Light is basic to almost all life on the Earth. For example, plants convert the energy transferred by sunlight to chemical energy through photosynthesis. In addition, light is the principal means by which we are able to transmit and receive information to

Light and Optics

 and from objects around us and throughout the Universe. Light is a form of electromagnetic radiation and represents energy transfer from the source to the observer.Many phenomena in our everyday life depend on the properties of light. When you watch a color television or view photos on a computer monitor, you are seeing millions of colors formed from combinations of only three colors that are physically on the screen: red, blue, and green. The blue color of the daytime sky is a result of the optical phenomenon of scattering of light by air molecules, as are the red and orange colors of sunrises and sunsets. You see your image in your bathroom mirror in the morning or the images of other cars in your car's rearview mirror when you are driving. These images result from reflection of light. If you wear glasses or contact lenses, you are depending on refraction of light for clear vision. The colors of a rainbow result from dispersion of light as it passes through raindrops hovering in the sky after a rainstorm. If you have ever seen the colored circles of the glory surrounding the shadow of your airplane on clouds as you fly above them, you are seeing an effect that results from interference of light. The phenomena mentioned here have been studied by scientists and are well understood.

In the introduction to Chapter 35, we discuss the dual nature of light. In some cases, it is best to model light as a stream of particles; in others, a wave model works better. Chapters 35 through 38 concentrate on those aspects of light that are best understood through the wave model of light. In Part 6, we will investigate the particle nature of light.

Image not available due to copyright restrictions
35.1 The Nature of Light
35.2 Measurements of the Speed of Light
35.3 The Ray Approximation in Geometric Optics
35.5 The Wave Under Refraction
35.6 Huygens's Principle
35.7 Dispersion
35.8 Total Internal Reflection
35.4 The Wave Under Reflection

35 The Nature of Light and the Laws of Geometric Optics

This first chapter on optics begins by introducing two historical models for light and discussing early methods for measuring the speed of light. Next we study the fundamental phenomena of geometric optics: reflection of light from a surface and refraction as the light crosses the boundary between two media. We will also study the dispersion of light as it refracts into materials, resulting in visual displays such as the rainbow. Finally, we investigate the phenomenon of total internal reflection, which is the basis for the operation of optical fibers and the burgeoning technology of fiber optics.

35.1 The Nature of Light

Before the beginning of the nineteenth century, light was considered to be a stream of particles that either was emitted by the object being viewed or emanated from the eyes of the viewer. Newton, the chief architect of the particle model of light, held that particles were emitted from a light source and that these particles stimulated the sense of sight upon entering the eye. Using this idea, he was able to explain reflection and refraction.

Most scientists accepted Newton's particle model. During Newton's lifetime, however, another model was proposed, one that argued that light might be some sort of wave motion. In 1678, Dutch physicist and astronomer Christian Huygens showed that a wave model of light could also explain reflection and refraction.

In 1801, Thomas Young (1773-1829) provided the first clear experimental demonstration of the wave nature of light. Young showed that under appropriate conditions light rays interfere with one another. Such behavior could not be explained at that time by a particle model because there was no conceivable way in which two or more particles could come together and cancel one another. Additional developments during the nineteenth century led to the general acceptance of the wave model of light, the most important resulting from the work of Maxwell, who in 1873 asserted that light was a form of high-frequency electromagnetic wave. As discussed in Chapter 34, Hertz provided experimental confirmation of Maxwell's theory in 1887 by producing and detecting electromagnetic waves.

Although the wave model and the classical theory of electricity and magnetism were able to explain most known properties of light, they could not explain some subsequent experiments. The most striking phenomenon is the photoelectric effect, also discovered by Hertz: when light strikes a metal surface, electrons are sometimes ejected from the surface. As one example of the difficulties that arose, experiments showed that the kinetic energy of an ejected electron is independent of the light intensity. This finding contradicted the wave model, which held that a more intense beam of light should add more energy to the electron. Einstein proposed an explanation of the photoelectric effect in 1905 using a model based on the concept of quantization developed by Max Planck (1858-1947) in 1900. The quantization model assumes the energy of a light wave is present in particles called photons; hence, the energy is said to be quantized. According to Einstein's theory, the energy of a photon is proportional to the frequency of the electromagnetic wave:

$$
\begin{equation*}
E=h f \tag{35.1}
\end{equation*}
$$

where the constant of proportionality $h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ is called Planck's constant. We study this theory in Chapter 40.

In view of these developments, light must be regarded as having a dual nature. Light exhibits the characteristics of a wave in some situations and the characteristics of a particle in other situations. Light is light, to be sure. The question "Is light a wave or a particle?" is inappropriate, however. Sometimes light acts like a wave, and other times it acts like a particle. In the next few chapters, we investigate the wave nature of light.

35.2 Measurements of the Speed of Light

Light travels at such a high speed (to three digits, $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$) that early attempts to measure its speed were unsuccessful. Galileo attempted to measure the speed of light by positioning two observers in towers separated by approximately 10 km . Each observer carried a shuttered lantern. One observer would open his lantern first, and then the other would open his lantern at the moment he saw the light from the first lantern. Galileo reasoned that by knowing the transit time of the light beams from one lantern to the other and the distance between the two lanterns, he could obtain the speed. His results were inconclusive. Today, we realize (as Galileo concluded) that it is impossible to measure the speed of light in this manner because the transit time for the light is so much less than the reaction time of the observers.

Roemer's Method

In 1675, Danish astronomer Ole Roemer (1644-1710) made the first successful estimate of the speed of light. Roemer's technique involved astronomical observations of Io, one of the moons of Jupiter. Io has a period of revolution around Jupiter of approximately 42.5 h . The period of revolution of Jupiter around the Sun is about 12 yr ; therefore, as the Earth moves through 90° around the Sun, Jupiter revolves through only $\left(\frac{1}{12}\right) 90^{\circ}=7.5^{\circ}$ (Fig. 35.1).

4 Energy of a photon

Figure 35.1 Roemer's method for measuring the speed of light. In the time interval during which the Earth travels 90° around the Sun (three months), Jupiter travels only about 7.5° (drawing not to scale).

Figure 35.2 Fizeau's method for measuring the speed of light using a rotating toothed wheel. The light source is considered to be at the location of the wheel; therefore, the distance d is known.

An observer using the orbital motion of Io as a clock would expect the orbit to have a constant period. After collecting data for more than a year, however, Roemer observed a systematic variation in Io's period. He found that the periods were longer than average when the Earth was receding from Jupiter and shorter than average when the Earth was approaching Jupiter. Roemer attributed this variation in period to the distance between the Earth and Jupiter changing from one observation to the next.

Using Roemer's data, Huygens estimated the lower limit for the speed of light to be approximately $2.3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. This experiment is important historically because it demonstrated that light does have a finite speed and gave an estimate of this speed.

Fizeau's Method

The first successful method for measuring the speed of light by means of purely terrestrial techniques was developed in 1849 by French physicist Armand H. L. Fizeau (1819-1896). Figure 35.2 represents a simplified diagram of Fizeau's apparatus. The basic procedure is to measure the total time interval during which light travels from some point to a distant mirror and back. If d is the distance between the light source (considered to be at the location of the wheel) and the mirror and if the time interval for one round trip is Δt, the speed of light is $c=2 d / \Delta t$.

To measure the transit time, Fizeau used a rotating toothed wheel, which converts a continuous beam of light into a series of light pulses. The rotation of such a wheel controls what an observer at the light source sees. For example, if the pulse traveling toward the mirror and passing the opening at point A in Figure 35.2 should return to the wheel at the instant tooth B had rotated into position to cover the return path, the pulse would not reach the observer. At a greater rate of rotation, the opening at point C could move into position to allow the reflected pulse to reach the observer. Knowing the distance d, the number of teeth in the wheel, and the angular speed of the wheel, Fizeau arrived at a value of $3.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Similar measurements made by subsequent investigators yielded more precise values for c, which led to the currently accepted value of $2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

EXAMPLE 35.1 Measuring the Speed of Light with Fizeau's Wheel

Assume Fizeau's wheel has 360 teeth and rotates at $27.5 \mathrm{rev} / \mathrm{s}$ when a pulse of light passing through opening A in Figure 35.2 is blocked by tooth B on its return. If the distance to the mirror is 7500 m , what is the speed of light?

SOLUTION

Conceptualize Imagine a pulse of light passing through opening A in Figure 35.2 and reflecting from the mirror. By the time the pulse arrives back at the wheel, tooth B has rotated into the position previously occupied by opening A.

Categorize We model the wheel as a rigid object under constant angular speed and the pulse of light as a particle under constant speed.

Analyze The wheel has 360 teeth, so it must have 360 openings. Therefore, because the light passes through opening A but is blocked by the tooth immediately adjacent to A, the wheel must rotate through an angular displacement of $\frac{1}{720} \mathrm{rev}$ in the time interval during which the light pulse makes its round trip.

Use the rigid object under constant angular speed model to find the time interval for the pulse's round trip:

From the particle under constant speed model, find the speed of the pulse of light:

$$
\begin{gathered}
\Delta t=\frac{\Delta \theta}{\omega}=\frac{\frac{1}{720} \mathrm{rev}}{27.5 \mathrm{rev} / \mathrm{s}}=5.05 \times 10^{-5} \mathrm{~s} \\
c=\frac{2 d}{\Delta t}=\frac{2(7500 \mathrm{~m})}{5.05 \times 10^{-5} \mathrm{~s}}=2.97 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Finalize This result is very close to the actual value of the speed of light.

35.3 The Ray Approximation in Geometric Optics

The field of geometric optics involves the study of the propagation of light. Geometric optics assumes light travels in a fixed direction in a straight line as it passes through a uniform medium and changes its direction when it meets the surface of a different medium or if the optical properties of the medium are nonuniform in either space or time. In our study of geometric optics here and in Chapter 36, we use what is called the ray approximation. To understand this approximation, first notice that the rays of a given wave are straight lines perpendicular to the wave fronts as illustrated in Figure 35.3 for a plane wave. In the ray approximation, a wave moving through a medium travels in a straight line in the direction of its rays.

If the wave meets a barrier in which there is a circular opening whose diameter is much larger than the wavelength as in Active Figure 35.4a, the wave emerging from the opening continues to move in a straight line (apart from some small edge effects); hence, the ray approximation is valid. If the diameter of the opening is on the order of the wavelength as in Active Figure 35.4b, the waves spread out from the opening in all directions. This effect, called diffraction, will be studied in Chapter 37. Finally, if the opening is much smaller than the wavelength, the opening can be approximated as a point source of waves as shown in Active Fig. 35.4c.

Similar effects are seen when waves encounter an opaque object of dimension d. In that case, when $\lambda \ll d$, the object casts a sharp shadow.

The ray approximation and the assumption that $\lambda \ll d$ are used in this chapter and in Chapter 36, both of which deal with geometric optics. This approximation is very good for the study of mirrors, lenses, prisms, and associated optical instruments such as telescopes, cameras, and eyeglasses.

35.4 The Wave Under Reflection

We introduced the concept of reflection of waves in a discussion of waves on strings in Section 16.4. As with waves on strings, when a light ray traveling in one medium encounters a boundary with another medium, part of the incident light is reflected. For waves on a one-dimensional string, the reflected wave must necessarily be restricted to a direction along the string. For light waves traveling in threedimensional space, no such restriction applies and the reflected light waves can be

ACTIVE FIGURE 35.4

A plane wave of wavelength λ is incident on a barrier in which there is an opening of diameter d.
(a) When $\lambda \ll d$, the rays continue in a straight-line path and the ray approximation remains valid.
(b) When $\lambda \approx d$, the rays spread out after passing through the opening. (c) When $\lambda \gg d$, the opening behaves as a point source emitting spherical waves.
Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the size of the opening and observe the effect on the waves passing through.

Wave fronts
Figure 35.3 A plane wave propagating to the right. Notice that the rays, which always point in the direction of the wave propagation, are straight lines perpendicular to the wave fronts.

Figure 35.5 Schematic representation of (a) specular reflection, where the reflected rays are all parallel to each other, and (b) diffuse reflection, where the reflected rays travel in random directions. (c) and (d) Photographs of specular and diffuse reflection using laser light.
in directions different from the direction of the incident waves. Figure 35.5 a shows several rays of a beam of light incident on a smooth, mirror-like, reflecting surface. The reflected rays are parallel to one another as indicated in the figure. The direction of a reflected ray is in the plane perpendicular to the reflecting surface that contains the incident ray. Reflection of light from such a smooth surface is called specular reflection. If the reflecting surface is rough as in Figure 35.5b, the surface reflects the rays not as a parallel set but in various directions. Reflection from any rough surface is known as diffuse reflection. A surface behaves as a smooth surface as long as the surface variations are much smaller than the wavelength of the incident light.

The difference between these two kinds of reflection explains why it is more difficult to see while driving on a rainy night than on a dry, sunny day. If the road is wet, the smooth surface of the water specularly reflects most of your headlight beams away from your car (and perhaps into the eyes of oncoming drivers). When the road is dry, its rough surface diffusely reflects part of your headlight beam back toward you, allowing you to see the road more clearly. In this book, we restrict our study to specular reflection and use the term reflection to mean specular reflection.

Consider a light ray traveling in air and incident at an angle on a flat, smooth surface as shown in Active Figure 35.6. The incident and reflected rays make angles θ_{1} and θ_{1}^{\prime}, respectively, where the angles are measured between the normal and the rays. (The normal is a line drawn perpendicular to the surface at the point where the incident ray strikes the surface.) Experiments and theory show that the angle of reflection equals the angle of incidence:

$$
\begin{equation*}
\theta_{1}^{\prime}=\theta_{1} \tag{35.2}
\end{equation*}
$$

This relationship is called the law of reflection. Because reflection of waves from an interface between two media is a common phenomenon, we identify an analysis model for this situation: the wave under reflection. Equation 35.2 is the mathematical representation of this model.

Quick Quiz 35.1 In the movies, you sometimes see an actor looking in a mirror and you can see his face in the mirror. During the filming of such a scene, what does the actor see in the mirror? (a) his face (b) your face (c) the director's face (d) the movie camera (e) impossible to determine

EXAMPLE 35.2 The Double-Reflected Light Ray

Two mirrors make an angle of 120° with each other as illustrated in Figure 35.7a. A ray is incident on mirror M_{1} at an angle of 65° to the normal. Find the direction of the ray after it is reflected from mirror M_{2}.

