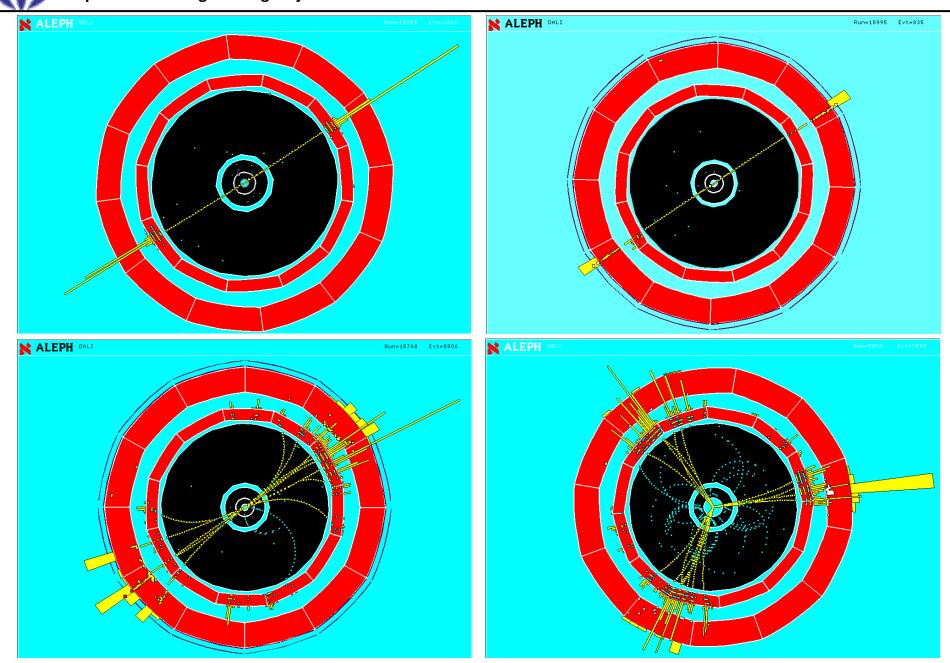
Event Selection

The ALEPH detector recorded a variety of events

- $\gamma\gamma$ events
- most of decays of Z boson to its various modes

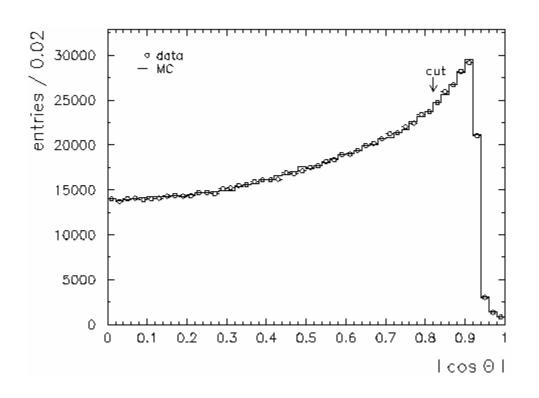
Z Decay Mode	Fraction $(\%)$
$Z \rightarrow e^+e^-$	3.363 ± 0.004
$Z \rightarrow \mu^+ \mu^-$	3.366 ± 0.007
$Z \rightarrow \tau^+ \tau^-$	3.370 ± 0.008
$Z \rightarrow q\bar{q}$ hadrons	69.910 ± 0.060
$Z \rightarrow \nu \bar{\nu}$ invisible	20.000 ± 0.060

In addition, there are small number of background:


- beam-gas interaction
- beam electrons
- cosmic rays

University of Gaziantep Department of Engineering Physics

Chapter 5


April 2007

Page 18

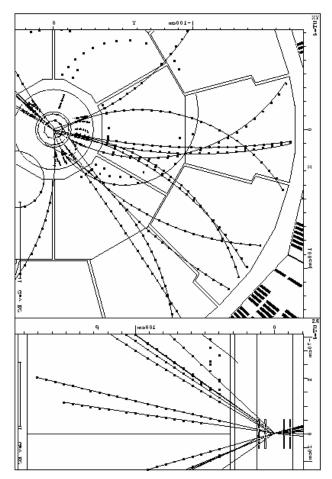
To remove events which suffer from a low geometric acceptance, a cut applied on the polar angle, θ , of the event axis as defined by sphericity.

Events are accepted if $35^{\circ} < \theta < 145^{\circ}$ ($|\cos \theta| < 0.82$)

Hadronic Event Selection

Hadronic events are selected on the basis of

the total charged multiplicity and energy within an event.

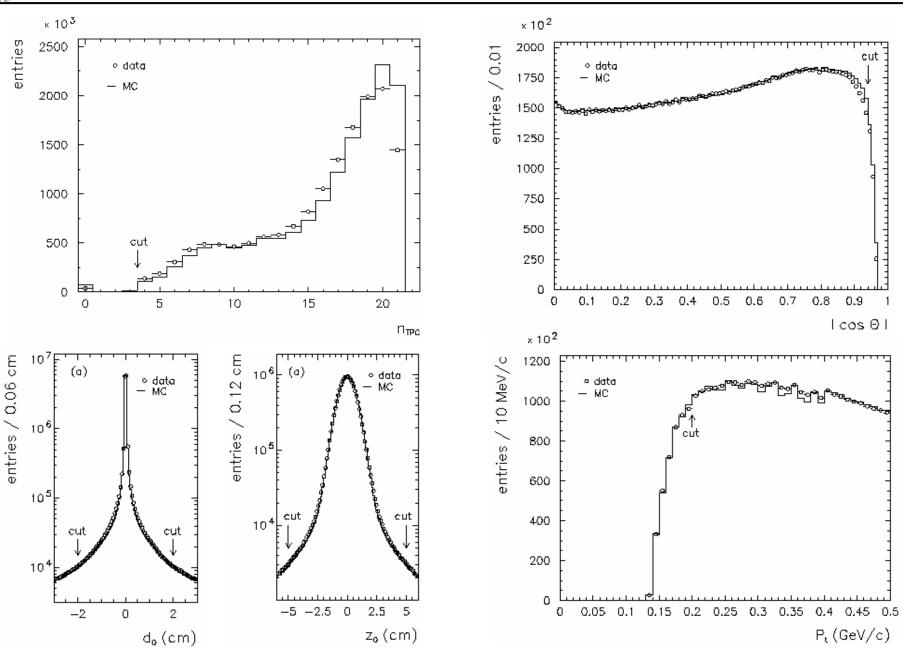

For this, cuts are applied to select 'good charged tracks'.

Track Cuts

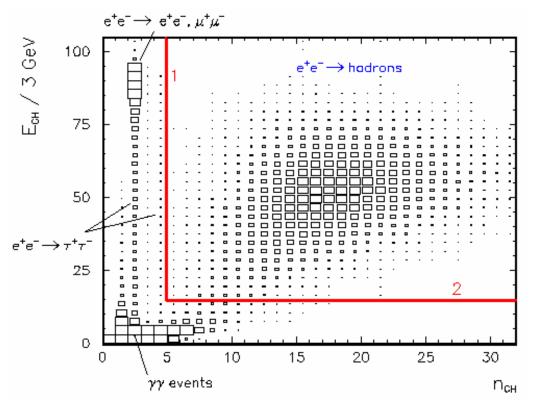
removes same badly reconstructed tracks.

A good charged track must have:

- at least 4 TPC hits
- a polar angle $20^\circ < \theta < 160^\circ$
- > a transverse impact parameter $|d_0| < 2$ cm
- > a longitudinal impact parameter $|z_0| < 5$ cm
- > a transverse momentum $p_t > 200 \text{ MeV/c}$



University of Gaziantep Department of Engineering Physics



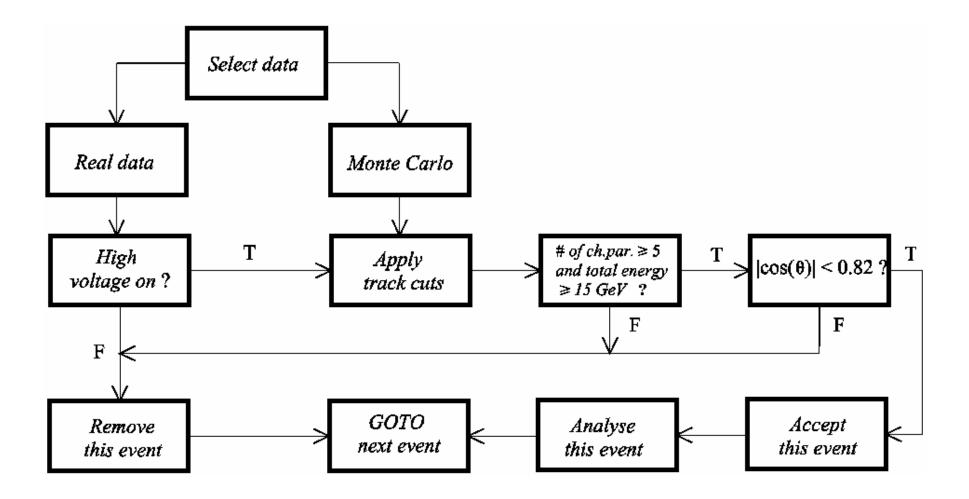
April 2007 Page 21

Event Cuts

- **1.** a minimum of 5 'good' tracks
- 2. a minimum of 15 GeV total 'good' charged energy

With these cuts a total

3,239,746 hadronic events


are selected with

efficiency: ε = 95.0 % purity : P = 99.6 %

from data recorded by ALEPH from 1991 to 1995 running periods.

Flow chart of hadronic event selection:

Track Selection

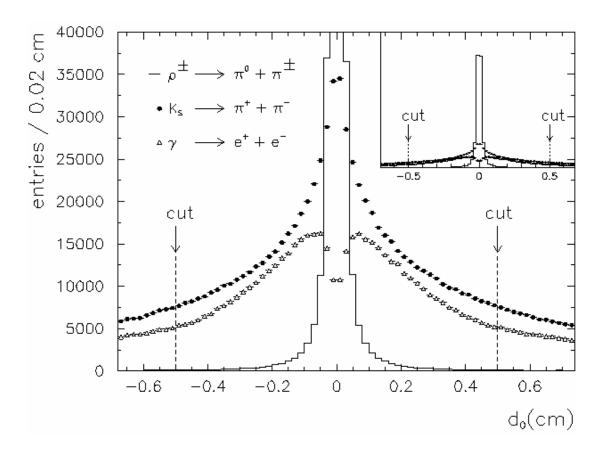
 ρ^{\pm} candidates are reconstructed from the decay channel:

 $\rho^{\pm} \to \pi^0 + \pi^{\pm} \quad (BR \approx 100\%)$

 π^{\pm} selection is relatively trivial, while

 π^0 selection and reconstruction is more complicated.

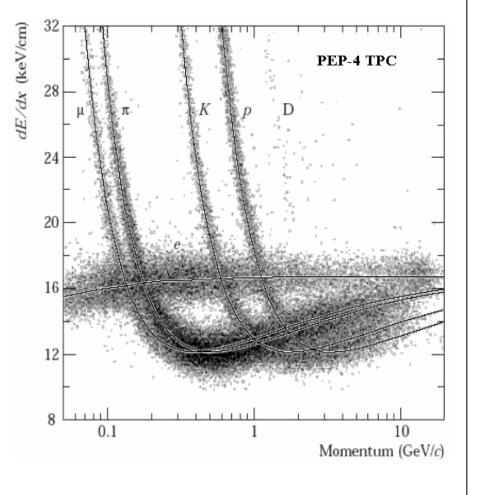
All selection performances are determined from the Monte Carlo with the aim to maximise both purity and efficiency.

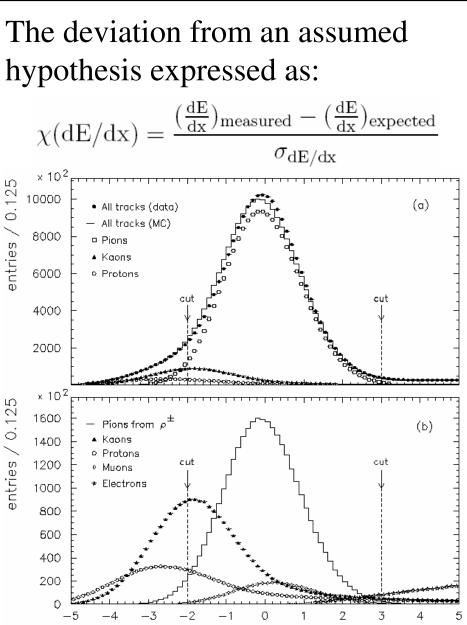

Charged Track Selection

All good tracks originating from IP are considered as pions.

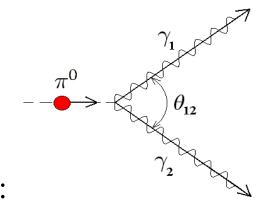
The following cuts select π^{\pm} with $\varepsilon = 95\%$ and P = 43%

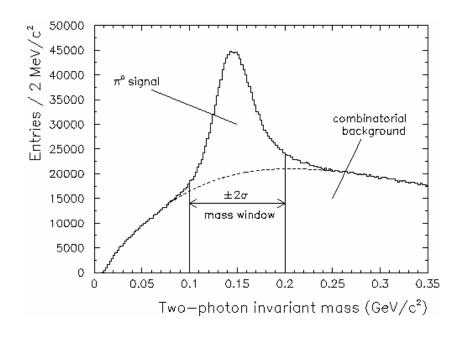
- a transverse impact parameter $|d_0| < 0.5$ cm
- longitudinal impact parameter $|z_0| < 3.0$ cm
- a transverse momentum $p_t > 250 \text{ MeV/c}$
- if available, $-2 < \chi(dE/dx) < 3$ (with pion hypothesis)


Tight cuts on the impact parameters are introduced to increase the reconstruction purity of π^{\pm} mesons from ρ^{\pm} .



 $\chi(dE/dx)$

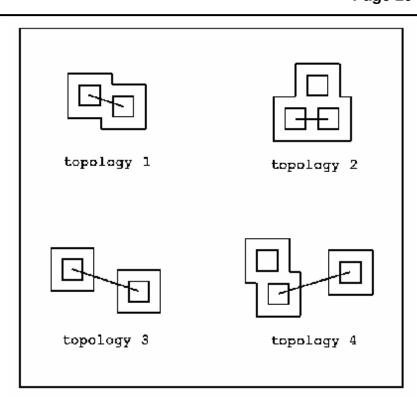

Charged particle identification is performed by the measurement of ionisation energy loss, **dE/dx**.


Neutral Pion Selection

Neutral pions are built from the decay $\pi^0 \rightarrow \gamma + \gamma$

Invariant mass spectra is built up by the equation:

$M^2 =$	$2E_1E_2(1$	$-\cos\theta_{12})$
---------	-------------	---------------------


Following cuts are applied:

- Each photon energy $E\gamma > 1$ GeV
- Pion energy $E\pi < 18 \text{ GeV}$
- Invariant mass of two photon M(γ₁,γ₂), should be within ±2σ mass window around pion signal.
 σ is defined as HWHM.

Poor purity of the pions are improved by a **'Ranking' Method.**

The **topology** of reconstructed π^0 is found to be important.

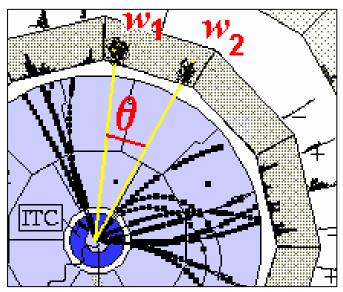
Geometric representation of four possible π^0 topologies are given right.

Photon pairs taken from:

topology 1: one ECAL cluster, within which two subclusters are resolved
topology 2: one ECAL cluster, within which more than two subclusters are resolved
topology 3: two ECAL clusters, within each of which no subclusters are resolved
topology 4: two ECAL clusters, within one or both of which more than one subcluster is resolved

Mass Constraint

Uncertainties in the reconstructed momentum vector of a π^0 are introduced due to the finite ECAL spatial and energy resolution.

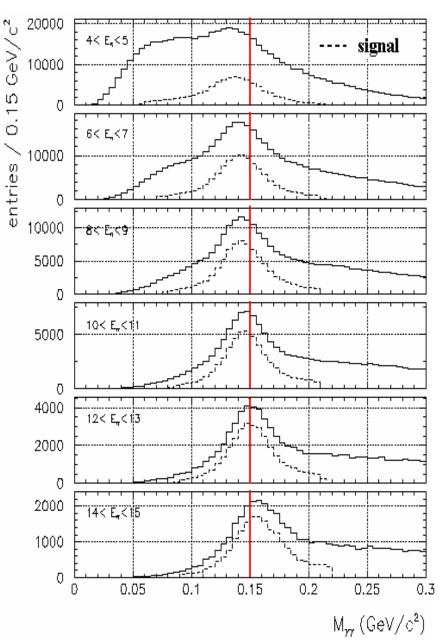

To improve the momentum resolution of the pion the reconstructed mass can

be constrained to the nominal pion mass of 135 MeV/c². This is done by modifying the photon energies (E_1 and E_2) and opening angle (θ) between photons until the required mass is obtained. These parameters can be found by minimising the chisquare form:

$$\chi^2 = \left(\frac{E_1 - \omega_1}{\sigma_1}\right)^2 + \left(\frac{E_2 - \omega_2}{\sigma_2}\right)^2 + \left(\frac{\cos\theta_{\gamma\gamma} - K}{\sigma_{\cos\theta_{\gamma\gamma}}}\right)^2$$