SOLUTION

Conceptualize Figure 35.7 a helps conceptualize this situation. The incoming ray reflects from the first mirror, and the reflected ray is directed toward the second mirror. Therefore, there is a second reflection from the second mirror.

Categorize Because the interactions with both mirrors are simple reflections, we apply the wave under reflection model and some geometry.

Analyze From the law of reflection, the first reflected ray makes an angle of 65° with the normal.

Find the angle the first reflected ray makes with the horizontal:

From the triangle made by the first reflected ray and the two mirrors, find the angle the reflected ray makes with M_{2} :

Find the angle the first reflected ray makes with the normal to M_{2} :

From the law of reflection, find the angle the second reflected ray makes with the normal to M_{2} :

Figure 35.7 (Example 35.2) (a) Mirrors M_{1} and M_{2} make an angle of 120° with each other. (b) The geometry for an arbitrary mirror angle.

$$
\begin{gathered}
\delta=90^{\circ}-65^{\circ}=25^{\circ} \\
\gamma=180^{\circ}-25^{\circ}-120^{\circ}=35^{\circ}
\end{gathered}
$$

$$
\theta_{\mathrm{M}_{2}}=90^{\circ}-35^{\circ}=55^{\circ}
$$

$$
\theta_{\mathrm{M}_{2}}^{\prime}=\theta_{\mathrm{M}_{2}}=55^{\circ}
$$

Finalize Let's explore variations in the angle between the mirrors as follows.
What If? If the incoming and outgoing rays in Figure 35.7 a are extended behind the mirror, they cross at an angle of 60° and the overall change in direction of the light ray is 120°. This angle is the same as that between the mirrors. What if the angle between the mirrors is changed? Is the overall change in the direction of the light ray always equal to the angle between the mirrors?

Answer Making a general statement based on one data point or one observation is always a dangerous practice! Let's investigate the change in direction for a general situation. Figure 35.7 b shows the mirrors at an arbitrary angle ϕ and the incoming light ray striking the mirror at an arbitrary angle θ with respect to the normal to the mirror surface. In accordance with the law of reflection and the sum of the interior angles of a triangle, the angle γ is given by $180^{\circ}-\left(90^{\circ}-\theta\right)-\phi=90^{\circ}+\theta-\phi$.

Consider the triangle highlighted in blue in Figure 35.7b and determine α :

Notice from Figure 35.7b that the change in direction of the light ray is angle β. Use the geometry in the figure to solve for β :

$$
\begin{aligned}
\alpha & +2 \gamma+2\left(90^{\circ}-\theta\right)=180^{\circ} \rightarrow \alpha=2(\theta-\gamma) \\
\beta & =180^{\circ}-\alpha=180^{\circ}-2(\theta-\gamma) \\
& =180^{\circ}-2\left[\theta-\left(90^{\circ}+\theta-\phi\right)\right]=360^{\circ}-2 \phi
\end{aligned}
$$

Notice that β is not equal to ϕ. For $\phi=120^{\circ}$, we obtain $\beta=120^{\circ}$, which happens to be the same as the mirror angle; that is true only for this special angle between the mirrors, however. For example, if $\phi=90^{\circ}$, we obtain $\beta=$ 180°. In that case, the light is reflected straight back to its origin.

Figure 35.8 Applications of retroreflection. (a) This panel on the Moon reflects a laser beam directly back to its source on the Earth. (b) An automobile taillight has small retroreflectors to ensure that headlight beams are reflected back toward the car that sent them. (c) A light ray hitting a transparent sphere at the proper position is retroreflected. (d) This stop sign appears to glow in headlight beams because its surface is covered with a layer of many tiny retroreflecting spheres. What would you see if the sign had a mirror-like surface?

If the angle between two mirrors is 90°, the reflected beam returns to the source parallel to its original path as discussed in the What If? section of the preceding example. This phenomenon, called retroreflection, has many practical applications. If a third mirror is placed perpendicular to the first two so that the three form the corner of a cube, retroreflection works in three dimensions. In 1969, a panel of many small reflectors was placed on the Moon by the Apollo 11 astronauts (Fig. 35.8a). A laser beam from the Earth is reflected directly back on itself, and its transit time is measured. This information is used to determine the distance to the Moon with an uncertainty of 15 cm . (Imagine how difficult it would be to align a regular flat mirror so that the reflected laser beam would hit a particular location on the Earth!) A more everyday application is found in automobile taillights. Part of the plastic making up the taillight is formed into many tiny cube corners (Fig. 35.8 b) so that headlight beams from cars approaching from the rear are reflected back to the drivers. Instead of cube corners, small spherical bumps are sometimes used (Fig. 35.8c). Tiny clear spheres are used in a coating material found on many road signs. Due to retroreflection from these spheres, the stop sign in Figure 35.8d appears much brighter than it would if it were simply a flat, shiny surface. Retroreflectors are also used for reflective panels on running shoes and running clothing to allow joggers to be seen at night.

Another practical application of the law of reflection is the digital projection of movies, television shows, and computer presentations. A digital projector uses an optical semiconductor chip called a digital micromirror device. This device contains an array of tiny mirrors (Fig. 35.9a) that can be individually tilted by means of signals to an address electrode underneath the edge of the mirror. Each mirror corresponds to a pixel in the projected image. When the pixel corresponding to a given mirror is to be bright, the mirror is in the "on" position and is oriented so as to reflect light from a source illuminating the array to the screen (Fig. 35.9b). When the pixel for this mirror is to be dark, the mirror is "off" and is tilted so that the light is reflected away from the screen. The brightness of the pixel is determined by the total time interval during which the mirror is in the "on" position during the display of one image.

Digital movie projectors use three micromirror devices, one for each of the primary colors red, blue, and green, so that movies can be displayed with up to 35
trillion colors. Because information is stored as binary data, a digital movie does not degrade with time as does film. Furthermore, because the movie is entirely in the form of computer software, it can be delivered to theaters by means of satellites, optical discs, or optical fiber networks.

Several movies have been projected digitally to audiences, and polls show that 85% of viewers describe the image quality as "excellent." The first all-digital movie, from cinematography to postproduction to projection, was Star Wars Episode II: Attack of the Clones in 2002.

35.5 The Wave Under Refraction

In addition to the phenomenon of reflection discussed for waves on strings in Section 16.4, we also found that some of the energy of the incident wave transmits into the new medium. Similarly, when a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium as shown in Active Figure 35.10, part of the energy is reflected and part enters the second medium. As with reflection, the direction of the transmitted wave exhibits an interesting behavior because of the three-dimensional nature of the light waves. The ray that enters the second medium is bent at the boundary and is said to be refracted. The incident ray, the reflected ray, and the refracted ray all lie in the same plane. The angle of refraction, θ_{2} in Active Figure 35.10a, depends on the properties of the two media and on the angle of incidence θ_{1} through the relationship

$$
\begin{equation*}
\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \tag{35.3}
\end{equation*}
$$

where v_{1} is the speed of light in the first medium and v_{2} is the speed of light in the second medium.

The path of a light ray through a refracting surface is reversible. For example, the ray shown in Active Figure 35.10a travels from point A to point B. If the ray originated at B, it would travel along line $B A$ to reach point A and the reflected ray would point downward and to the left in the glass.

Quick Quiz 35.2 If beam (1) is the incoming beam in Active Figure 35.10b, which of the other four red lines are reflected beams and which are refracted beams?

From Equation 35.3, we can infer that when light moves from a material in which its speed is high to a material in which its speed is lower as shown in Active

ACTIVE FIGURE 35.10

(a) A ray obliquely incident on an air-glass interface behaves according to the wave under refraction model. The refracted ray is bent toward the normal because $v_{2}<v_{1}$. All rays and the normal lie in the same plane. (b) Light incident on the Lucite block refracts both when it enters the block and when it leaves the block.
Sign in at www.thomsonedu.com and go to ThomsonNOW to vary the incident angle and see the effect on the reflected and refracted rays.

Figure 35.12 Light passing from one atom to another in a medium. The dots are electrons, and the vertical arrows represent their oscillations.

Figure 35.13 Overhead view of a barrel rolling from concrete onto grass.

ACTIVE FIGURE 35.11
(a) When the light beam moves from air into glass, the light slows down upon entering the glass and its path is bent toward the normal. (b) When the beam moves from glass into air, the light speeds up upon entering the air and its path is bent away from the normal.
Sign in at www.thomsonedu.com and go to ThomsonNOW to observe light passing through three layers of material. You can vary the incident angle and see the effect on the refracted rays for a variety of values of the index of refraction (defined in Equation 35.4) of the three materials.

Figure 35.11a, the angle of refraction θ_{2} is less than the angle of incidence θ_{1} and the ray is bent toward the normal. If the ray moves from a material in which light moves slowly to a material in which it moves more rapidly as illustrated in Active Figure $35.11 \mathrm{~b}, \theta_{2}$ is greater than θ_{1} and the ray is bent away from the normal.

The behavior of light as it passes from air into another substance and then reemerges into air is often a source of confusion to students. When light travels in air, its speed is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, but this speed is reduced to approximately $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ when the light enters a block of glass. When the light re-emerges into air, its speed instantaneously increases to its original value of $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. This effect is far different from what happens, for example, when a bullet is fired through a block of wood. In that case, the speed of the bullet decreases as it moves through the wood because some of its original energy is used to tear apart the wood fibers. When the bullet enters the air once again, it emerges at a speed lower than it had when it entered the wood.

To see why light behaves as it does, consider Figure 35.12, which represents a beam of light entering a piece of glass from the left. Once inside the glass, the light may encounter an electron bound to an atom, indicated as point A. Let's assume light is absorbed by the atom, which causes the electron to oscillate (a detail represented by the double-headed vertical arrows). The oscillating electron then acts as an antenna and radiates the beam of light toward an atom at B, where the light is again absorbed. The details of these absorptions and radiations are best explained in terms of quantum mechanics (Chapter 42). For now, it is sufficient to think of light passing from one atom to another through the glass. Although light travels from one atom to another at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the absorption and radiation that take place cause the average light speed through the material to fall to about $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Once the light emerges into the air, absorption and radiation cease and the light travels at a constant speed of $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

A mechanical analog of refraction is shown in Figure 35.13. When the left end of the rolling barrel reaches the grass, it slows down, whereas the right end remains on the concrete and moves at its original speed. This difference in speeds causes the barrel to pivot, which changes the direction of travel.

Index of Refraction

In general, the speed of light in any material is less than its speed in vacuum. In fact, light travels at its maximum speed c in vacuum. It is convenient to define the index of refraction n of a medium to be the ratio

$$
\begin{equation*}
n \equiv \frac{\text { speed of light in vacuum }}{\text { speed of light in a medium }} \equiv \frac{c}{v} \tag{35.4}
\end{equation*}
$$

TABLE 35.1
Indices of Refraction

Substance	Index of Refraction		Index of Refraction
Solids at $20^{\circ} \mathrm{C}$		Liquids at $20^{\circ} \mathrm{C}$	
Cubic zirconia	2.20	Benzene	1.501
Diamond (C)	2.419	Carbon disulfide	1.628
Fluorite $\left(\mathrm{CaF}_{2}\right)$	1.434	Carbon tetrachloride	1.461
Fused quartz $\left(\mathrm{SiO}_{2}\right)$	1.458	Glycerin	1.361
Gallium phosphide	3.50	Water	1.473
Glass, crown	1.52	Gases at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$	1.333
Glass, flint	1.66	Air	
Ice $\left(\mathrm{H}_{2} \mathrm{O}\right)$	1.309	Carbon dioxide	1.000293
Polystyrene	1.49	1.544	

Note: All values are for light having a wavelength of 589 nm in vacuum.

This definition shows that the index of refraction is a dimensionless number greater than unity because v is always less than c. Furthermore, n is equal to unity for vacuum. The indices of refraction for various substances are listed in Table 35.1 .

As light travels from one medium to another, its frequency does not change but its wavelength does. To see why that is true, consider Figure 35.14. Waves pass an observer at point A in medium 1 with a certain frequency and are incident on the boundary between medium 1 and medium 2. The frequency with which the waves pass an observer at point B in medium 2 must equal the frequency at which they pass point A. If that were not the case, energy would be piling up or disappearing at the boundary. Because there is no mechanism for that to occur, the frequency must be a constant as a light ray passes from one medium into another. Therefore, because the relationship $v=\lambda f$ (Eq. 16.12) must be valid in both media and because $f_{1}=f_{2}=f$, we see that

$$
\begin{equation*}
v_{1}=\lambda_{1} f \quad \text { and } \quad v_{2}=\lambda_{2} f \tag{35.5}
\end{equation*}
$$

Because $v_{1} \neq v_{2}$, it follows that $\lambda_{1} \neq \lambda_{2}$ as shown in Figure 35.14.
We can obtain a relationship between index of refraction and wavelength by dividing the first Equation 35.5 by the second and then using Equation 35.4:

$$
\begin{equation*}
\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}=\frac{c / n_{1}}{c / n_{2}}=\frac{n_{2}}{n_{1}} \tag{35.6}
\end{equation*}
$$

This expression gives

$$
\lambda_{1} n_{1}=\lambda_{2} n_{2}
$$

If medium 1 is vacuum or, for all practical purposes, air, then $n_{1}=1$. Hence, it follows from Equation 35.6 that the index of refraction of any medium can be expressed as the ratio

$$
\begin{equation*}
n=\frac{\lambda}{\lambda_{n}} \tag{35.7}
\end{equation*}
$$

where λ is the wavelength of light in vacuum and λ_{n} is the wavelength of light in the medium whose index of refraction is n. From Equation 35.7, we see that because $n>1, \lambda_{n}<\lambda$.

We are now in a position to express Equation 35.3 in an alternative form. Replacing the v_{2} / v_{1} term in Equation 35.3 with n_{1} / n_{2} from Equation 35.6 gives

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{35.8}
\end{equation*}
$$

PITFALL PREVENTION 35.2

 n Is Not an Integer HereThe symbol n has been used several times as an integer, such as in Chapter 18 to indicate the standing wave mode on a string or in an air column. The index of refraction n is not an integer.

Figure 35.14 As a wave moves from medium 1 to medium 2, its wavelength changes but its frequency remains constant.

PITFALL PREVENTION 35.3 An Inverse Relationship

The index of refraction is inversely proportional to the wave speed. As the wave speed v decreases, the index of refraction n increases. Therefore, the higher the index of refraction of a material, the more it slows down light from its speed in vacuum. The more the light slows down, the more θ_{2} differs from θ_{1} in Equation 35.8.

The experimental discovery of this relationship is usually credited to Willebrord Snell (1591-1626) and it is therefore known as Snell's law of refraction. We shall examine this equation further in Section 35.6. Refraction of waves at an interface between two media is a common phenomenon, so we identify an analysis model for this situation: the wave under refraction. Equation 35.8 is the mathematical representation of this model for electromagnetic radiation. Other waves, such as seismic waves and sound waves, also exhibit refraction according to this model, and the mathematical representation for these waves is Equation 35.3.

Quick Quiz 35.3 Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared to the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.

EXAMPLE 35.3 Angle of Refraction for Glass

A light ray of wavelength 589 nm traveling through air is incident on a smooth, flat slab of crown glass at an angle of 30.0° to the normal.
(A) Find the angle of refraction.

SOLUTION

Conceptualize Study Active Figure 35.11a, which illustrates the refraction process occurring in this problem.
Categorize We evaluate results by using equations developed in this section, so we categorize this example as a substitution problem.

Rearrange Snell's law of refraction to find $\sin \theta_{2}$:

Substitute the incident angle and, from Table 35.1, $n_{1}=1.00$ for air and $n_{2}=1.52$ for crown glass:

Solve for θ_{2} :
)

SOLUTION

Solve Equation 35.4 for the speed of light in the glass:

Substitute numerical values:

$$
v=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.52}=1.97 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

(C) What is the wavelength of this light in the glass?

SOLUTION

Use Equation 35.7 to find the wavelength in the glass:

$$
\lambda_{n}=\frac{\lambda}{n}=\frac{589 \mathrm{~nm}}{1.52}=388 \mathrm{~nm}
$$

EXAMPLE 35.4 Light Passing Through a Slab

A light beam passes from medium 1 to medium 2, with the latter medium being a thick slab of material whose index of refraction is n_{2} (Fig. 35.15). Show that the beam emerging into medium 1 from the other side is parallel to the incident beam.

SOLUTION

Conceptualize Follow the path of the light beam as it enters and exits the slab of material in Figure 35.15. The ray bends toward the normal upon entering and away from the normal upon leaving.

Figure 35.15 (Example 35.4) When light passes through a flat slab of material, the emerging beam is parallel to the incident beam; therefore, $\theta_{1}=\theta_{3}$. The dashed line drawn parallel to the ray coming out the bottom of the slab represents the path the light would take were the slab not there.

Categorize We evaluate results by using equations developed in this section, so we categorize this example as a substitution problem.

Apply Snell's law of refraction to the upper surface:

Apply Snell's law to the lower surface:

Substitute Equation (1) into Equation (2):
(1) $\sin \theta_{2}=\frac{n_{1}}{n_{2}} \sin \theta_{1}$
(2) $\sin \theta_{3}=\frac{n_{2}}{n_{1}} \sin \theta_{2}$

$$
\sin \theta_{3}=\frac{n_{2}}{n_{1}}\left(\frac{n_{1}}{n_{2}} \sin \theta_{1}\right)=\sin \theta_{1}
$$

Therefore, $\theta_{3}=\theta_{1}$ and the slab does not alter the direction of the beam. It does, however, offset the beam parallel to itself by the distance d shown in Figure 35.15.

What If? What if the thickness t of the slab is doubled? Does the offset distance d also double?

Answer Consider the region of the light path within the slab in Figure 35.15. The distance a is the hypotenuse of two right triangles.

Find an expression for a from the gold triangle:

$$
\begin{gathered}
a=\frac{t}{\cos \theta_{2}} \\
d=a \sin \gamma=a \sin \left(\theta_{1}-\theta_{2}\right) \\
d=\frac{t}{\cos \theta_{2}} \sin \left(\theta_{1}-\theta_{2}\right)
\end{gathered}
$$

For a given incident angle θ_{1}, the refracted angle θ_{2} is determined solely by the index of refraction, so the offset distance d is proportional to t. If the thickness doubles, so does the offset distance.

In Example 35.4, the light passes through a slab of material with parallel sides. What happens when light strikes a prism with nonparallel sides as shown in Figure 35.16? In this case, the outgoing ray does not propagate in the same direction as the incoming ray. A ray of single-wavelength light incident on the prism from the left emerges at angle δ from its original direction of travel. This angle δ is called the angle of deviation. The apex angle Φ of the prism, shown in the figure, is defined as the angle between the surface at which the light enters the prism and the second surface that the light encounters.

Figure 35.16 A prism refracts a single-wavelength light ray through an angle of deviation δ.

EXAMPLE 35.5 Measuring \boldsymbol{n} Using a Prism

Although we do not prove it here, the minimum angle of deviation $\delta_{\text {min }}$ for a prism occurs when the angle of incidence θ_{1} is such that the refracted ray inside the prism makes the same angle with the normal to the two prism faces ${ }^{1}$ as shown in Figure 35.17. Obtain an expression for the index of refraction of the prism material in terms of the minimum angle of deviation and the apex angle Φ.

SOLUTION

Conceptualize Study Figure 35.17 carefully and be sure you understand why the light ray comes out of the prism traveling in a different direction.

Categorize In this example, light enters a material through one surface and leaves the material at another surface. Let's apply the wave under refraction model at each surface.

Figure 35.17 (Example 35.5) A light ray passing through a prism at the minimum angle of deviation $\delta_{\text {min }}$.

Analyze Consider the geometry in Figure 35.17. The reproduction of the angle $\Phi / 2$ at the location of the incoming light ray shows that $\theta_{2}=\Phi / 2$. The theorem that an exterior angle of any triangle equals the sum of the two opposite interior angles shows that $\delta_{\min }=2 \alpha$. The geometry also shows that $\theta_{1}=\theta_{2}+\alpha$.

Combine these three geometric results:

$$
\begin{gather*}
\theta_{1}=\theta_{2}+\alpha=\frac{\Phi}{2}+\frac{\delta_{\min }}{2}=\frac{\Phi+\delta_{\min }}{2} \\
(1.00) \sin \theta_{1}=n \sin \theta_{2} \rightarrow n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \\
n=\frac{\sin \left(\frac{\Phi+\delta_{\min }}{2}\right)}{\sin (\Phi / 2)} \tag{35.9}
\end{gather*}
$$

Substitute for the incident and refracted angles:
Apply the wave under refraction model at the left surface and solve for n :

Finalize Knowing the apex angle Φ of the prism and measuring $\delta_{\min }$, you can calculate the index of refraction of the prism material. Furthermore, a hollow prism can be used to determine the values of n for various liquids filling the prism.

PITFALL PREVENTION 35.4 Of What Use Is Huygens's Principle?

At this point, the importance of Huygens's principle may not be evident. Predicting the position of a future wave front may not seem to be very critical. We will use Huygens's principle in later chapters to explain additional wave phenomena for light, however.

35.6 Huygens's Principle

In this section, we develop the laws of reflection and refraction by using a geometric method proposed by Huygens in 1678. Huygens's principle is a geometric construction for using knowledge of an earlier wave front to determine the position of a new wave front at some instant. In Huygens's construction, all points on a given wave front are taken as point sources for the production of spherical secondary waves, called wavelets, that propagate outward through a medium with speeds characteristic of waves in that medium. After some time interval has passed, the new position of the wave front is the surface tangent to the wavelets.

First, consider a plane wave moving through free space as shown in Figure 35.18a. At $t=0$, the wave front is indicated by the plane labeled $A A^{\prime}$. In Huygens's construction, each point on this wave front is considered a point source. For clarity, only three points on $A A^{\prime}$ are shown. With these points as sources for the wavelets, we draw circles, each of radius $c \Delta t$, where c is the speed of light in vacuum and Δt is some time interval during which the wave propagates. The surface drawn tangent to these wavelets is the plane $B B^{\prime}$, which is the wave front at a later

[^0]

Figure 35.18 Huygens's construction for (a) a plane wave propagating to the right and (b) a spherical wave propagating to the right.
time, and is parallel to $A A^{\prime}$. In a similar manner, Figure 35.18 b shows Huygens's construction for a spherical wave.

Huygens's Principle Applied to Reflection and Refraction

The laws of reflection and refraction were stated earlier in this chapter without proof. We now derive these laws, using Huygens's principle.

For the law of reflection, refer to Figure 35.19. The line $A B$ represents a plane wave front of the incident light just as ray 1 strikes the surface. At this instant, the wave at A sends out a Huygens wavelet (the red circular arc centered on A). The reflected light propagates toward D. At the same time, the wave at B emits a Huygens wavelet (the red circular arc centered on B) with the light propagating toward C. Figure 35.19 shows these wavelets after a time interval Δt, after which ray 2 strikes the surface. Because both rays 1 and 2 move with the same speed, we must have $A D=B C=c \Delta t$.

The remainder of our analysis depends on geometry. Notice that the two triangles $A B C$ and $A D C$ are congruent because they have the same hypotenuse $A C$ and because $A D=B C$. Figure 35.19 shows that

$$
\cos \gamma=\frac{B C}{A C} \quad \text { and } \quad \cos \gamma^{\prime}=\frac{A D}{A C}
$$

where $\gamma=90^{\circ}-\theta_{1}$ and $\gamma^{\prime}=90^{\circ}-\theta_{1}^{\prime}$. Because $A D=B C$,

$$
\cos \gamma=\cos \gamma^{\prime}
$$

Therefore,

$$
\begin{aligned}
\gamma & =\gamma^{\prime} \\
90^{\circ}-\theta_{1} & =90^{\circ}-\theta_{1}^{\prime}
\end{aligned}
$$

and

$$
\theta_{1}=\theta_{1}^{\prime}
$$

which is the law of reflection.
Now let's use Huygens's principle and Figure 35.20 to derive Snell's law of refraction. We focus our attention on the instant ray 1 strikes the surface and the subsequent time interval until ray 2 strikes the surface. During this time interval, the wave at A sends out a Huygens wavelet (the red arc centered on A) and the light refracts toward D. In the same time interval, the wave at B sends out a Huygens wavelet (the red arc centered on B) and the light continues to propagate toward C. Because these two wavelets travel through different media, the radii of the wavelets are different. The radius of the wavelet from A is $A D=v_{2} \Delta t$, where v_{2} is the wave speed in the second medium. The radius of the wavelet from B is $B C=$ $v_{1} \Delta t$, where v_{1} is the wave speed in the original medium.

Figure 35.19 Huygens's construction for proving the law of reflection. The instant ray 1 strikes the surface, it sends out a Huygens wavelet from A and ray 2 sends out a Huygens wavelet from B. We choose a radius of the wavelet to be $c \Delta t$, where Δt is the time interval for ray 2 to travel from B to C. Triangle $A D C$ is congruent to triangle $A B C$.

Figure 35.20 Huygens's construction for proving Snell's law of refraction. The instant ray 1 strikes the surface, it sends out a Huygens wavelet from A and ray 2 sends out a Huygens wavelet from B. The two wavelets have different radii because they travel in different media.

From triangles $A B C$ and $A D C$, we find that

$$
\sin \theta_{1}=\frac{B C}{A C}=\frac{v_{1} \Delta t}{A C} \quad \text { and } \quad \sin \theta_{2}=\frac{A D}{A C}=\frac{v_{2} \Delta t}{A C}
$$

Dividing the first equation by the second gives

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}
$$

From Equation 35.4, however, we know that $v_{1}=c / n_{1}$ and $v_{2}=c / n_{2}$. Therefore,

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{c / n_{1}}{c / n_{2}}=\frac{n_{2}}{n_{1}}
$$

and

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

which is Snell's law of refraction.

35.7 Dispersion

An important property of the index of refraction n is that, for a given material, the index varies with the wavelength of the light passing through the material as Figure 35.21 shows. This behavior is called dispersion. Because n is a function of wavelength, Snell's law of refraction indicates that light of different wavelengths is refracted at different angles when incident on a material.

Figure 35.21 shows that the index of refraction generally decreases with increasing wavelength. For example, violet light refracts more than red light does when passing into a material.

Now suppose a beam of white light (a combination of all visible wavelengths) is incident on a prism as illustrated in Figure 35.22. Clearly, the angle of deviation δ depends on wavelength. The rays that emerge spread out in a series of colors known as the visible spectrum. These colors, in order of decreasing wavelength, are red, orange, yellow, green, blue, and violet. Newton showed that each color has a particular angle of deviation and that the colors can be recombined to form the original white light.

Figure 35.21 Variation of index of refraction with vacuum wavelength for three materials.

Figure 35.22 White light enters a glass prism at the upper left. A reflected beam of light comes out of the prism below the incoming beam. The beam moving toward the lower right shows distinct colors. Different colors are refracted at different angles because the index of refraction of the glass depends on wavelength. Violet light deviates the most; red light deviates the least.

The dispersion of light into a spectrum is demonstrated most vividly in nature by the formation of a rainbow, which is often seen by an observer positioned between the Sun and a rain shower. To understand how a rainbow is formed, consider Active Figure 35.23. A ray of sunlight (which is white light) passing overhead strikes a drop of water in the atmosphere and is refracted and reflected as follows. It is first refracted at the front surface of the drop, with the violet light deviating the most and the red light the least. At the back surface of the drop, the light is reflected and returns to the front surface, where it again undergoes refraction as it moves from water into air. The rays leave the drop such that the angle between the incident white light and the most intense returning violet ray is 40° and the angle between the incident white light and the most intense returning red ray is 42°. This small angular difference between the returning rays causes us to see a colored bow.