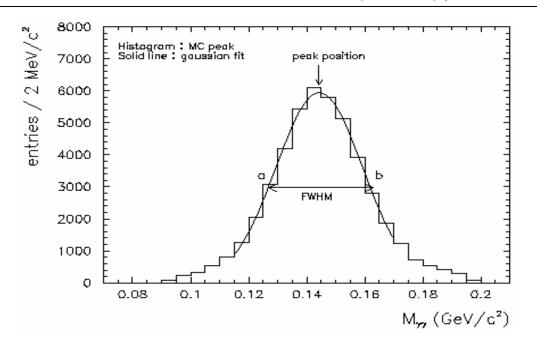
with mass constraint:

$$M_{\pi^0}^2 = 2E_1 E_2 (1 - K)$$

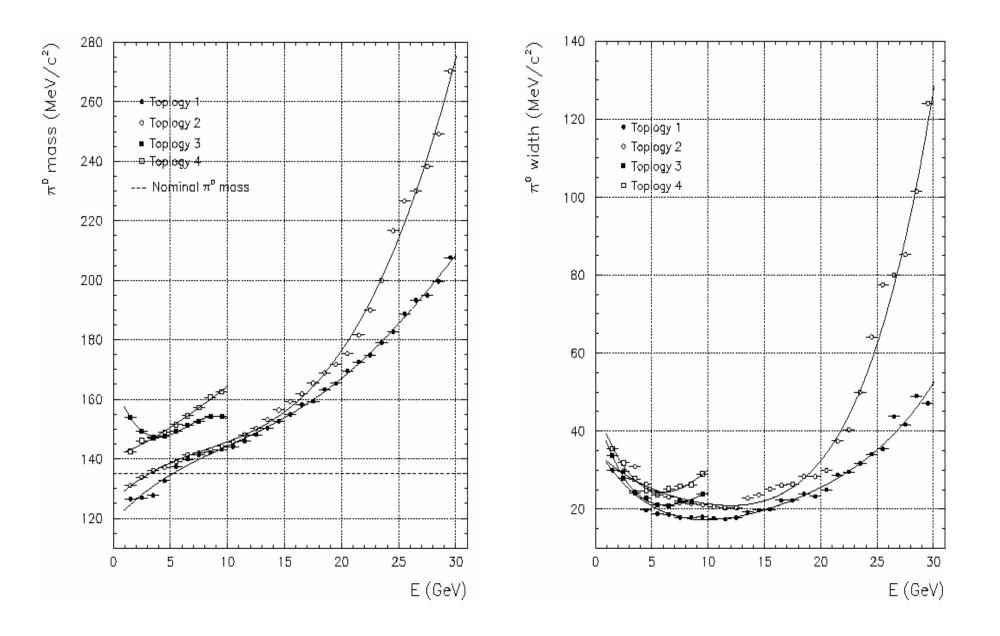

Page 31

Selecting π^0 candidates from a mass window around the π^0 peak provides initial rejection of most of the combinatorial background.

It is found that: peak mass and width of the π^0 signal depend on both energy and topology.


So, we need to calibrate two functions

m(E,T) and $\sigma(E,T)$



The calibration procedure is as follows:

- 1. The mass spectra is plotted for the matched pion signal (for each topology in 1 GeV energy intervals)
- 2. The peak (signal) is fitted with a Gaussian from which positions *a* and *b*, taken at half height, are measured
- 3. Half width at half maximum HWHM $\sigma = (b-a)/2$ and the center of the mass window m = (b+a)/2 are evaluated

An example to show the performance of the calibration for each topology for pion energy between $2 GeV < E_{\pi^0} < 3 GeV$

The calibration functions give a correct selection of π^0 peak.

April 2007 Page 34

The Ranking Method

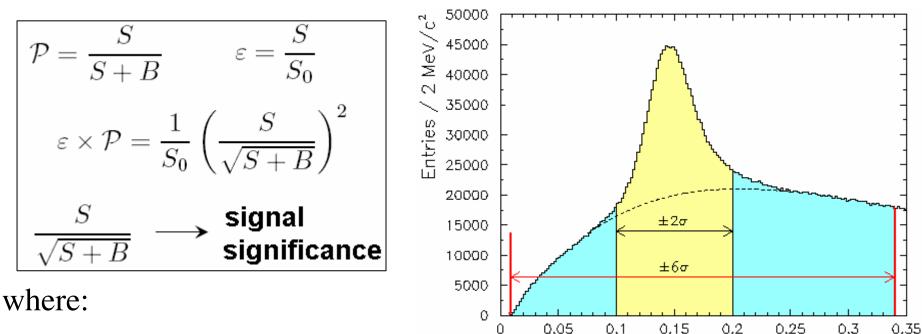
Consider **n** photons taken from the ECAL. We can form π^0 candidates by building photon pairs as follows:

PHOTONS	SELECTED PAIRS			(combinations)		
1	12	23	34	45		(n-1)n
2	13	24	35			
3	14	25		·		
4	15	÷		÷		
5		÷		4n		
•		·	Зn			
		2n				
n	1n					

Number of combinations:

$$C(n,2) = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$$

we have n(n-1)/2 candidates forming S+B but only n/2 of them are true forming S.

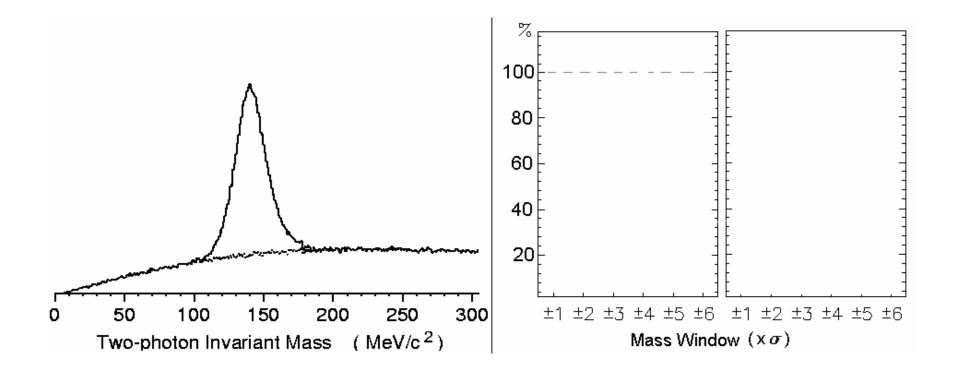

Signal-to-background ratio:

$$\frac{S}{B} = \frac{n/2}{n(n-1)/2 - n/2} = \frac{1}{n-2}$$

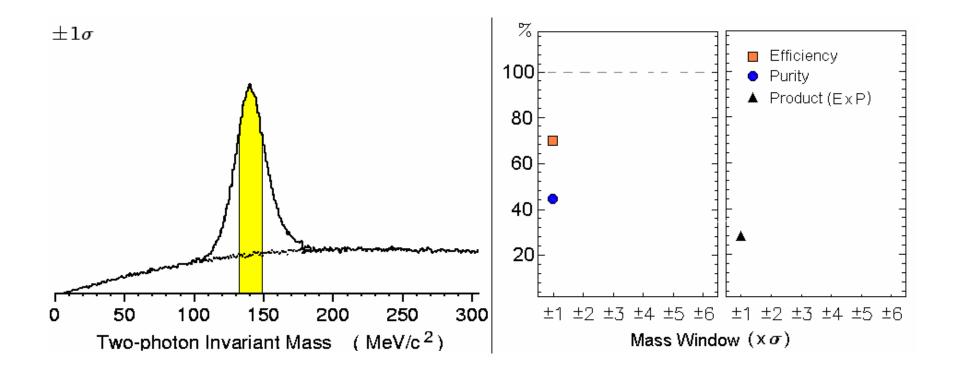
Two-photon invariant mass (GeV/c^2)

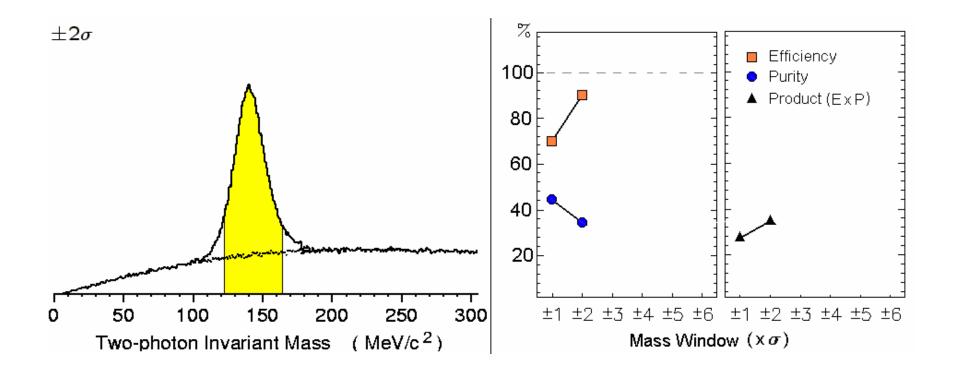
Purity and Efficiency

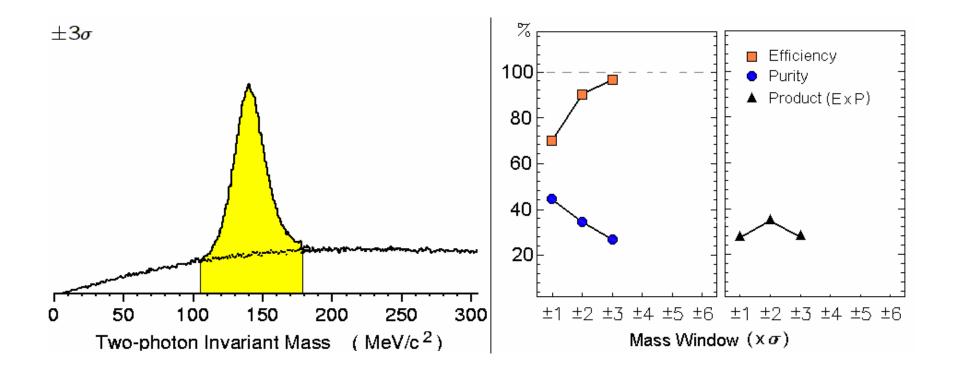
In this study, we define the neutral pion purity (\mathcal{P}) and efficiency (ε) as follows:

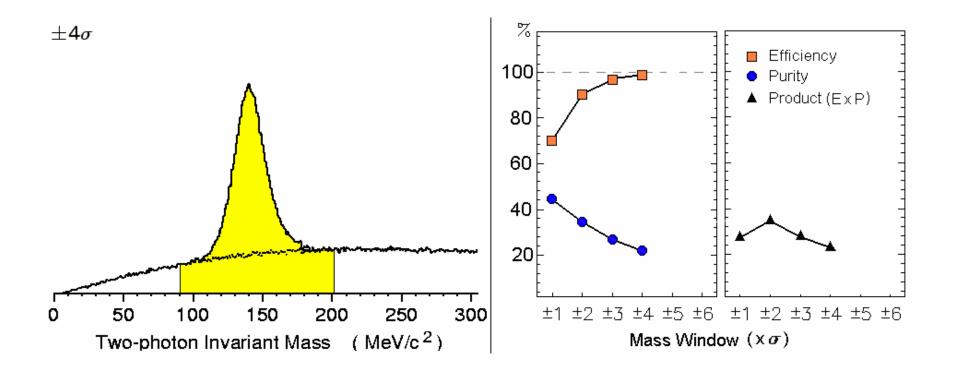

S is the number of signal, and

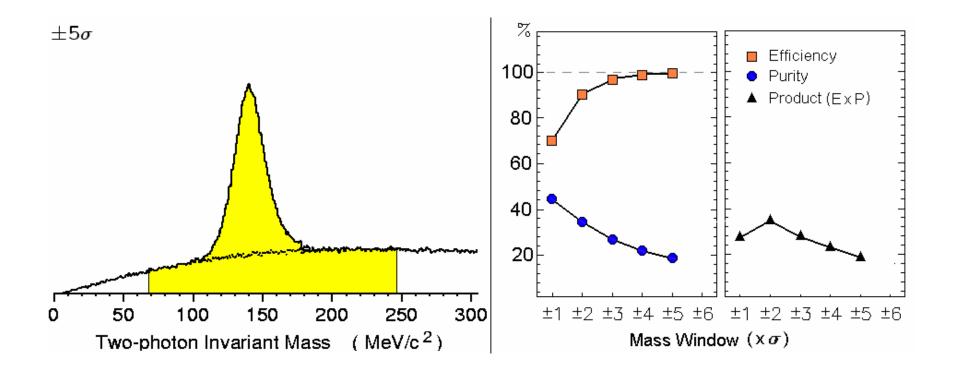
B is the number of background for the given mass window and

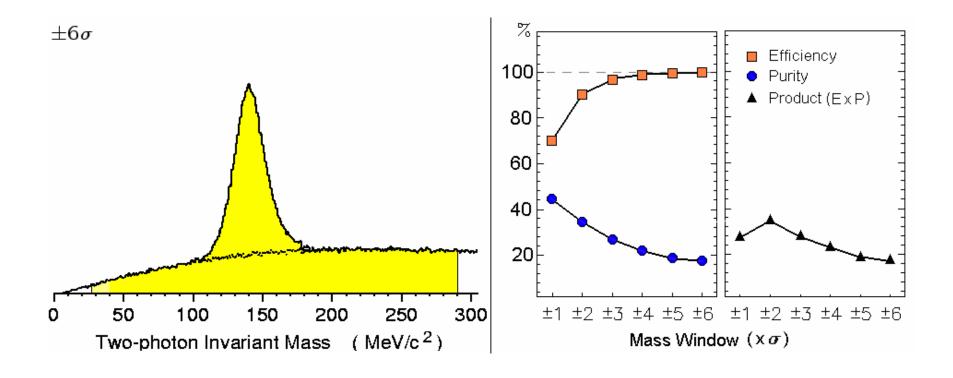

 S_0 is the total number of signal within $\pm 6\sigma$ mass window


The Standard Method

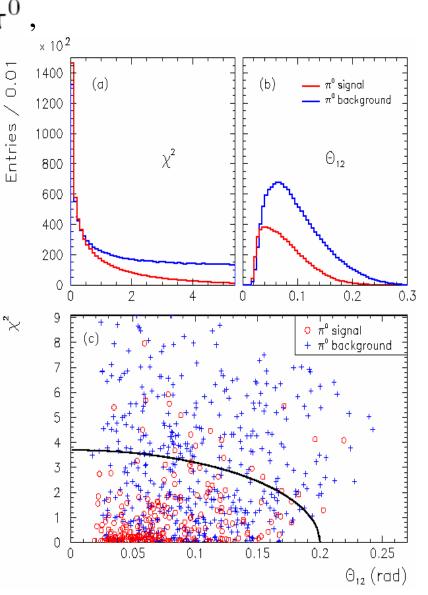








π^0 Estimators


An estimator, based on kinematics of π^0 , can be used to discriminate signal and background. Following distributions define our estimators:

Chapter 8

- chi-square (χ^2) values from mass constraint
- photon pair opening angles, θ_{12}
- 2D scatter distribution of χ^2 vs θ_{12}

Solid curve has the form:

$$(\frac{\chi^2}{A})^2 + (\frac{\theta_{12}}{B})^2 = 1$$

Ranking Method

After the initial mass window selection, additional improvement can be achived by applying the estimator indirectly with a 'Ranking' method.

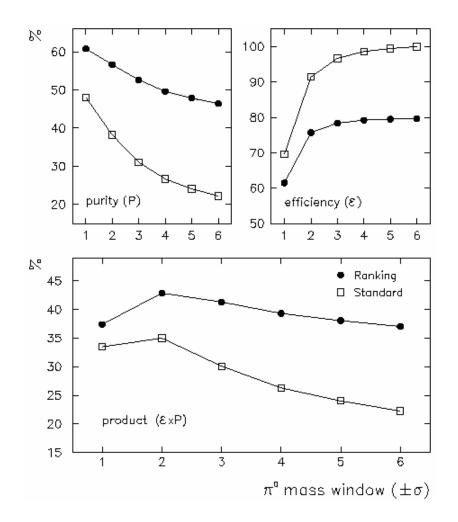
The algorithm is as follows:

- 1. Pion estimator values are calculated for each pion in an **event**
- 2. Pions candidates are ranked according to **their estimator values**
- 3. A scan is then made through the list for pairs of pions which share photons. When such a pair exist, **one or both candidates must be false**; the candidate with largest estimator value is removed

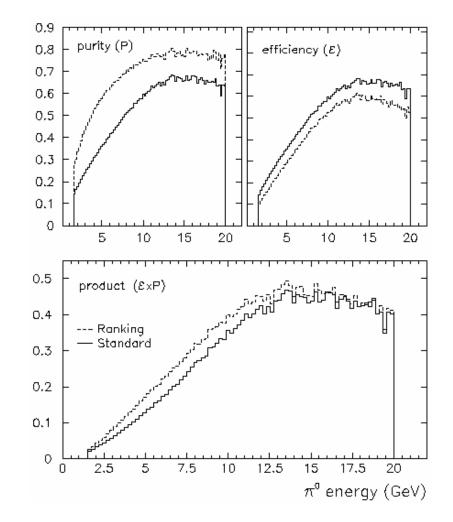
Example of applying Ranking method:

SELECTED CANDIDATES BEFORE RANKING

#	Pion est.	Photon 12	Truth info.
A	0.05	A1 A2	TRUE
в	0.12	B1 B2	TRUE
x	0.19	D1 E1	FALSE
С	0.28	C1 C2	TRUE
Y	0.45	A1 B2	FALSE
D	0.63	D1 D2	TRUE
Z	0.87	C2 E2	FALSE

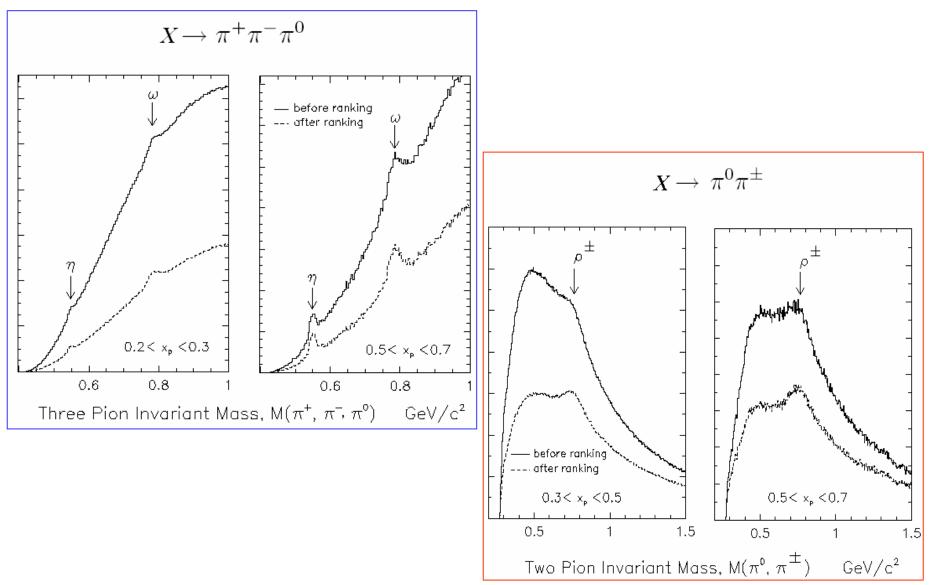

SELECTED CANDIDATES <u>AFTER</u> RANKING								
	Pion	Pho	oton	Truth				
#	est.	1	2	info.				
A	0.05	A1	A2	TRUE				
В	0.12	в1	B2	TRUE				
Х	0.19	D1	E1	FALSE				
С	0.28	C1	C2	TRUE				