Now suppose an observer is viewing a rainbow as shown in Figure 35.24. If a raindrop high in the sky is being observed, the most intense red light returning from the drop reaches the observer because it is deviated the most; the most intense violet light, however, passes over the observer because it is deviated the least. Hence, the observer sees red light coming from this drop. Similarly, a drop lower in the sky directs the most intense violet light toward the observer and appears violet to the observer. (The most intense red light from this drop passes below the observer's eye and is not seen.) The most intense light from other colors of the spectrum reaches the observer from raindrops lying between these two extreme positions.

The opening photograph for this chapter shows a double rainbow. The secondary rainbow is fainter than the primary rainbow, and the colors are reversed. The secondary rainbow arises from light that makes two reflections from the interior surface before exiting the raindrop. In the laboratory, rainbows have been observed in which the light makes more than 30 reflections before exiting the water drop. Because each reflection involves some loss of light due to refraction out of the water drop, the intensity of these higher-order rainbows is small compared with that of the primary rainbow.

Quick Quiz 35.4 In film photography, lenses in a camera use refraction to form an image on a film. Ideally, you want all the colors in the light from the object being photographed to be refracted by the same amount. Of the materials shown in Figure 35.21, which would you choose for a single-element camera lens? (a) crown glass (b) acrylic (c) fused quartz (d) impossible to determine

35.8 Total Internal Reflection

An interesting effect called total internal reflection can occur when light is directed from a medium having a given index of refraction toward one having a lower index of refraction. Consider Active Figure 35.25a (page 994), in which a light ray travels in medium 1 and meets the boundary between medium 1 and medium 2, where n_{1} is greater than n_{2}. In the figure, labels 1 through 5 indicate various possible directions of the ray consistent with the wave under refraction model. The refracted rays are bent away from the normal because n_{1} is greater than n_{2}. At some particular angle of incidence θ_{c}, called the critical angle, the refracted light ray moves parallel to the boundary so that $\theta_{2}=90^{\circ}$ (Active Fig. 35.25 b). For angles of incidence greater than θ_{c}, the ray is entirely reflected at the boundary as shown by ray 5 in Active Figure 35.25a.

We can use Snell's law of refraction to find the critical angle. When $\theta_{1}=\theta_{c}$, $\theta_{2}=90^{\circ}$ and Equation 35.8 gives

$$
\begin{align*}
& n_{1} \sin \theta_{c}=n_{2} \sin 90^{\circ}=n_{2} \\
& \sin \theta_{c}=\frac{n_{2}}{n_{1}} \quad\left(\text { for } n_{1}>n_{2}\right) \tag{35.10}
\end{align*}
$$

ACTIVE FIGURE 35.23
Path of sunlight through a spherical raindrop. Light following this path contributes to the visible rainbow.

Sign in at www.thomsonedu.com and go to ThomsonNOW to vary the point at which the sunlight enters the raindrop and verify that the angles shown are the maximum angles.

PITFALL PREVENTION 35.5

A Rainbow of Many Light Rays

Pictorial representations such as Active Figure 35.23 are subject to misinterpretation. The figure shows one ray of light entering the raindrop and undergoing reflection and refraction, exiting the raindrop in a range of 40° to 42° from the entering ray. This illustration might be interpreted incorrectly as meaning that all light entering the raindrop exits in this small range of angles. In reality, light exits the raindrop over a much larger range of angles, from 0° to 42°. A careful analysis of the reflection and refraction from the spherical raindrop shows that the range of 40° to 42° is where the highest-intensity light exits the raindrop.

Figure 35.24 The formation of a rainbow seen by an observer standing with the Sun behind his back.

4 Critical angle for total internal reflection

Figure 35.26 (Quick Quiz 35.5) Five nonparallel light rays enter a glass prism from the left.

ACTIVE FIGURE 35.25

(a) Rays travel from a medium of index of refraction n_{1} into a medium of index of refraction n_{2}, where $n_{2}<n_{1}$. As the angle of incidence θ_{1} increases, the angle of refraction θ_{2} increases until θ_{2} is 90° (ray 4). The dashed line indicates that no energy actually propagates in this direction. For even larger angles of incidence, total internal reflection occurs (ray 5). (b) The angle of incidence producing an angle of refraction equal to 90° is the critical angle θ_{c}. At this angle of incidence, all the energy of the incident light is reflected.
Sign in at www.thomsonedu.com and go to ThomsonNOW to vary the incident angle and see the effect on the refracted ray and the distribution of incident energy between the reflected and refracted rays.

This equation can be used only when n_{1} is greater than n_{2}. That is, total internal reflection occurs only when light is directed from a medium of a given index of refraction toward a medium of lower index of refraction. If n_{1} were less than n_{2}, Equation 35.10 would give $\sin \theta_{c}>1$, which is a meaningless result because the sine of an angle can never be greater than unity.

The critical angle for total internal reflection is small when n_{1} is considerably greater than n_{2}. For example, the critical angle for a diamond in air is 24°. Any ray inside the diamond that approaches the surface at an angle greater than 24° is completely reflected back into the crystal. This property, combined with proper faceting, causes diamonds to sparkle. The angles of the facets are cut so that light is "caught" inside the crystal through multiple internal reflections. These multiple reflections give the light a long path through the medium, and substantial dispersion of colors occurs. By the time the light exits through the top surface of the crystal, the rays associated with different colors have been fairly widely separated from one another.

Cubic zirconia also has a high index of refraction and can be made to sparkle very much like a diamond. If a suspect jewel is immersed in corn syrup, the difference in n for the cubic zirconia and that for the corn syrup is small and the critical angle is therefore great. Hence, more rays escape sooner; as a result, the sparkle completely disappears. A real diamond does not lose all its sparkle when placed in corn syrup.

Quick Quiz 35.5 In Figure 35.26, five light rays enter a glass prism from the left. (i) How many of these rays undergo total internal reflection at the slanted surface of the prism? (a) $1 \quad$ (b) 2 (c) 3 (d) $4 \quad$ (e) 5 (ii) Suppose the prism in Figure 35.26 can be rotated in the plane of the paper. For all five rays to experience total internal reflection from the slanted surface, should the prism be rotated (a) clockwise or (b) counterclockwise?

EXAMPLE 35.6 A View from the Fish's Eye

Find the critical angle for an air-water boundary. (The index of refraction of water is 1.33.)

SOLUTION

Conceptualize Study Active Figure 35.25 to understand the concept of total internal reflection and the significance of the critical angle.

Categorize We use concepts developed in this section, so we categorize this example as a substitution problem.

Apply Equation 35.10 to the air-water interface:

$$
\begin{aligned}
\sin \theta_{c}=\frac{n_{2}}{n_{1}} & =\frac{1.00}{1.33}=0.752 \\
\theta_{c} & =48.8^{\circ}
\end{aligned}
$$

What If? What if a fish in a still pond looks upward toward the water's surface at different angles relative to the surface as in Figure 35.27? What does it see?

Answer Because the path of a light ray is reversible, light traveling from medium 2 into medium 1 in Active Figure 35.25a follows the paths shown, but in the opposite direction. A fish looking upward toward the water surface as in Figure 35.27 can see out of the water if it looks toward the surface at an angle less than the critical angle. Therefore, when the fish's line of vision makes an angle of $\theta=40^{\circ}$ with the normal to the surface, for example, light from above the water reaches the fish's eye. At $\theta=48.8^{\circ}$, the critical angle for water, the light has to skim along the water's surface before being refracted to the fish's eye; at this angle, the fish can, in principle, see the entire shore of the pond. At angles greater than the critical angle, the light reaching the fish comes by means of total internal reflection at the surface. Therefore, at $\theta=60^{\circ}$, the fish sees a reflection of the bottom of the pond.

Figure 35.27 (Example 35.6) What If? A fish looks upward toward the water surface.

Optical Fibers

Another interesting application of total internal reflection is the use of glass or transparent plastic rods to "pipe" light from one place to another. As indicated in Figure 35.28 , light is confined to traveling within a rod, even around curves, as the result of successive total internal reflections. Such a light pipe is flexible if thin fibers are used rather than thick rods. A flexible light pipe is called an optical fiber. If a bundle of parallel fibers is used to construct an optical transmission line, images can be transferred from one point to another. This technique is used in a sizable industry known as fiber optics.

A practical optical fiber consists of a transparent core surrounded by a cladding, a material that has a lower index of refraction than the core. The combination may be surrounded by a plastic jacket to prevent mechanical damage. Figure 35.29 shows a cutaway view of this construction. Because the index of refraction of the cladding is less than that of the core, light traveling in the core experiences total internal reflection if it arrives at the interface between the core and the cladding at an angle

(Left) Strands of glass optical fibers are used to carry voice, video, and data signals in telecommunication networks. (Right) A bundle of optical fibers is illuminated by a laser.

Figure 35.28 Light travels in a curved transparent rod by multiple internal reflections.

Figure 35.29 The construction of an optical fiber. Light travels in the core, which is surrounded by a cladding and a protective jacket.
of incidence that exceeds the critical angle. In this case, light "bounces" along the core of the optical fiber, losing very little of its intensity as it travels.

Any loss in intensity in an optical fiber is essentially due to reflections from the two ends and absorption by the fiber material. Optical fiber devices are particularly useful for viewing an object at an inaccessible location. For example, physicians often use such devices to examine internal organs of the body or to perform surgery without making large incisions. Optical fiber cables are replacing copper wiring and coaxial cables for telecommunications because the fibers can carry a much greater volume of telephone calls or other forms of communication than electrical wires can.

Summary

ThomsonNOW Sign in at www.thomsonedu.com and go to ThomsonNOW to take a practice test for this chapter.

DEFINITION

The index of refraction n of a medium is defined by the ratio

$$
\begin{equation*}
n \equiv \frac{c}{v} \tag{35.4}
\end{equation*}
$$

where c is the speed of light in a vacuum and v is the speed of light in the medium.

CONCEPTS AND PRINCIPLES

In geometric optics, we use the ray approximation, in which a wave travels through a uniform medium in straight lines in the direction of the rays.

Total internal reflection occurs when light travels from a medium of high index of refraction to one of lower index of refraction. The critical angle θ_{c} for which total internal reflection occurs at an interface is given by

$$
\begin{equation*}
\sin \theta_{c}=\frac{n_{2}}{n_{1}} \quad\left(\text { for } n_{1}>n_{2}\right) \tag{35.10}
\end{equation*}
$$

ANALYSIS MODELS FOR PROBLEM SOLVING

Wave Under Reflection. The law of reflection states that for a light ray (or other type of wave) incident on a smooth surface, the angle of reflection θ_{1}^{\prime} equals the angle of incidence θ_{1} :

$$
\begin{equation*}
\theta_{1}^{\prime}=\theta_{1} \tag{35.2}
\end{equation*}
$$

where v_{1} and v_{2} are the speeds of the wave in medium 1 and medium 2, respectively. The incident ray, the reflected ray, the refracted ray, and the normal to the surface all lie in the same plane.

For light waves, Snell's law of refraction states that

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{35.8}
\end{equation*}
$$

where n_{1} and n_{2} are the indices of refraction in the two media.

Questions

denotes answer available in Student Solutions Manual/Study Guide; O denotes objective question

1. Why do astronomers looking at distant galaxies talk about looking backward in time?
2. O What is the order of magnitude of the time interval required for light to travel 10 km as in Galileo's attempt to measure the speed of light? (a) several seconds (b) several milliseconds (c) several microseconds (d) several nanoseconds
3. O In each of the following situations, a wave passes through an opening in an absorbing wall. Rank the situations in order from the one in which the wave is best described by the ray approximation to the one in which the wave coming through the opening spreads out most nearly equally in all directions in the hemisphere beyond the wall. (a) The sound of a low whistle at 1 kHz passes through a doorway 1 m wide. (b) Red light passes through the pupil of your eye. (c) Blue light passes through the pupil of your eye. (d) The wave broadcast by an AM radio station passes through a doorway 1 m wide. (e) An x-ray passes through the space between bones in your elbow joint.
4. The display windows of some department stores are slanted slightly inward at the bottom. This tilt is to decrease the glare from streetlights and the Sun, which would make it difficult for shoppers to see the display inside. Sketch a light ray reflecting from such a window to show how this design works.
5. You take a child for walks around the neighborhood. She loves to listen to echoes from houses when she shouts or when you clap loudly. A house with a large, flat front wall can produce an echo if you stand straight in front of it and reasonably far away. Draw a bird's-eye view of the situation to explain the production of the echo. Shade the area where you can stand to hear the echo. What If? The child helps you discover that a house with an L-shaped floor plan can produce echoes if you are standing in a wider range of locations. You can be standing at any reasonably distant location from which you can see the inside corner. Explain the echo in this case and draw another diagram for comparison. What If? What if the two wings of the house are not perpendicular? Will you and the child, standing close together, hear echoes? What If? What if a rectangular house and its garage have perpendicular walls that would form an inside corner but have a breezeway between them so that the walls do not meet? Will this structure produce strong echoes for peo-
ple in a wide range of locations? Explain your answers with diagrams.
6. The F-117A stealth fighter (Figure Q35.6) is specifically designed to be a nonretroreflector of radar. What aspects of its design help accomplish this purpose? Suggestion: Answer the previous question as preparation for this one. Notice that the bottom of the plane is flat and that all the flat exterior panels meet at odd angles.

Figure Q35.6
7. O A light wave moves between medium 1 and medium 2. Which of the following are correct statements relating its speed, frequency, and wavelength in the two media, the indices of refraction of the media, and the angles of incidence and refraction? Choose all correct statements.
(a) $v_{1} / \sin \theta_{1}=v_{2} / \sin \theta_{2} \quad$ (b) $\quad \csc \theta_{1} / n_{1}=\csc \theta_{2} / n_{2}$
(c) $\lambda_{1} / \sin \theta_{1}=\lambda_{2} / \sin \theta_{2}$ (d) $f_{1} / \sin \theta_{1}=f_{2} / \sin \theta_{2}$
(e) $n_{1} / \cos \theta_{1}=n_{2} / \cos \theta_{2}$
8. Sound waves have much in common with light waves, including the properties of reflection and refraction. Give examples of these phenomena for sound waves.
9. O Consider light traveling from one medium into another with a different index of refraction. (a) Does its wavelength change? (b) Does its frequency change? (c) Does its speed change? (d) Does its direction always change?
10. A laser beam passing through a nonhomogeneous sugar solution follows a curved path. Explain.
11. O (a) Can light undergo total internal reflection at a smooth interface between air and water? If so, in which medium must it be traveling originally? (b) Can sound undergo total internal reflection at a smooth interface between air and water? If so, in which medium must it be traveling originally?
12. Explain why a diamond sparkles more than a glass crystal of the same shape and size.
13. Total internal reflection is applied in the periscope of a submarine to let the user "see around corners." In this device, two prisms are arranged as shown in Figure Q35.13 so that an incident beam of light follows the path shown. Parallel tilted, silvered mirrors could be used, but glass prisms with no silvered surfaces give higher light throughput. Propose a reason for the higher efficiency.

Figure Q35.13
14. O Suppose you find experimentally that two colors of light, A and B, originally traveling in the same direction in air, are sent through a glass prism, and A changes direction more than B . Which travels more slowly in the prism, A or B? Alternatively, is there insufficient information to determine which moves more slowly?
15. Retroreflection by transparent spheres, mentioned in Section 35.4, can be observed with dewdrops. To do so, look at the shadow of your head where it falls on dewy grass. Compare your observations to the reactions of two other people: Renaissance artist Benvenuto Cellini described the phenomenon and his reaction in his Autobiography, at
the end of Part One, and American philosopher Henry David Thoreau did the same in Walden, "Baker Farm," second paragraph. The optical display around the shadow of your head is called heiligenschein, which is German for holy light. Try to find a person you know who has seen the heiligenschein. What did that person think about it?
16. How is it possible that a complete circle of a rainbow can sometimes be seen from an airplane? With a stepladder, a lawn sprinkler, and a sunny day, how can you show the complete circle to children?
17. At one restaurant, a worker uses colored chalk to write the daily specials on a blackboard illuminated with a spotlight. At another restaurant, a worker writes with colored grease pencils onto a flat, smooth sheet of transparent acrylic plastic with index of refraction 1.55. The panel hangs in front of a piece of black felt. Small, bright electric lights are installed all along the edges of the sheet, inside an opaque channel. Figure Q35.17 shows a cutaway view of the sign. Explain why viewers at both restaurants see the letters shining against a black background. Explain why the sign at the second restaurant may use less energy from the electric company than the illuminated blackboard at the first restaurant. What would be a good choice for the index of refraction of the material in the grease pencils?

Figure Q35.17
18. O The core of an optical fiber transmits light with minimal loss if it is surrounded by what? (a) water (b) diamond (c) air (d) glass (e) fused quartz.
19. Under what conditions is a mirage formed? On a hot day, what are we seeing when we observe "water on the road"?

Problems

WebAssign The Problems from this chapter may be assigned online in WebAssign.
ThomsonNOW Sign in at www.thomsonedu.com and go to ThomsonNOW to assess your understanding of this chapter's topics with additional quizzing and conceptual questions.
1, 2, 3 denotes straightforward, intermediate, challenging; \square denotes full solution available in Student Solutions Manual/Study Guide; $\boldsymbol{\Delta}$ denotes coached solution with hints available at www.thomsonedu.com; denotes developing symbolic reasoning;

- denotes asking for qualitative reasoning; denotes computer useful in solving problem

Section 35.1 The Nature of Light

Section 35.2 Measurements of the Speed of Light

1. The Apollo 11 astronauts set up a panel of efficient corner-cube retroreflectors on the Moon's surface (Fig. $35.8 \mathrm{a})$. The speed of light can be found by measuring the time interval required for a laser beam to travel from the Earth, reflect from the panel, and return to the Earth. Assume this interval is measured to be 2.51 s at a station where the Moon is at the zenith. What is the measured speed of light? Take the center-to-center distance from the Earth to the Moon to be $3.84 \times 10^{8} \mathrm{~m}$. Explain whether it is necessary to consider the sizes of the Earth and the Moon in your calculation.
2. As a result of his observations, Roemer concluded that eclipses of Io by Jupiter were delayed by 22 min during a six-month period as the Earth moved from the point in its orbit where it is closest to Jupiter to the diametrically opposite point where it is farthest from Jupiter. Using $1.50 \times 10^{8} \mathrm{~km}$ as the average radius of the Earth's orbit around the Sun, calculate the speed of light from these data.
3. In an experiment to measure the speed of light using the apparatus of Fizeau (see Fig. 35.2), the distance between light source and mirror was 11.45 km and the wheel had 720 notches. The experimentally determined value of c was $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the minimum angular speed of the wheel for this experiment.

Section 35.3 The Ray Approximation in Geometric Optics

Section 35.4 The Wave Under Reflection

Section 35.5 The Wave Under Refraction

Note: You may look up indices of refraction in Table 35.1.
4. A dance hall is built without pillars and with a horizontal ceiling 7.20 m above the floor. A mirror is fastened flat against one section of the ceiling. Following an earthquake, the mirror is in place and unbroken. An engineer makes a quick check of whether the ceiling is sagging by directing a vertical beam of laser light up at the mirror and observing its reflection on the floor. (a) Show that if the mirror has rotated to make an angle ϕ with the hori-
zontal, the normal to the mirror makes an angle ϕ with the vertical. (b) Show that the reflected laser light makes an angle 2ϕ with the vertical. (c) Assume the reflected laser light makes a spot on the floor 1.40 cm away from the point vertically below the laser. Find the angle ϕ.
5. The two mirrors illustrated in Figure P35.5 meet at a right angle. The beam of light in the vertical plane P strikes mirror 1 as shown. (a) Determine the distance the reflected light beam travels before striking mirror 2. (b) In what direction does the light beam travel after being reflected from mirror 2?

Figure P35.5
6. Two flat, rectangular mirrors, both perpendicular to a horizontal sheet of paper, are set edge to edge with their reflecting surfaces perpendicular to each other. (a) A light ray in the plane of the paper strikes one of the mirrors at an arbitrary angle of incidence θ_{1}. Prove that the final direction of the ray, after reflection from both mirrors, is opposite its initial direction. In a clothing store, such a pair of mirrors shows you an image of yourself as others see you, with no apparent right-left reversal. (b) What If? Now assume the paper is replaced with a third flat mirror, touching edges with the other two and perpendicular to both. The set of three mirrors is called a corner-cube reflector. A ray of light is incident from any direction within the octant of space bounded by the reflecting surfaces. Argue that the ray will reflect once from each mirror and that its final direction will be opposite to its original direction. The Apollo 11 astronauts placed a panel of corner-cube retroreflectors on the Moon. Analysis of timing data taken with it reveals that
the radius of the Moon's orbit is increasing at the rate of $3.8 \mathrm{~cm} / \mathrm{yr}$ as it loses kinetic energy because of tidal friction.
7. The distance of a lightbulb from a large plane mirror is twice the distance of a person from the plane mirror. Light from the lightbulb reaches the person by two paths. It travels to the mirror at an angle of incidence θ and reflects from the mirror to the person. It also travels directly to the person without reflecting off the mirror. The total distance traveled by the light in the first case is twice the distance traveled by the light in the second case. Find the value of the angle θ.
8. Two light pulses are emitted simultaneously from a source. Both pulses travel to a detector, but mirrors shunt one pulse along a path that carries it through 6.20 m of ice along the way. Determine the difference in the pulses' times of arrival at the detector.
9. A narrow beam of sodium yellow light, with wavelength 589 nm in vacuum, is incident from air onto a smooth water surface at an angle of incidence of 35.0°. Determine the angle of refraction and the wavelength of the light in water.
10. A plane sound wave in air at $20^{\circ} \mathrm{C}$, with wavelength 589 mm , is incident on a smooth surface of water at $25^{\circ} \mathrm{C}$ at an angle of incidence of 3.50°. Determine the angle of refraction for the sound wave and the wavelength of the sound in water. Compare and contrast the behavior of the sound in this problem with the behavior of the light in Problem 9.
11. An underwater scuba diver sees the Sun at an apparent angle of 45.0° above the horizontal. What is the actual elevation angle of the Sun above the horizontal?
12. The wavelength of red helium-neon laser light in air is 632.8 nm . (a) What is its frequency? (b) What is its wavelength in glass that has an index of refraction of 1.50 ? (c) What is its speed in the glass?
13. A ray of light is incident on a flat surface of a block of crown glass that is surrounded by water. The angle of refraction is 19.6°. Find the angle of reflection.
14. A laser beam with vacuum wavelength 632.8 nm is incident from air onto a block of Lucite as shown in Active Figure 35.10 b . The line of sight of the photograph is perpendicular to the plane in which the light moves. Find (a) the speed, (b) the frequency, and (c) the wavelength of the light in the Lucite. Suggestion: Use a protractor.
15. Find the speed of light in (a) flint glass, (b) water, and (c) cubic zirconia.
16. A narrow beam of ultrasonic waves reflects off the liver tumor illustrated in Figure P35.16. The speed of the wave is 10.0% less in the liver than in the surrounding medium. Determine the depth of the tumor.

Figure P35.16
17. Δ A ray of light strikes a flat block of glass $(n=1.50)$ of thickness 2.00 cm at an angle of 30.0° with the normal. Trace the light beam through the glass and find the angles of incidence and refraction at each surface.
18. An opaque cylindrical tank with an open top has a diameter of 3.00 m and is completely filled with water. When the afternoon Sun reaches an angle of 28.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank?
19. When the light illustrated in Figure P35.19 passes through the glass block, it is shifted laterally by the distance d. Taking $n=1.50$, find the value of d.

Figure P35.19
20. Find the time interval required for the light to pass through the glass block described in Problem 19.
21. The light beam shown in Figure P35.21 makes an angle of 20.0° with the normal line $N N^{\prime}$ in the linseed oil. Determine the angles θ and θ^{\prime}. (The index of refraction of linseed oil is 1.48.)

Figure P35.21
22. Three sheets of plastic have unknown indices of refraction. Sheet 1 is placed on top of sheet 2 , and a laser beam is directed onto the sheets from above so that it strikes the interface at an angle of 26.5° with the normal. The refracted beam in sheet 2 makes an angle of 31.7° with the normal. The experiment is repeated with sheet 3 on top of sheet 2, and, with the same angle of incidence, the refracted beam makes an angle of 36.7° with the normal. If the experiment is repeated again with sheet 1 on top of sheet 3 , what is the expected angle of refraction in sheet 3? Assume the same angle of incidence.
23. Light passes from air into flint glass. (a) Is it possible for the component of its velocity perpendicular to the interface to remain constant? Explain your answer. (b) What If? Can the component of velocity parallel to the interface remain constant during refraction? Explain your answer.
24. When you look through a window, by what time interval is the light you see delayed by having to go through glass instead of air? Make an order-of-magnitude estimate on the basis of data you specify. By how many wavelengths is it delayed?
25. A prism that has an apex angle of 50.0° is made of cubic zirconia, with $n=2.20$. What is its angle of minimum deviation?
26. Light of wavelength 700 nm is incident on the face of a fused quartz prism at an angle of 75.0° (with respect to the normal to the surface). The apex angle of the prism is 60.0°. Use the value of n from Figure 35.21 and calculate the angle (a) of refraction at the first surface, (b) of incidence at the second surface, (c) of refraction at the second surface, and (d) between the incident and emerging rays.
27. A triangular glass prism with apex angle $\Phi=60.0^{\circ}$ has an index of refraction $n=1.50$ (Fig. P35.27). What is the smallest angle of incidence θ_{1} for which a light ray can emerge from the other side?

Figure P35.27 Problems 27 and 28.
28. A triangular glass prism with apex angle Φ has index of refraction n. (See Fig. P35.27.) What is the smallest angle of incidence θ_{1} for which a light ray can emerge from the other side?
29. A triangular glass prism with apex angle 60.0° has an index of refraction of 1.50 . (a) Show that if its angle of incidence on the first surface is $\theta_{1}=48.6^{\circ}$, light will pass symmetrically through the prism as shown in Figure 35.17. (b) Find the angle of deviation $\delta_{\min }$ for $\theta_{1}=48.6^{\circ}$. (c) What If? Find the angle of deviation if the angle of incidence on the first surface is 45.6°. (d) Find the angle of deviation if $\theta_{1}=51.6^{\circ}$.

Section 35.6 Huygens's Principle

30. The speed of a water wave is described by $v=\sqrt{g d}$, where d is the water depth, assumed to be small compared to the wavelength. Because their speed changes, water waves refract when moving into a region of different depth. Sketch a map of an ocean beach on the eastern side of a landmass. Show contour lines of constant depth under water, assuming reasonably uniform slope. (a) Suppose waves approach the coast from a storm far away to the north-northeast. Demonstrate that the waves move nearly perpendicular to the shoreline when they reach the beach. (b) Sketch a map of a coastline with alternating bays and headlands as suggested in Figure P35.30. Again

Figure P35.30
make a reasonable guess about the shape of contour lines of constant depth. Suppose waves approach the coast, carrying energy with uniform density along originally straight wave fronts. Show that the energy reaching the coast is concentrated at the headlands and has lower intensity in the bays.

Section 35.7 Dispersion

31. \triangle The index of refraction for violet light in silica flint glass is 1.66 and that for red light is 1.62 . What is the angular spread of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 50.0° ? See Figure P35.31.

Figure P35.31
32. A narrow, white light beam is incident on a block of fused quartz at an angle of 30.0°. Find the angular spread of the light beam inside the quartz due to dispersion.

Section 35.8 Total Internal Reflection

33. For 589-nm light, calculate the critical angle for the following materials surrounded by air. (a) diamond (b) flint glass (c) ice
34. A glass fiber ($n=1.50$) is submerged in water ($n=1.33$). What is the critical angle for light to stay inside the optical fiber?

Consider a common mirage formed by superheated air immediately above a roadway. A truck driver whose eyes are 2.00 m above the road, where $n=1.0003$, looks forward. She perceives the illusion of a patch of water ahead on the road, where her line of sight makes an angle of 1.20° below the horizontal. Find the index of refraction of the air immediately above the road surface. Suggestion: Treat this problem as one about total internal reflection.
36. Determine the maximum angle θ for which the light rays incident on the end of the pipe in Figure P35.36 are sub-
ject to total internal reflection along the walls of the pipe. Assume the pipe has an index of refraction of 1.36 and the outside medium is air. Your answer defines the size of the cone of acceptance for the light pipe.