To investigate performance of the Ranking method, the mass window, and pion energy is varied. The results are compared with the standard method. Performance is measured in terms of the product: $\varepsilon \times \mathcal{P}$



Performance of the Ranking Method

Mass window


Energy

April 2007 Page 48

Example Applications

Extraction of the $\,\rho^{\pm}(770)\,$ Signal

The rate and cross section of the ρ^{\pm} meson are extracted from the invariant mass distribution of its daughter pions,

$$p^{\pm} \to \pi^0 + \pi^{\pm} \quad (BR \approx 100\%)$$

by fitting the invariant mass to a sum of signal and background functions.

Extraction of ρ^{\pm} yield is complicated by:

- the large with resonance
- the reflection of other mesons (especially $\omega \to \pi^0 \pi^+ \pi^-$)
- the partially reconstructed signal
- the large combinatorial background
- the residual Bose-Einstein correlations that affects both signal and background shape

April 2007 Page 50

Two-pion Invaiant Mass

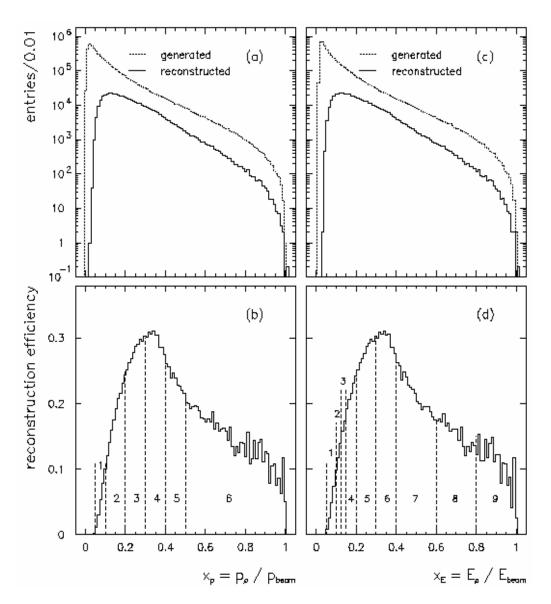
Charged and Neutral pions are selected as described in Chapter 6. Invariant mass of two pions is defined as:

$$m^{2}(\pi^{\pm}, \pi^{0}) = E_{\rho^{\pm}}^{2} - p_{\rho^{\pm}}^{2}$$
$$= (E_{\pi^{\pm}} + E_{\pi^{0}})^{2} - (\vec{p}_{\pi^{\pm}} + \vec{p}_{\pi^{0}})^{2}$$

Entries / 0.02 GeV/c³ 122000 12000 12000 12000 ALEPH Archived Data where $E_{\pi}^2 = p_{\pi}^2 + m_{\pi}^2$ with 12500 10000 $m_{\pi^{\pm}} \approx 140 \,\mathrm{MeV/c^2}$ 7500 $m_{\pi^0} \approx 135 \,\mathrm{MeV/c^2}$ 5000 2500 o 0.6 0.8 1.2 0.2 0.4 1 1.4 1.6 1.8 $M(\pi^0,\pi^{\pm})$ GeV/c²

Signal Reconstruction

The data is analysed in


- six intervals of scaled momentum: $x_p = p_{\rho}/p_{beam}$
- nine intervals of scaled energy: $x_E = E_{\rho}/E_{beam}$

Here	p_{beam}	\approx	E_{beam}	(about 45.6 GeV)	is the LEP momentum.
------	------------	-----------	------------	------------------	----------------------

Interv	val x_p range	x_E range	
1	$0.05 \le x_p < 0.10$	$0.050 \le x_E < 0.100$	
2	$0.10 \le x_p < 0.20$	$0.100 \le x_E < 0.125$	
3	$0.20 \le x_p < 0.30$	$0.125 \le x_E < 0.150$	Note
4	$0.30 \le x_p < 0.40$	$0.150 \le x_E < 0.200$	
5	$0.40 \le x_p < 0.50$	$0.200 \le x_E < 0.300$	The results of the measurements
6	$0.50 \le x_p < 1.00$	$0.300 \le x_E < 0.400$	 in x_p intervals are compared
7		$0.400 \le x_E < 0.600$	with those of ALEPH p ⁰
8		$0.600 \le x_E < 0.800$	measurement
9		$0.800 \le x_E < 1.000$	
	ł		 in x_E intervals are compared
			with OPAL p [±] measurement

Using Monte Carlo, we can study the theoretical shape of the momentum and energy distributions for the generated and reconstructed ρ^{\pm} mesons.

The mean efficiency in each interval is used to correct the extracted signal in both Monte Carlo and real data.

Signal Extraction and Fitting Procedure

Signal Shape

Basic line shape for the ρ^{\pm} signal is a relativistic p-wave BreitWigner:

 $RBW(m) = \frac{m \cdot m_0 \cdot \Gamma(m)}{(m^2 - m_0^2)^2 + m_0^2 \cdot \Gamma^2(m)}$

with

$$\Gamma(m) = \Gamma_0 \cdot \left(\frac{q}{q_0}\right)^3 \frac{2q_0^2}{q_0^2 + q^2}$$

m is the two-pion invariant mass

 m_0 is the resonance peak mass

 Γ is the mass dependent width

 Γ_0 is the nominal width (FWHM)

q is the momentum of the decay products in the rest frame of parent

 q_0 is the momentum when $m = m_0$

Monte Carlo (**JETSET**) uses a non-relativistic Breit-Wigner:

(truncated between 0.3 and 1.3 GeV/c^2)

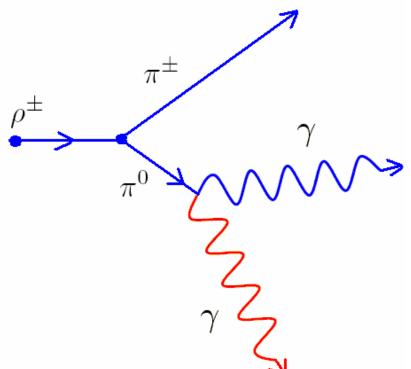

$$BW(m) = \frac{(\Gamma_0/2)^2}{(m - m_0)^2 + (\Gamma_0/2)^2}$$

Signal Shape

Nominal values are:

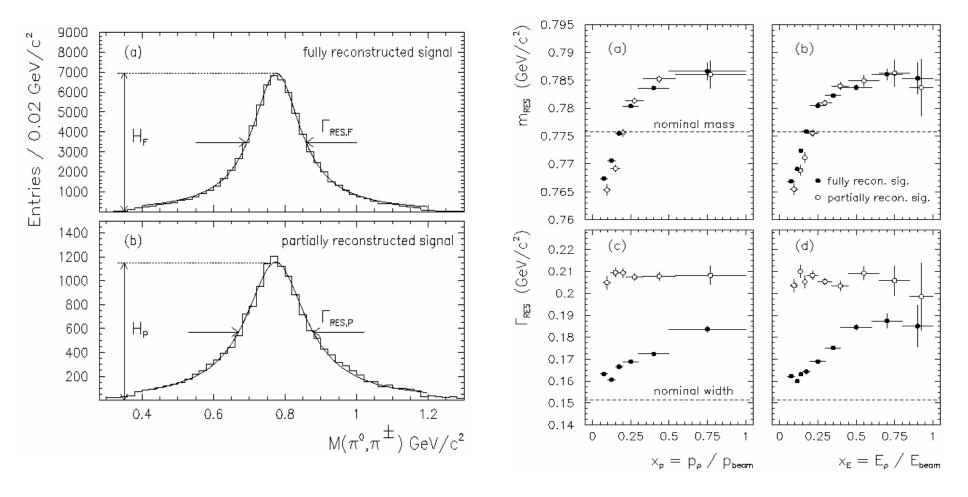
$$m_0 = 775.8 \pm 0.5 \text{ MeV/c}^2$$

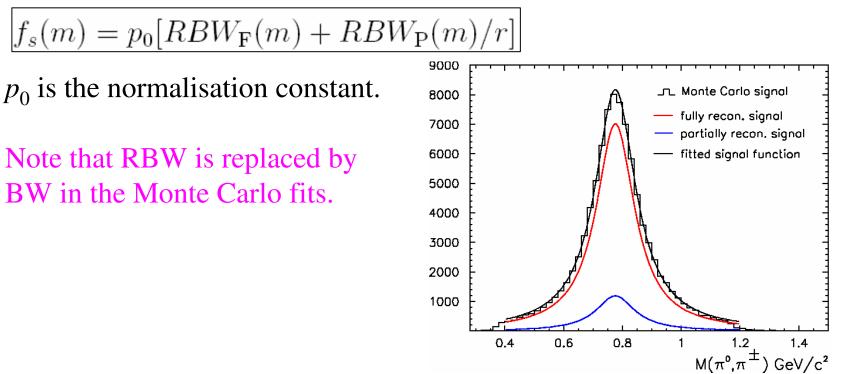
 $\Gamma_0 = 151.5 \pm 1.2 \text{ MeV/c}^2$


[PDG 2006]

Partially Reconstructed Signal

An important consideration is the effect of partially reconstructed ρ^{\pm} mesons where a π^0 is reconstructed from originating from ρ^{\pm} signal and one that is not.