Figure P35.36
37. An optical fiber has index of refraction n and diameter d. It is surrounded by air. Light is sent into the fiber along its axis as shown in Figure P35.37. (a) Find the smallest outside radius R permitted for a bend in the fiber if no light is to escape. (b) What If? Does the result for part (a) predict reasonable behavior as d approaches zero? As n increases? As n approaches 1? (c) Evaluate R assuming the fiber diameter is $100 \mu \mathrm{~m}$ and its index of refraction is 1.40 .

Figure P35.37
38. A room contains air in which the speed of sound is $343 \mathrm{~m} / \mathrm{s}$. The walls of the room are made of concrete in which the speed of sound is $1850 \mathrm{~m} / \mathrm{s}$. (a) Find the critical angle for total internal reflection of sound at the concrete-air boundary. (b) In which medium must the sound be traveling if it is undergo total internal reflection? (c) "A bare concrete wall is a highly efficient mirror for sound." Give evidence for or against this statement.
39. Around 1965, engineers at the Toro Company invented a gasoline gauge for small engines diagrammed in Figure P35.39. The gauge has no moving parts. It consists of a flat slab of transparent plastic fitting vertically into a slot in the cap on the gas tank. None of the plastic has a reflective coating. The plastic projects from the horizontal top down nearly to the bottom of the opaque tank. Its lower edge is cut with facets making angles of 45° with the horizontal. A lawn mower operator looks down from above and sees a boundary between bright and dark on the gauge. The location of the boundary, across the width of the plastic, indicates the quantity of gasoline in the tank. Explain how the gauge works. Explain the design requirements, if any, for the index of refraction of the plastic.

Figure P35.39

Additional Problems

40. A digital videodisc records information in a spiral track approximately $1 \mu \mathrm{~m}$ wide. The track consists of a series of pits in the information layer (Fig. P35.40a) that scatter light from a laser beam sharply focused on them. The laser shines in through transparent plastic of thickness $t=1.20 \mathrm{~mm}$ and index of refraction 1.55 (Fig. P35.40b). Assume the width of the laser beam at the information layer must be $a=1.00 \mu \mathrm{~m}$ to read from only one track and not from its neighbors. Assume the width of the beam as it enters the transparent plastic from below is $w=0.700 \mathrm{~mm}$. A lens makes the beam converge into a cone with an apex angle $2 \theta_{1}$ before it enters the videodisc. Find the incidence angle θ_{1} of the light at the edge of the conical beam. This design is relatively immune to small dust particles degrading the video quality. Particles on the plastic surface would have to be as large as 0.7 mm to obscure the beam.

Image not available due to copyright restrictions

(b)

Figure P35.40
41. Figure P35.41a shows a desk ornament globe containing a photograph. The flat photograph is in air, inside a vertical slot located behind a water-filled compartment having the shape of one half of a cylinder. Suppose you are looking at the center of the photograph and then rotate the globe about a vertical axis. You find that the center of the photograph disappears when you rotate the globe beyond a certain maximum angle (Fig. P35.41b). Account for this phenomenon and calculate the maximum angle. Describe what you see when you turn the globe beyond this angle.

(a)

Figure P35.41
42. A light ray enters the atmosphere of a planet and descends vertically to the surface a distance h below. The index of refraction where the light enters the atmosphere is 1.000 , and it increases linearly with distance to have the value n at the planet surface. (a) Over what time interval does the light traverse this path? (b) State how this travel time compares with the time interval required in the absence of an atmosphere.
43. A narrow beam of light is incident from air onto the surface of glass with index of refraction 1.56. Find the angle of incidence for which the corresponding angle of refraction is half the angle of incidence. Suggestion: You might want to use the trigonometric identity $\sin 2 \theta=2 \sin \theta \cos \theta$.
44. (a) Consider a horizontal interface between air above and glass of index 1.55 below. Draw a light ray incident from the air at angle of incidence 30.0°. Determine the angles of the reflected and refracted rays and show them on the diagram. (b) What If? Now suppose the light ray is incident from the glass at angle of incidence 30.0°. Determine the angles of the reflected and refracted rays and show all three rays on a new diagram. (c) For rays incident from the air onto the air-glass surface, determine and tabulate the angles of reflection and refraction for all the angles of incidence at 10.0° intervals from 0° to 90.0°.
(d) Do the same for light rays coming up to the interface through the glass.
45. Δ A small light fixture on the bottom of a swimming pool is 1.00 m below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter of this circle?
46. The walls of a prison cell are perpendicular to the four cardinal compass directions. On the first day of spring, light from the rising Sun enters a rectangular window in the eastern wall. The light traverses 2.37 m horizontally to shine perpendicularly on the wall opposite the window. A young prisoner observes the patch of light moving across this western wall and for the first time forms his own understanding of the rotation of the Earth. (a) With what speed does the illuminated rectangle move? (b) The prisoner holds a small, square mirror flat against the wall at one corner of the rectangle of light. The mirror reflects light back to a spot on the eastern wall close beside the window. With what speed does the smaller square of light move across that wall? (c) Seen from a latitude of 40.0° north, the rising Sun moves through the sky along a line making a 50.0° angle with the southeastern horizon. In what direction does the rectangular patch of light on the western wall of the prisoner's cell move? (d) In what direction does the smaller square of light on the eastern wall move?

A hiker stands on an isolated mountain peak near sunset and observes a rainbow caused by water droplets in the air at a distance of 8.00 km along her line of sight. The valley is 2.00 km below the mountain peak and entirely flat. What fraction of the complete circular arc of the rainbow is visible to the hiker? (See Fig. 35.24.)
48. Figure P35.48 shows a top view of a square enclosure. The inner surfaces are plane mirrors. A ray of light enters a small hole in the center of one mirror. (a) At what angle θ must the ray enter if it exits through the hole after being reflected once by each of the other three mirrors? (b) What If? Are there other values of θ for which the ray can exit after multiple reflections? If so, sketch one of the ray's paths.

Figure P35.48
49. \triangle A laser beam strikes one end of a slab of material as shown in Figure P35.49. The index of refraction of the
slab is 1.48. Determine the number of internal reflections of the beam before it emerges from the opposite end of the slab.

Figure P35.49
50. A $4.00-\mathrm{m}-\mathrm{long}$ pole stands vertically in a lake having a depth of 2.00 m . The Sun is 40.0° above the horizontal. Determine the length of the pole's shadow on the bottom of the lake. Take the index of refraction for water to be 1.33.
51. The light beam in Figure P35.51 strikes surface 2 at the critical angle. Determine the angle of incidence θ_{1}.

Figure P35.51
52. Builders use a leveling instrument in which the beam from a fixed helium-neon laser reflects in a horizontal plane from a small, flat mirror mounted on a vertical rotating shaft. The light is sufficiently bright and the rotation rate is sufficiently high that the reflected light appears as a horizontal line, wherever it falls on a wall. (a) Assume the mirror is at the center of a circular grain elevator of radius 3.00 m . The mirror spins with constant angular velocity $35.0 \mathrm{rad} / \mathrm{s}$. Find the speed of the spot of laser light on the curved wall. (b) Now assume the spinning mirror is at a perpendicular distance of 3.00 m from point O on a long, flat, vertical wall. When the spot of laser light on the wall is at distance x from point O, what is its speed? (c) What is the minimum value for the speed? What value of x corresponds to it? How does the minimum speed compare with the speed you found in part (a)? (d) What is the maximum speed of the spot on the flat wall? (e) In what time interval does the spot change from its minimum to its maximum speed?
53. \triangle A light ray of wavelength 589 nm is incident at an angle θ on the top surface of a block of polystyrene as shown in Figure P35.53. (a) Find the maximum value of θ for which the refracted ray undergoes total internal reflection at the left vertical face of the block. What If? Repeat the calculation for the case in which the polystyrene block is immersed in (b) water and (c) carbon disulfide. You will need to explain your answers.

Figure P35.53
54. As sunlight enters the Earth's atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon and the instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant when a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant at which this line just dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth's atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8614 m . Assume the observer is at the Earth's equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.
55. A shallow glass dish is 4.00 cm wide at the bottom as shown in Figure P35.55. When an observer's eye is located as shown, the observer sees the edge of the bottom of the empty dish. When this dish is filled with water, the observer sees the center of the bottom of the dish. Find the height of the dish.

Figure P35.55
56. A ray of light passes from air into water. For its deviation angle $\delta=\left|\theta_{1}-\theta_{2}\right|$ to be 10.0°, what must its angle of incidence be?
57. A material having an index of refraction n is surrounded by a vacuum and is in the shape of a quarter circle of radius R (Fig. P35.57). A light ray parallel to the base of the material is incident from the left at a distance L above the base and emerges from the material at the angle θ. Determine an expression for θ.

Figure P35.57
58. Fermat's principle. Pierre de Fermat (1601-1665) showed that whenever light travels from one point to another, its actual path is the path that requires the smallest time interval. The simplest example is for light propagating in a homogeneous medium. It moves in a straight line because a straight line is the shortest distance between two points. Derive Snell's law of refraction from Fermat's principle. Proceed as follows. In Figure P35.58, a light ray travels from point P in medium 1 to point Q in medium 2. The two points are respectively at perpendicular distances a and b from the interface. The displacement from P to Q has the component d parallel to the interface, and we let x represent the coordinate of the point where the ray enters the second medium. Let $t=0$ be the instant at which the light starts from P. (a) Show that the time at which the light arrives at Q is

$$
t=\frac{r_{1}}{v_{1}}+\frac{r_{2}}{v_{2}}=\frac{n_{1} \sqrt{a^{2}+x^{2}}}{c}+\frac{n_{2} \sqrt{b^{2}+(d-x)^{2}}}{c}
$$

(b) To obtain the value of x for which t has its minimum value, differentiate t with respect to x and set the derivative equal to zero. Show that the result implies

$$
\frac{n_{1} x}{\sqrt{a^{2}+x^{2}}}=\frac{n_{2}(d-x)}{\sqrt{b^{2}+(d-x)^{2}}}
$$

(c) Show that this expression in turn gives Snell's law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Figure P35.58
59. Refer to Problem 58 for the statement of Fermat's principle of least time. Derive the law of reflection (Eq. 35.2) from Fermat's principle.
60. A transparent cylinder of radius $R=2.00 \mathrm{~m}$ has a mirrored surface on its right half as shown in Figure P35.60. A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and exiting light ray are parallel, and $d=2.00 \mathrm{~m}$. Determine the index of refraction of the material.

Figure P35.60
61. Suppose a luminous sphere of radius R_{1} (such as the Sun) is surrounded by a uniform atmosphere of radius R_{2} and index of refraction n. When the sphere is viewed from a location far away in vacuum, what is its apparent radius? You will need to distinguish between the two cases (a) $R_{2}>$ $n R_{1}$ and (b) $R_{2}<n R_{1}$.
62. A. H. Pfund's method for measuring the index of refraction of glass is illustrated in Figure P35.62. One face of a slab of thickness t is painted white, and a small hole scraped clear at point P serves as a source of diverging rays when the slab is illuminated from below. Ray $P B B^{\prime}$ strikes the clear surface at the critical angle and is totally reflected as are rays such as $P C C^{\prime}$. Rays such as $P A A^{\prime}$ emerge from the clear surface. On the painted surface, there appears a dark circle of diameter d surrounded by an illuminated region, or halo. (a) Derive an equation for n in terms of the measured quantities d and t. (b) What is

Figure P35.62
the diameter of the dark circle if $n=1.52$ for a slab 0.600 cm thick? (c) If white light is used, dispersion causes the critical angle to depend on color. Is the inner edge of the white halo tinged with red light or with violet light? Explain.
63. A light ray enters a rectangular block of plastic at an angle $\theta_{1}=45.0^{\circ}$ and emerges at an angle $\theta_{2}=76.0^{\circ}$ as shown in Figure P35.63. (a) Determine the index of refraction of the plastic. (b) If the light ray enters the plastic at a point $L=50.0 \mathrm{~cm}$ from the bottom edge, what time interval is required for the light ray to travel through the plastic?

Figure P35.63
64. \quad Students allow a narrow beam of laser light to strike a water surface. They measure the angle of refraction for selected angles of incidence and record the data shown in the accompanying table. Use the data to verify Snell's law of refraction by plotting the sine of the angle of incidence versus the sine of the angle of refraction. Explain what the shape of the graph demonstrates. Use the resulting plot to deduce the index of refraction of water, explaining how you do so.

Angle of Incidence (degrees)	Angle of Refraction (degrees)
10.0	7.5
20.0	15.1
30.0	22.3
40.0	28.7
50.0	35.2
60.0	40.3
70.0	45.3
80.0	47.7

65. Review problem. A mirror is often "silvered" with aluminum. By adjusting the thickness of the metallic film, one can make a sheet of glass into a mirror that reflects anything between, say, 3% and 98% of the incident light, transmitting the rest. Prove that it is impossible to construct a "one-way mirror" that would reflect 90% of the electromagnetic waves incident from one side and reflect 10% of those incident from the other side. Suggestion: Use Clausius's statement of the second law of thermodynamics.

Answers to Quick Quizzes

35.1 (d). The light rays from the actor's face must reflect from the mirror and into the camera. If these light rays are reversed, light from the camera reflects from the mirror into the eyes of the actor.
35.2 Beams (2) and (4) are reflected; beams (3) and (5) are refracted.
35.3 (c). Because the light is entering a material in which the index of refraction is lower, the speed of light is higher and the light bends away from the normal.
35.4 (c). An ideal camera lens would have an index of refraction that does not vary with wavelength so that all colors would be bent through the same angle by the lens. Of the three choices, fused quartz has the least variation in
n across the visible spectrum. A lens designer can do even better by stacking two lenses of different materials together to make an achromatic doublet.
35.5 (i), (b). The two bright rays exiting the bottom of the prism on the right in Figure 35.26 result from total internal reflection at the right face of the prism. Notice that there is no refracted light exiting the slanted side for these rays. The light from the other three rays is divided into reflected and refracted parts. (ii), (b). Counterclockwise rotation of the prism will cause the rays to strike the slanted side of the prism at a larger angle. When the five rays strike at an angle larger than the critical angle, they all undergo total internal reflection.