Such a combination contains most of the kinematics of the ρ^{\pm} signal for this reason partial signal has similar, but wider shape.


Chapter 9

The width (Γ_0) and peak mass (m_0) are different from the nominal values due to resolution effects, which is dominated by π^0 component. The mass resolution (Γ_{res}) and peak mass (m_{res}) of the ρ^{\pm} meson are determined from the Monte Carlo.

Summary for the Signal function:

- In the fits, nominal values (Γ_0 , m_0) are replaced by Γ_{res} and m_{res}
- The height of the partially reconstructed signal (H_P) is parameterised as a function of fully reconstructed signal height (H_F) , since they are correlated. The ratio $r = H_F / H_P$ is taken from the Monte Carlo predictions.
- Signal function is parametrised as a sum of two RBW functions:

.

April 2007 Page 58

Combinatorial Background

The combinatorial background is parameterised by a smooth function:

$$f_b(m) = p_1 m_t^{p_2} \times \exp(p_3 m_t + p_4 m_t^2 + p_5 m_t^3)$$

where

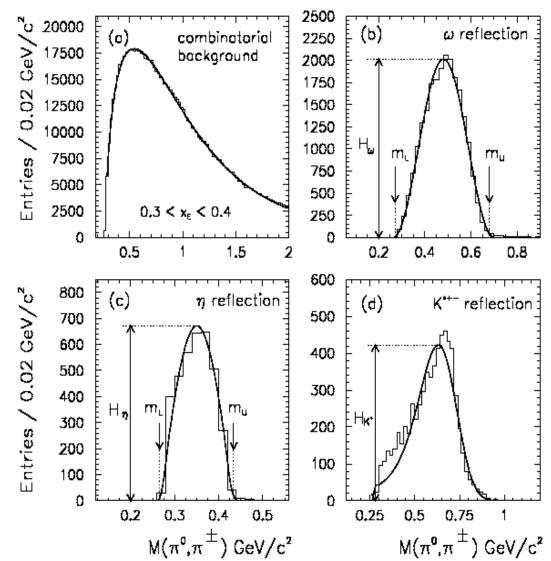
$$m_t = m - m_{\pi^0} - m_{\pi^\pm}$$

The free parameters $p_1 - p_5$ are adjusted by the fitting procedure.

Reflections

 $\pi^0 \pi^{\pm}$ mass spectra contain reflections from the decays:

$$\omega(782) \to \pi^0 \pi^+ \pi^-$$
$$\eta(548) \to \pi^0 \pi^+ \pi^-$$
$$K^{*\pm}(892) \to \pi^0 K^{\pm}$$



Appropriate functions representing each reflection are selected and fitted to the Monte Carlo.

in the Monte Carlo, the height of each reflection is fixed

in real data,

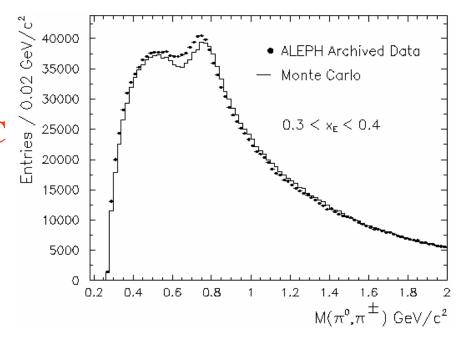
the height of each reflection (taken from MC) is scaled by a value obtained from the real data measurements.

April 2007 Page 60

Bose-Einstein Correlations

Bose-Einstein Correlations (BECs) are an apparent attraction in phase-space between identical bosons.

Features of BEC:

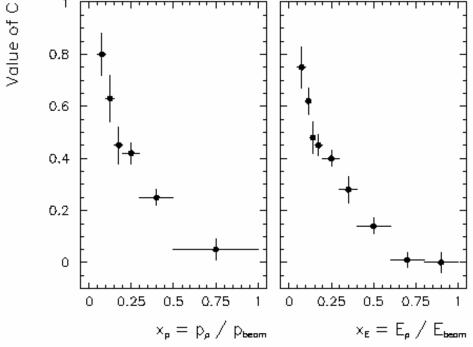

- BEC is relevant if and only if identical bosons (such as pions) are close to each other in phase-space.
- Most of the particles generated in hadronic events are pion triplets obeying Bose statistics. As a result, BECs affect the dynamics of the pions in the final state.
- BECs are quantum mechanical effect that must appear during the fragmentaion state. Hence, measurement of BECs can help the understanding of QCD studies.
- BECs are not implemented in MC programs effectively.

Residual Bose-Einstein Correlations

Experimental studies reveal that BECs affect the distribution of effective masses of $\pi^{\pm}\pi^{\pm}$ pairs originating from the IP.

The life-time (~10⁻²⁴s) and therefore decay length (~ 1fm) of the ρ^{\pm} meson is sufficiently short that pions from the decay $\rho^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$ can be considered as coming from the IP.

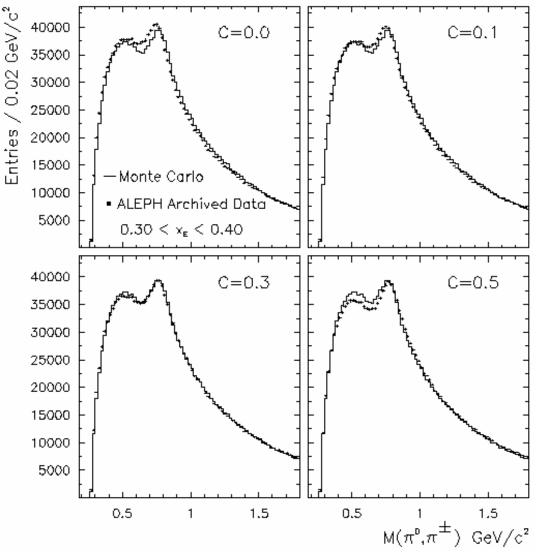
Hence a 'Residual' BECs must affect on pions of the ρ^{\pm} meson. Most appearent sign of residual BEC is a distortion in the mass spectra.



The distortion in real data can be described by interference effect, believed to originate from residual BECs, between the amplitudes of ρ^{\pm} and coherent (non-resonant) background.

A successful parameterisation is performed by Söding Model used before in the ρ^0 and ρ^{\pm} analysis.

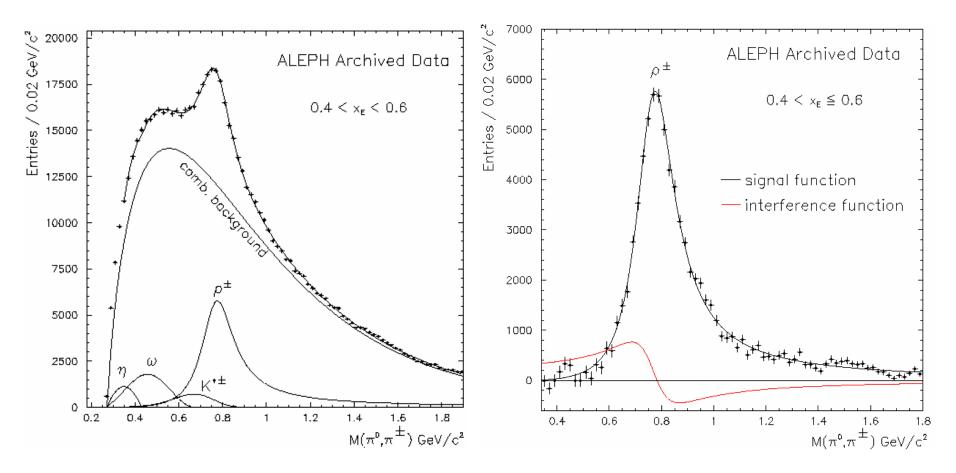
$$f_i(m) = C\left(\frac{m_{res}^2 - m^2}{m\Gamma(m)}\right) f_s(m)$$


where *C* is the strength of the interference, and is determined from data fits.

The interference term is a model to describe the distortion affecting both signal and background.

This can be shown by removing the interference term from the real data mass distribution.

C = 0.00 → original distribution C = 0.30 → close to its fitted value of 0.28



April 2007 Page 64

Total Fit Function

Total fit function is built by adding six model functions as follows: $F(m) = f_s(m) + f_b(m) + f_i(m) + f_{\omega}(m) + f_{\eta}(m) + f_{K^*}(m)$

Note that $f_i(m)$ is omitted for the Monte Carlo

Rates & Cross Sections

Production Rate:

Differential Cross Section:

$P = \frac{S 1}{2}$	1	$d\sigma$	R	1	$S \ 1$
$n = \overline{N}\overline{\varepsilon}$	σ_{tot}	dx =	δx	δx	$\overline{N} \varepsilon$

N: number of selected hadronic events

- S: number of (fitted) signal
- δx : width of the energy interval
 - ε : reconstruction efficiency defined as:

 $\mathcal{E} = \frac{n_{\text{rec}}}{n_{\text{gen}}} = \frac{\text{number of reconstructed rho-mesons in MC}}{\text{number of generated rho-mesons in MC}}$

April 2007 Page 66

Systematic Error Analysis

Statistical errors originate from counting (statistical) uncertainties that result in measured values being randomly high or low.

Systematic errors originate from detector effects, uncertainties in models, measurement procedures resulting in measured values being systematically high or low.

Possible source of systematic errors:

- track selection cuts
- fitting procedure
- reflection models
- signal function
- efficiency correction
- uncertainty in the extrapolation to full x_p and x_E ranges

Source of error	measured x_p interval						
	e_{all}	1	2	3	4	5	6
Fit range	1.9	0.4	2.4	2.1	4.4	0.8	6.8
Eff. correction	0.1	0.2	0.2	0.2	0.2	0.2	0.4
Signal width	1.6	3.6	3.2	2.1	2.8	3.5	5.6
Partial signal	*3.0	2.7	3.4	3.5	3.3	3.0	2.1
ω rate	$^{*}1.5$	2.0	1.7	1.5	0.7	0.3	0.8
η rate	$^{*}0.3$	0.0	0.0	0.5	1.1	0.2	0.0
$K^{*\pm}$ rate	*0.7	0.0	1.2	2.7	0.1	0.1	2.8
π^0 matching	*0.7	0.6	0.7	0.8	0.7	0.9	0.6
E_{γ}	2.6	6.0	6.1	3.1	3.2	3.2	3.0
E_{π^0}	1.5	3.5	3.7	2.4	1.5	1.6	4.6
π^0 mass window	1.3	2.6	3.1	2.7	3.5	2.3	3.3
$\chi(dE/dx)$	1.1	2.8	1.3	1.7	0.7	1.6	2.6
d_0	2.0	5.2	1.9	2.7	0.8	0.4	3.7
Systematic error							
(e_{tot})	5.7	10.7	10.0	8.0	8.1	6.5	12.3
Statistical error	1.1	2.5	2.2	1.6	0.9	0.9	2.2
Total error	5.8	11.0	10.2	8.1	8.1	6.6	12.5

Table 10.4: Systematic and statistical errors for the ρ^{\pm} rate in each measured momentum interval. All values are expressed in % rounded to one decimal place.

Table 10.5: Systematic and statistical errors for the ρ^{\pm} rate in each measure	ired
energy interval. All values are expressed in % rounded to one decimal place.	

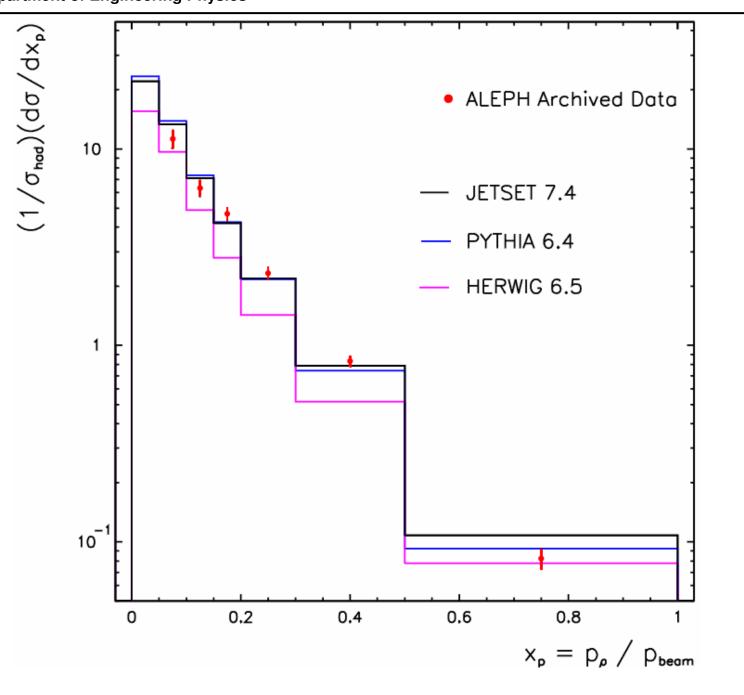
Source of Error				measu	ired x	$E_E interventering E_E$	erval			
	e_{all}	1	2	3	4	5	6	7	8	9
Fit range	1.9	4.7	2.6	3.9	3.3	1.5	2.2	3.7	2.8	2.5
Eff. correction	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.6	1.8
Signal width	1.6	3.4	3.9	3.8	3.4	3.5	3.3	3.4	3.6	2.8
Partial signal	*3.2	2.9	3.6	3.5	3.7	3.4	3.0	2.7	1.3	1.9
ω rate	$^{*}1.7$	1.6	2.9	3.2	1.0	2.2	0.3	0.4	0.2	0.1
η rate	$^{*}1.5$	1.7	2.3	2.5	2.2	0.3	0.2	0.2	1.2	0.0
$K^{*\pm}$ rate	*0.5	0.0	2.7	1.6	0.3	0.1	0.1	0.3	1.9	2.6
π^0 matching	*0.7	0.6	0.7	0.7	0.8	0.7	0.8	0.8	0.6	0.5
E_{γ}	2.8	6.3	5.0	4.0	4.5	6.4	3.8	4.3	2.5	4.4
E_{π^0}	1.2	3.0	2.4	3.5	0.7	0.4	1.0	3.1	0.2	8.8
π^0 mass window	2.0	4.7	4.7	4.3	3.8	2.8	2.2	3.0	2.2	5.9
$\chi(dE/dx)$	1.1	2.3	4.9	2.5	1.7	0.6	2.1	1.0	4.1	5.7
d_0	0.8	1.7	4.0	2.5	0.7	0.4	0.2	0.4	1.1	3.2
$Systematic\ error$										
(e_{tot})	6.1	11.3	12.3	11.0	9.0	9.0	7.1	8.5	7.6	14.2
$Statistical \ error$	1.0	2.3	2.7	2.4	1.2	0.9	1.2	1.2	3.4	6.3
Total error	6.2	11.5	12.6	11.3	9.1	9.1	7.2	8.6	8.3	15.5

Results

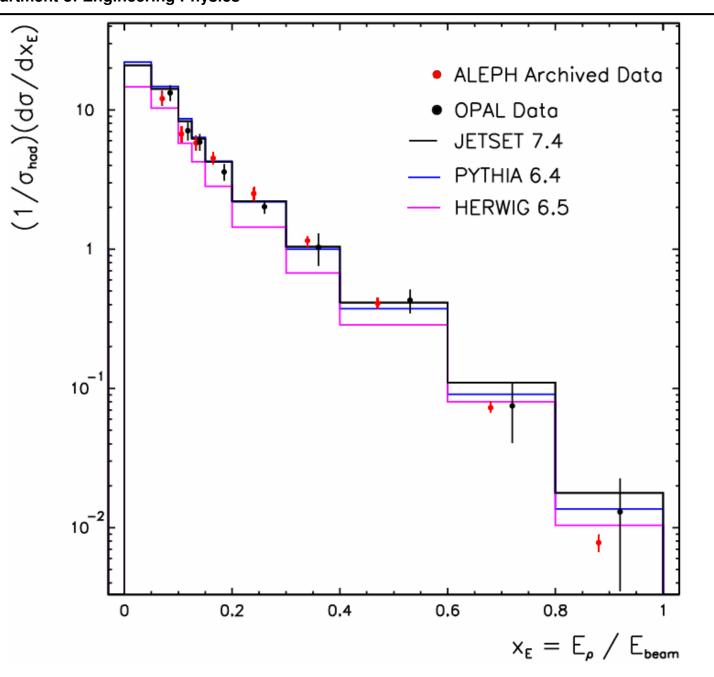
Table 11.1: Measured multiplicies and differential cross-sections for the ρ^{\pm} in x_p intervals. The result of summing over the measured x_p intervals is also given, including extrapolation to full x_p range with an additional error due to the uncertainty in the extrapolation.