36.1 Images Formed by Flat Mirrors
36.2 Images Formed by Spherical Mirrors
36.3 Images Formed by Refraction
36.4 Thin Lenses
36.5 Lens Aberrations

36 Image Formation

Figure 36.1 An image formed by reflection from a flat mirror. The image point I is located behind the mirror a perpendicular distance q from the mirror (the image distance). The image distance has the same magnitude as the object distance p.

This chapter is concerned with the images that result when light rays encounter flat and curved surfaces. Images can be formed by either reflection or refraction, and we can design mirrors and lenses to form images with desired characteristics. We continue to use the ray approximation and assume light travels in straight lines. These two steps lead to valid predictions in the field called geometric optics. Subsequent chapters cover interference and diffraction effects, which are the objects of study in the field of wave optics.

36.1 Images Formed by Flat Mirrors

Image formation by mirrors can be understood through the analysis of light rays following the wave under reflection model. We begin by considering the simplest possible mirror, the flat mirror. Consider a point source of light placed at O in Figure 36.1, a distance p in front of a flat mirror. The distance p is called the object distance. Diverging light rays leave the source and are reflected from the mirror. Upon reflection, the rays continue to diverge. The dashed lines in Figure 36.1 are extensions of the diverging rays back to a point of intersection at I. The diverging rays appear to the viewer to originate at the point I behind the mirror. Point I, which is a distance q behind the mirror, is called the image of the object at O. The distance q is called the image distance. Regardless of the system under study, images can always be located by extending diverging rays back to a point at which
they intersect. Images are located either at a point from which rays of light actually diverge or at a point from which they appear to diverge.

Images are classified as real or virtual. A real image is formed when light rays pass through and diverge from the image point; a virtual image is formed when the light rays do not pass through the image point but only appear to diverge from that point. The image formed by the mirror in Figure 36.1 is virtual. The image of an object seen in a flat mirror is always virtual. Real images can be displayed on a screen (as at a movie theater), but virtual images cannot be displayed on a screen. We shall see an example of a real image in Section 36.2.

We can use the simple geometry in Active Figure 36.2 to examine the properties of the images of extended objects formed by flat mirrors. Even though there are an infinite number of choices of direction in which light rays could leave each point on the object (represented by a blue arrow), we need to choose only two rays to determine where an image is formed. One of those rays starts at P, follows a path perpendicular to the mirror, and reflects back on itself. The second ray follows the oblique path $P R$ and reflects as shown in Active Figure 36.2 according to the law of reflection. An observer in front of the mirror would extend the two reflected rays back to the point at which they appear to have originated, which is point P^{\prime} behind the mirror. A continuation of this process for points other than P on the object would result in a virtual image (represented by a yellow arrow) of the entire object behind the mirror. Because triangles $P Q R$ and $P^{\prime} Q R$ are congruent, $P Q=P^{\prime} Q$, so that $|p|=|q|$. Therefore, the image formed of an object placed in front of a flat mirror is as far behind the mirror as the object is in front of the mirror.

The geometry in Active Figure 36.2 also reveals that the object height h equals the image height h^{\prime}. Let us define lateral magnification M of an image as follows:

$$
\begin{equation*}
M \equiv \frac{\text { image height }}{\text { object height }}=\frac{h^{\prime}}{h} \tag{36.1}
\end{equation*}
$$

This general definition of the lateral magnification for an image from any type of mirror is also valid for images formed by lenses, which we study in Section 36.4. For a flat mirror, $M=+1$ for any image because $h^{\prime}=h$. The positive value of the magnification signifies that the image is upright. (By upright we mean that if the object arrow points upward as in Active Figure 36.2, so does the image arrow.)

A flat mirror produces an image that has an apparent left-right reversal. You can see this reversal by standing in front of a mirror and raising your right hand as shown in Figure 36.3. The image you see raises its left hand. Likewise, your hair appears to be parted on the side opposite your real part, and a mole on your right cheek appears to be on your left cheek.

This reversal is not actually a left-right reversal. Imagine, for example, lying on your left side on the floor with your body parallel to the mirror surface. Now your head is on the left and your feet are on the right. If you shake your feet, the image does not shake its head! If you raise your right hand, however, the image again raises its left hand. Therefore, the mirror again appears to produce a left-right reversal but in the up-down direction!

The reversal is actually a front-back reversal, caused by the light rays going forward toward the mirror and then reflecting back from it. An interesting exercise is to stand in front of a mirror while holding an overhead transparency in front of you so that you can read the writing on the transparency. You will also be able to read the writing on the image of the transparency. You may have had a similar experience if you have attached a transparent decal with words on it to the rear window of your car. If the decal can be read from outside the car, you can also read it when looking into your rearview mirror from inside the car.

Quick Quiz 36.1 You are standing approximately 2 m away from a mirror. The mirror has water spots on its surface. True or False: It is possible for you to see the water spots and your image both in focus at the same time.

ACTIVE FIGURE 36.2

A geometric construction that is used to locate the image of an object placed in front of a flat mirror. Because the triangles $P Q R$ and $P^{\prime} Q R$ are congruent, $|p|=|q|$ and $h=h^{\prime}$.
Sign in at www.thomsonedu.com and go to ThomsonNOW to move the object and see the effect on the image.

4 Lateral magnification

PITFALL PREVENTION 36.1

Magnification Does Not Necessarily

 Imply EnlargementFor optical elements other than flat mirrors, the magnification defined in Equation 36.1 can result in a number with a magnitude larger or smaller than 1. Therefore, despite the cultural usage of the word magnification to mean enlargement, the image could be smaller than the object.

Figure 36.3 The image in the mirror of a person's right hand is reversed front to back, which makes the right hand appear to be a left hand. Notice that the thumb is on the left side of both real hands and on the left side of the image. That the thumb is not on the right side of the image indicates that there is no left-to-right reversal.

CONCEPTUAL EXAMPLE 36.1 Multiple Images Formed by Two Mirrors

Two flat mirrors are perpendicular to each other as in Figure 36.4, and an object is placed at point O. In this situation, multiple images are formed. Locate the positions of these images.

SOLUTION

The image of the object is at I_{1} in mirror 1 (violet rays) and at I_{2} in mirror 2 (blue rays). In addition, a third image is formed at I_{3} (brown rays). This third image is the image of I_{1} in mirror 2 or, equivalently, the image of I_{2} in mirror 1. That is, the image at I_{1} (or I_{2}) serves as the object for I_{3}. To form this image at I_{3}, the rays reflect twice after leaving the object at O.

Figure 36.4 (Conceptual Example 36.1) When an object is placed in front of two mutually perpendicular mirrors as shown, three images are formed. Follow the different-colored light rays to understand the formation of each image.

CONCEPTUAL EXAMPLE 36.2 The Tilting Rearview Mirror

Most rearview mirrors in cars have a day setting and a night setting. The night setting greatly diminishes the intensity of the image so that lights from trailing vehicles do not temporarily blind the driver. How does such a mirror work?

SOLUTION

Figure 36.5 shows a cross-sectional view of a rearview mirror for each setting. The unit consists of a reflective coating on the back of a wedge of glass. In the day setting (Fig. 36.5a), the light from an object behind the car strikes the glass wedge at point 1 . Most of the light enters the wedge, refracting as it crosses the front surface, and reflects from the back surface to return to the front surface, where it is refracted again as it re-enters the air as ray B (for bright). In addition, a small portion of the light is reflected at the front surface of the glass as indicated by ray D (for dim).

This dim reflected light is responsible for the image

Figure 36.5 (Conceptual Example 36.2) Cross-sectional views of a rearview mirror. (a) With the day setting, the silvered back surface of the mirror reflects a bright ray B into the driver's eyes. (b) With the night setting, the glass of the unsilvered front surface of the mirror reflects a dim ray D into the driver's eyes. observed when the mirror is in the night setting (Fig. 36.5b). In that case, the wedge is rotated so that the path followed by the bright light (ray B) does not lead to the eye. Instead, the dim light reflected from the front surface of the wedge travels to the eye, and the brightness of trailing headlights does not become a hazard.

36.2 Images Formed by Spherical Mirrors

In the preceding section, we considered images formed from flat mirrors. Now we study images formed by curved mirrors. Although a variety of curvatures are possible, we will restrict our investigation to spherical mirrors. As its name implies, a spherical mirror has the shape of a section of a sphere.

Concave Mirrors

We first consider reflection of light from the inner, concave surface of a spherical mirror as shown in Figure 36.6. This type of reflecting surface is called a concave mirror. Figure 36.6a shows that the mirror has a radius of curvature R, and its center of curvature is point C. Point V is the center of the spherical section, and a line through C and V is called the principal axis of the mirror. Figure 36.6 a shows a

Figure 36.6 (a) A concave mirror of radius R. The center of curvature C is located on the principal axis. (b) A point object placed at O in front of a concave spherical mirror of radius R, where O is any point on the principal axis farther than R from the mirror surface, forms a real image at I. If the rays diverge from O at small angles, they all reflect through the same image point.
cross section of a spherical mirror, with its surface represented by the solid, curved black line. (The blue band represents the structural support for the mirrored surface, such as a curved piece of glass on which the silvered surface is deposited.) This type of mirror focuses incoming parallel rays to a point as demonstrated by the colored light rays in Figure 36.7.

Now consider a point source of light placed at point O in Figure 36.6b, where O is any point on the principal axis to the left of C. Two diverging light rays that originate at O are shown. After reflecting from the mirror, these rays converge and cross at the image point I. They then continue to diverge from I as if an object were there. As a result, the image at point I is real.

In this section, we shall consider only rays that diverge from the object and make a small angle with the principal axis. Such rays are called paraxial rays. All paraxial rays reflect through the image point as shown in Figure 36.6b. Rays that are far from the principal axis such as those shown in Figure 36.8 converge to other points on the principal axis, producing a blurred image. This effect, called spherical aberration, is present to some extent for any spherical mirror and is discussed in Section 36.5.

If the object distance p and radius of curvature R are known, we can use Figure 36.9 to calculate the image distance q. By convention, these distances are measured from point V. Figure 36.9 shows two rays leaving the tip of the object. One of these rays passes through the center of curvature C of the mirror, hitting the mirror perpendicular to the mirror surface and reflecting back on itself. The second ray strikes the mirror at its center (point V) and reflects as shown, obeying the law of reflection. The image of the tip of the arrow is located at the point where these two rays intersect. From the large, gold right triangle in Figure 36.9, we see that $\tan \theta=h / p$, and from the blue right triangle, we see that $\tan \theta=-h^{\prime} / q$. The negative sign is introduced because the image is inverted, so h^{\prime} is taken to be negative. Therefore, from Equation 36.1 and these results, we find that the magnification of the image is

$$
\begin{equation*}
M=\frac{h^{\prime}}{h}=-\frac{q}{p} \tag{36.2}
\end{equation*}
$$

Figure 36.9 The image formed by a spherical concave mirror when the object O lies outside the center of curvature C. This geometric construction is used to derive Equation 36.4.

Figure 36.7 Red, blue, and green light rays are reflected by a curved mirror. Notice that the three colored beams meet at a point.

Figure 36.8 Rays diverging from the object at large angles from the principal axis reflect from a spherical concave mirror to intersect the principal axis at different points, resulting in a blurred image. This condition is called spherical aberration.

A satellite-dish antenna is a concave reflector for television signals from a satellite in orbit around the Earth. Because the satellite is so far away, the signals are carried by microwaves that are parallel when they arrive at the dish. These waves reflect from the dish and are focused on the receiver.

Mirror equation in terms
of radius of curvature

Focal length

Mirror equation in terms of focal length

PITFALL PREVENTION 36.2

 The Focal Point Is Not the Focus PointThe focal point is usually not the point at which the light rays focus to form an image. The focal point is determined solely by the curvature of the mirror; it does not depend on the location of the object. In general, an image forms at a point different from the focal point of a mirror (or a lens). The only exception is when the object is located infinitely far away from the mirror.

Also notice from the green right triangle in Figure 36.9 and the smaller gold right triangle that

$$
\tan \alpha=\frac{-h^{\prime}}{R-q} \quad \text { and } \quad \tan \alpha=\frac{h}{p-R}
$$

from which it follows that

$$
\begin{equation*}
\frac{h^{\prime}}{h}=-\frac{R-q}{p-R} \tag{36.3}
\end{equation*}
$$

Comparing Equations 36.2 and 36.3 gives

$$
\frac{R-q}{p-R}=\frac{q}{p}
$$

Simple algebra reduces this expression to

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{2}{R} \tag{36.4}
\end{equation*}
$$

which is called the mirror equation. We present a modified version of this equation shortly.

If the object is very far from the mirror-that is, if p is so much greater than R that p can be said to approach infinity-then $1 / p \approx 0$, and Equation 36.4 shows that $q \approx R / 2$. That is, when the object is very far from the mirror, the image point is halfway between the center of curvature and the center point on the mirror as shown in Figure 36.10a. The incoming rays from the object are essentially parallel in this figure because the source is assumed to be very far from the mirror. The image point in this special case is called the focal point F, and the image distance the focal length f, where

$$
\begin{equation*}
f=\frac{R}{2} \tag{36.5}
\end{equation*}
$$

In Figure 36.7, the colored beams are traveling parallel to the principal axis and the mirror reflects all three beams to the focal point. Notice that the point at which the three beams intersect and the colors add is white.

Because the focal length is a parameter particular to a given mirror, it can be used to compare one mirror with another. Combining Equations 36.4 and 36.5, the mirror equation can be expressed in terms of the focal length:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{1}{f} \tag{36.6}
\end{equation*}
$$

Notice that the focal length of a mirror depends only on the curvature of the mirror and not on the material from which the mirror is made because the formation of the image results from rays reflected from the surface of the material. The situ-

Figure $\mathbf{3 6 . 1 0}$ (a) Light rays from a distant object $(p \rightarrow \infty)$ reflect from a concave mirror through the focal point F. In this case, the image distance $q \approx R / 2=f$, where f is the focal length of the mirror. (b) Reflection of parallel rays from a concave mirror.