$x_p \ range$	Multiplicity $\rho^{\pm}(770)/Z \ decay$	$1/\sigma_{had}d\sigma/dx_p$
0.05 - 0.10	$0.5622 \pm 0.0142 \pm 0.0603$	$11.2434 \pm 0.2840 \pm 1.2069$
0.10 - 0.15	$0.3162 \pm 0.0068 \pm 0.0315$	$6.3246 \pm 0.1364 \pm 0.6299$
0.15 - 0.20	$0.2338 \pm 0.0037 \pm 0.0187$	$4.6756 \pm 0.0736 \pm 0.3731$
0.20 - 0.30	$0.2335 \pm 0.0022 \pm 0.0189$	$2.3347 \pm 0.0216 \pm 0.1889$
0.30 - 0.50	$0.1663 \pm 0.0015 \pm 0.0109$	$0.8316 \pm 0.0073 \pm 0.0545$
0.50 - 1.00	$0.0412 \pm 0.0009 \pm 0.0051$	$0.0823 \pm 0.0018 \pm 0.0102$
0.05 - 1.00	$1.5532 \pm 0.0164 \pm 0.0880$	
all x_p	$2.5872 \pm 0.0273 \pm 0.1466 \pm 0.0428$	

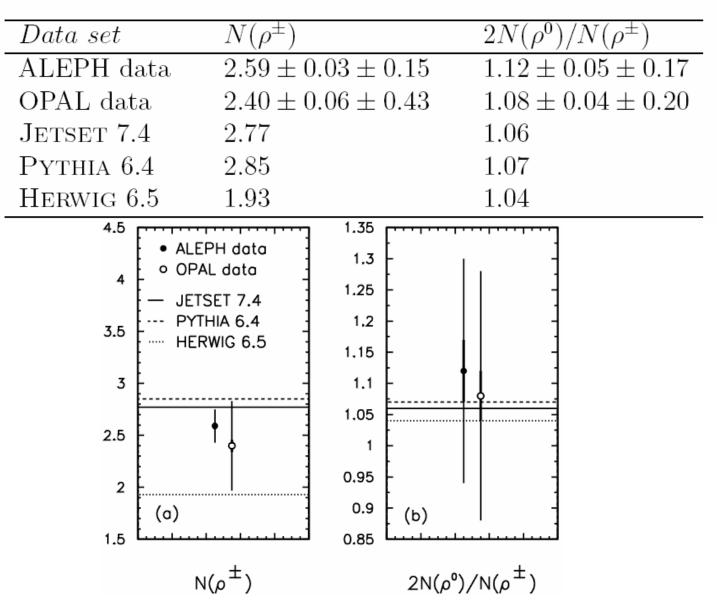
Table 11.2: Measured multiplicies and differential cross-sections for the ρ^{\pm} in x_E intervals. The result of summing over the measured x_E intervals is also given, including extrapolation to full x_E range with an additional error due to the uncertainty in the extrapolation.

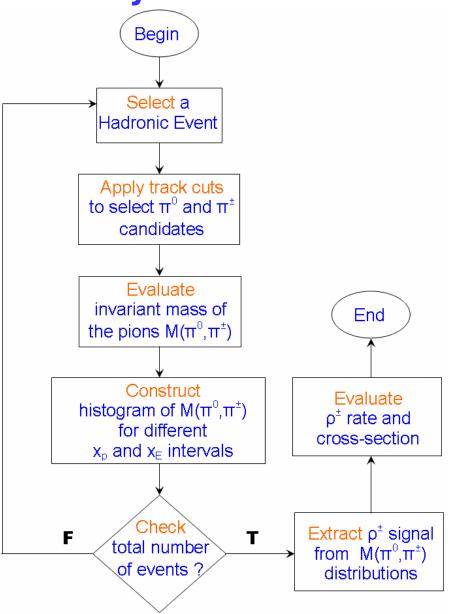

$x_E \ range$	Multiplicity $\rho^{\pm}(770)/Z$ decay	$1/\sigma_{had}d\sigma/dx_E$
0.050 - 0.100	$0.6050 \pm 0.0137 \pm 0.0683$	$12.0992 \pm 0.2740 \pm 1.3650$
0.100 - 0.125	$0.1679 \pm 0.0046 \pm 0.0206$	$6.7153 \pm 0.1840 \pm 0.8237$
0.125 - 0.150	$0.1450 \pm 0.0035 \pm 0.0160$	$5.7990 \pm 0.1400 \pm 0.6407$
0.150 - 0.200	$0.2258 \pm 0.0027 \pm 0.0204$	$4.5151 \pm 0.1090 \pm 0.4072$
0.200 - 0.300	$0.2506 \pm 0.0023 \pm 0.0226$	$2.5056 \pm 0.0230 \pm 0.2259$
0.300 - 0.400	$0.1151 \pm 0.0014 \pm 0.0082$	$1.1511 \pm 0.0140 \pm 0.0820$
0.400 - 0.600	$0.0820 \pm 0.0010 \pm 0.0070$	$0.4102 \pm 0.0050 \pm 0.0349$
0.600 - 0.800	$0.0146 \pm 0.0005 \pm 0.0011$	$0.0729 \pm 0.0025 \pm 0.0055$
0.800 - 1.000	$0.0016 \pm 0.0001 \pm 0.0002$	$0.0078 \pm 0.0005 \pm 0.0011$
0.050 - 1.000	$1.6076 \pm 0.0154 \pm 0.0981$	
all x_E	$2.5878 \pm 0.0248 \pm 0.1579 \pm 0.0408$	

University of Gaziantep Department of Engineering Physics



April 2007 Page 71


University of Gaziantep Department of Engineering Physics



Page 73

Table 11.3: Comparison of the total multiplicity of the ρ^{\pm} , $N(\rho^{\pm})$ and the ratio $2N(\rho^0)/N(\rho^{\pm})$ as measured by ALEPH to OPAL and Monte Carlo predictions.

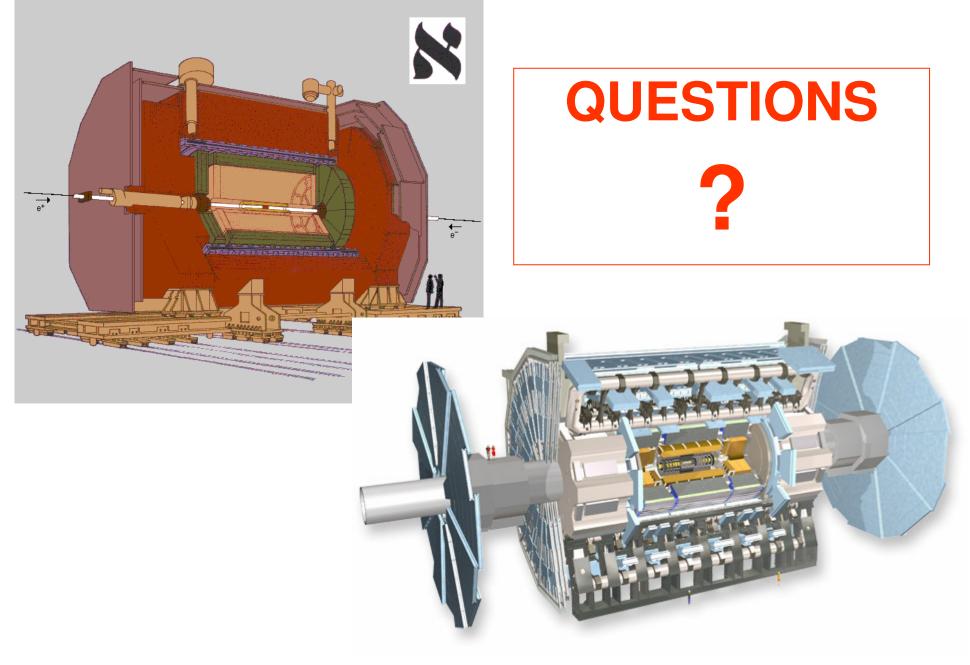
Summary of the Analysis

April 2007 Page 75

Conclusion

- Inclusive production of the ρ^{\pm} mesons in hadronic Z decays has been observed with the ALEPH detector.
- Measured rate and differential cross-section are in good agreement with OPAL measurements within the error bars.
- Monte Carlo rates obtained from JETSET and PYTHIA are consistent with the real data measurements of two independent experiments.
- The model for BEC used in our study is same as the OPAL.
 This model successfully describes distortion in two-pion invariant mass.

Future Work


Experiences gained in this study can be applied to future work in a number of possible areas:

- Particle production involving π^0 decay products
- A measurement of $a_0^{\pm}(980) \rightarrow \eta \pi^{\pm}$
- Much work needs to be done to implement BECs in the MC models, since BECs are not implemented in MC correctly.
 This is important for LEP and LHC.
- Work on the ATLAS Experiment.

Publications

- A. Beddall, A. Beddall, A. Bingül, Y. Durmaz
 A Comparison of Multi-Variate PDE Methods in Neutral Pion
 Discrimination, Acta Physica Polonica B, 38 187-195 (2007).
- A. Beddall, A. Beddall, A. Bingül, Y. Durmaz
 Smoothed multi-variate histogrammed PDEs, and \$chi^2\$ optimisation, Computer Physics Communications, 175 700-707 (2006).
- A. Beddall, A. Beddall, A. Bingül
 Reducing systematic errors in the selection of signals from twophoton mass spectra, Nuclear Inst. and Methods in Phy. Res A, 554 469-473 (2005).
- A. Beddall, A. Beddall, A. Bingül
 A Ranking Method for Neural Pion Selection in High Multiplicity Hadronic Events, Nuclear Inst. and Methods in Phy. Res A 482, 520-527 (2002).
- * A Ranking Method for Neutral Pion and Eta Selection in Hadronic Events, TFD 22 (2004)
- * Inclusive Production of rho+- mesons in Hadronic Z Decays, AIP 899 (2007)