Figure 36.11 Formation of an image by a spherical convex mirror. The image formed by the object is virtual and upright.
ation is different for lenses; in that case, the light actually passes through the material and the focal length depends on the type of material from which the lens is made. (See Section 36.4.)

Convex Mirrors

Figure 36.11 shows the formation of an image by a convex mirror, that is, one silvered so that light is reflected from the outer, convex surface. It is sometimes called a diverging mirror because the rays from any point on an object diverge after reflection as though they were coming from some point behind the mirror. The image in Figure 36.11 is virtual because the reflected rays only appear to originate at the image point as indicated by the dashed lines. Furthermore, the image is always upright and smaller than the object. This type of mirror is often used in stores to foil shoplifters. A single mirror can be used to survey a large field of view because it forms a smaller image of the interior of the store.

We do not derive any equations for convex spherical mirrors because Equations $36.2,36.4$, and 36.6 can be used for either concave or convex mirrors if we adhere to the following procedure. We will refer to the region in which light rays originate and move toward the mirror as the front side of the mirror and the other side as the back side. For example, in Figures 36.9 and 36.11 , the side to the left of the mirrors is the front side and the side to the right of the mirrors is the back side. Figure 36.12 states the sign conventions for object and image distances, and Table 36.1 summarizes the sign conventions for all quantities. One entry in the table, a virtual object, is formally introduced in Section 36.4.

Ray Diagrams for Mirrors

The positions and sizes of images formed by mirrors can be conveniently determined with ray diagrams. These pictorial representations reveal the nature of the image and can be used to check results calculated from the mathematical representation using the mirror and magnification equations. To draw a ray diagram, you must know the position of the object and the locations of the mirror's focal point and center of curvature. You then draw three rays to locate the image as

TABLE 36.1

Sign Conventions for Mirrors		
Quantity	Positive When . . .	Negative When . . .
Object location (p)	object is in front of mirror (real object).	object is in back of mirror (virtual object).
Image location (q)	image is in front of mirror (real image).	image is in back of mirror (virtual image).
Image height (h^{\prime})	image is upright.	image is inverted.
Focal length (f) and radius (R)	mirror is concave.	mirror is convex.
Magnification (M)	image is upright.	image is inverted.

Figure 36.12 Signs of p and q for convex and concave mirrors.

PITFALL PREVENTION 36.3 Watch Your Signs

Success in working mirror problems (as well as problems involving refracting surfaces and thin lenses) is largely determined by proper sign choices when substituting into the equations. The best way to success is to work a multitude of problems on your own.

PITFALL PREVENTION 36.4

 Choose a Small Number of RaysA huge number of light rays leave each point on an object (and pass through each point on an image). In a ray diagram, which displays the characteristics of the image, we choose only a few rays that follow simply stated rules. Locating the image by calculation complements the diagram.

ACTIVE FIGURE 36.13

Ray diagrams for spherical mirrors along with corresponding photographs of the images of candles. (a) When the object is located so that the center of curvature lies between the object and a concave mirror surface, the image is real, inverted, and reduced in size. (b) When the object is located between the focal point and a concave mirror surface, the image is virtual, upright, and enlarged. (c) When the object is in front of a convex mirror, the image is virtual, upright, and reduced in size.

Sign in at www.thomsonedu.com and go to ThomsonNOW to move the objects and change the focal length of the mirrors to see the effect on the images.
shown by the examples in Active Figure 36.13. These rays all start from the same object point and are drawn as follows. You may choose any point on the object; here, let's choose the top of the object for simplicity. For concave mirrors (see Active Figs. 36.13a and 36.13b), draw the following three rays:

- Ray 1 is drawn from the top of the object parallel to the principal axis and is reflected through the focal point F.
- Ray 2 is drawn from the top of the object through the focal point (or as if coming from the focal point if $p<f$) and is reflected parallel to the principal axis.
- Ray 3 is drawn from the top of the object through the center of curvature C and is reflected back on itself.

The intersection of any two of these rays locates the image. The third ray serves as a check of the construction. The image point obtained in this fashion must always agree with the value of q calculated from the mirror equation. With concave mirrors, notice what happens as the object is moved closer to the mirror. The real, inverted image in Active Figure 36.13a moves to the left and becomes larger as the object approaches the focal point. When the object is at the focal point, the image is infinitely far to the left. When the object lies between the focal point and the mirror surface as shown in Active Figure 36.13b, however, the image is to the right, behind the object, and virtual, upright, and enlarged. This latter situation applies when you use a shaving mirror or a makeup mirror, both of which are concave. Your face is closer to the mirror than the focal point, and you see an upright, enlarged image of your face.

For convex mirrors (see Active Fig. 36.13c), draw the following three rays:

- Ray 1 is drawn from the top of the object parallel to the principal axis and is reflected away from the focal point F.
- Ray 2 is drawn from the top of the object toward the focal point on the back side of the mirror and is reflected parallel to the principal axis.
- Ray 3 is drawn from the top of the object toward the center of curvature C on the back side of the mirror and is reflected back on itself.

In a convex mirror, the image of an object is always virtual, upright, and reduced in size as shown in Active Figure 36.13c. In this case, as the object distance decreases, the virtual image increases in size and moves away from the focal point toward the mirror as the object approaches the mirror. You should construct other diagrams to verify how image position varies with object position.

Quick Quiz 36.2 You wish to start a fire by reflecting sunlight from a mirror onto some paper under a pile of wood. Which would be the best choice for the type of mirror? (a) flat (b) concave (c) convex

Quick Quiz 36.3 Consider the image in the mirror in Figure 36.14. Based on the appearance of this image, would you conclude that (a) the mirror is concave and the image is real, (b) the mirror is concave and the image is virtual, (c) the mirror is convex and the image is real, or (d) the mirror is convex and the image is virtual?

Figure $\mathbf{3 6 . 1 4}$ (Quick Quiz 36.3) What type of mirror is shown here?

EXAMPLE 36.3 The Image Formed by a Concave Mirror

A spherical mirror has a focal length of +10.0 cm .
(A) Locate and describe the image for an object distance of 25.0 cm .

SOLUTION

Conceptualize Because the focal length of the mirror is positive, it is a concave mirror (see Table 36.1). We expect the possibilities of both real and virtual images.

Categorize Because the object distance in this part of the problem is larger than the focal length, we expect the image to be real. This situation is analogous to that in Active Figure 36.13a.

Analyze Find the image distance by using Equation 36.6:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{25.0 \mathrm{~cm}} \\
q & =16.7 \mathrm{~cm}
\end{aligned}
$$

Find the magnification of the image from Equation 36.2:

$$
M=-\frac{q}{p}=-\frac{16.7 \mathrm{~cm}}{25.0 \mathrm{~cm}}=-0.668
$$

Finalize The absolute value of M is less than unity, so the image is smaller than the object, and the negative sign for M tells us that the image is inverted. Because q is positive, the image is located on the front side of the mirror and is real. Look into the bowl of a shiny spoon or stand far away from a shaving mirror to see this image.
(B) Locate and describe the image for an object distance of 10.0 cm .

SOLUTION

Categorize Because the object is at the focal point, we expect the image to be infinitely far away.

Analyze Find the image distance by using Equation 36.6:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{10.0 \mathrm{~cm}} \\
q & =\infty
\end{aligned}
$$

Finalize This result means that rays originating from an object positioned at the focal point of a mirror are reflected so that the image is formed at an infinite distance from the mirror; that is, the rays travel parallel to one another after reflection. Such is the situation in a flashlight or an automobile headlight, where the bulb filament is placed at the focal point of a reflector, producing a parallel beam of light.
(C) Locate and describe the image for an object distance of 5.00 cm .

SOLUTION

Categorize Because the object distance is smaller than the focal length, we expect the image to be virtual. This situation is analogous to that in Active Figure 36.13b.

Analyze Find the image distance by using Equation 36.6:

Find the magnification of the image from Equation 36.2:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{5.00 \mathrm{~cm}} \\
q & =-10.0 \mathrm{~cm}
\end{aligned}
$$

$$
M=-\frac{q}{p}=-\left(\frac{-10.0 \mathrm{~cm}}{5.00 \mathrm{~cm}}\right)=+2.00
$$

Finalize The image is twice as large as the object, and the positive sign for M indicates that the image is upright (see Active Fig. 36.13b). The negative value of the image distance tells us that the image is virtual, as expected. Put your face close to a shaving mirror to see this type of image.

What If? Suppose you set up the candle and mirror apparatus illustrated in Active Figure 36.13a and described here in part (A). While adjusting the apparatus, you accidentally bump the candle and it begins to slide toward the mirror at velocity v_{p}. How fast does the image of the candle move?

Answer Solve the mirror equation, Equation 36.6, for q :

$$
q=\frac{f p}{p-f}
$$

Differentiate this equation with respect to time to find the velocity of the image:

Substitute numerical values from part (A):
(1) $\quad v_{q}=\frac{d q}{d t}=\frac{d}{d t}\left(\frac{f p}{p-f}\right)=-\frac{f^{2}}{(p-f)^{2}} \frac{d p}{d t}=-\frac{f^{2} v_{p}}{(p-f)^{2}}$

$$
v_{q}=-\frac{(10.0 \mathrm{~cm})^{2} v_{p}}{(25.0 \mathrm{~cm}-10.0 \mathrm{~cm})^{2}}=-0.444 v_{p}
$$

Therefore, the speed of the image is less than that of the object in this case.
We can see two interesting behaviors of the function for v_{q} in Equation (1). First, the velocity is negative regardless of the value of p or f. Therefore, if the object moves toward the mirror, the image moves toward the left in Active Fig-
ure 36.13 without regard for the side of the focal point at which the object is located or whether the mirror is concave or convex. Second, in the limit of $p \rightarrow 0$, the velocity v_{q} approaches $-v_{p}$. As the object moves very close to the mirror, the mirror looks like a plane mirror, the image is as far behind the mirror as the object is in front, and both the object and the image move with the same speed.

EXAMPLE 36.4 The Image Formed by a Convex Mirror

An automobile rearview mirror as shown in Figure 36.15 shows an image of a truck located 10.0 m from the mirror. The focal length of the mirror is -0.60 m .
(A) Find the position of the image of the truck.

SOLUTION

Conceptualize This situation is depicted in Active Figure 36.13c.

Categorize Because the mirror is convex, we expect it to form an upright, reduced, virtual image for any object position.

Analyze Find the image distance by using Equation 36.6:

Figure $\mathbf{3 6 . 1 5}$ (Example 36.4) An approaching truck is seen in a convex mirror on the right side of an automobile. Because the image is reduced in size, the truck appears to be farther away than it actually is. Notice also that the image of the truck is in focus, but the frame of the mirror is not, which demonstrates that the image is not at the same location as the mirror surface.

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{-0.60 \mathrm{~m}}-\frac{1}{10.0 \mathrm{~m}} \\
q & =-0.57 \mathrm{~m}
\end{aligned}
$$

(B) Find the magnification of the image.

SOLUTION

Analyze Use Equation 36.2:

$$
M=-\frac{q}{p}=-\left(\frac{-0.57 \mathrm{~m}}{10.0 \mathrm{~m}}\right)=+0.057
$$

Finalize The negative value of q in part (A) indicates that the image is virtual, or behind the mirror, as shown in Active Figure 36.13c. The magnification in part (B) indicates that the image is much smaller than the truck and is upright because M is positive. Because of the image's small size, these mirrors carry the inscription, "Objects in this mirror are closer than they appear." Look into your rearview mirror or the back side of a shiny spoon to see an image of this type.

36.3 Images Formed by Refraction

In this section, we describe how images are formed when light rays follow the wave under refraction model at the boundary between two transparent materials. Consider two transparent media having indices of refraction n_{1} and n_{2}, where the boundary between the two media is a spherical surface of radius R (Fig. 36.16). We assume the object at O is in the medium for which the index of refraction is n_{1}. Let's consider the paraxial rays leaving O. As we shall see, all such rays are refracted at the spherical surface and focus at a single point I, the image point.

Figure 36.17 (page 1018) shows a single ray leaving point O and refracting to point I. Snell's law of refraction applied to this ray gives

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Figure 36.16 An image formed by refraction at a spherical surface. Rays making small angles with the principal axis diverge from a point object at O and are refracted through the image point I.

Figure 36.17 Geometry used to derive Equation 36.8, assuming that $n_{1}<n_{2}$.

Because θ_{1} and θ_{2} are assumed to be small, we can use the small-angle approximation $\sin \theta \approx \theta$ (with angles in radians) and write Snell's law as

$$
n_{1} \theta_{1}=n_{2} \theta_{2}
$$

We know that an exterior angle of any triangle equals the sum of the two opposite interior angles, so applying this rule to triangles $O P C$ and $P I C$ in Figure 36.17 gives

$$
\begin{aligned}
& \theta_{1}=\alpha+\beta \\
& \beta=\theta_{2}+\gamma
\end{aligned}
$$

Combining all three expressions and eliminating θ_{1} and θ_{2} gives

$$
\begin{equation*}
n_{1} \alpha+n_{2} \gamma=\left(n_{2}-n_{1}\right) \beta \tag{36.7}
\end{equation*}
$$

Figure 36.17 shows three right triangles that have a common vertical leg of length d. For paraxial rays (unlike the relatively large-angle ray shown in Fig. 36.17), the horizontal legs of these triangles are approximately p for the triangle containing angle α, R for the triangle containing angle β, and q for the triangle containing angle γ. In the small-angle approximation, $\tan \theta \approx \theta$, so we can write the approximate relationships from these triangles as follows:

$$
\tan \alpha \approx \alpha \approx \frac{d}{p} \quad \tan \beta \approx \beta \approx \frac{d}{R} \quad \tan \gamma \approx \gamma \approx \frac{d}{q}
$$

Substituting these expressions into Equation 36.7 and dividing through by d gives

$$
\begin{equation*}
\frac{n_{1}}{p}+\frac{n_{2}}{q}=\frac{n_{2}-n_{1}}{R} \tag{36.8}
\end{equation*}
$$

For a fixed object distance p, the image distance q is independent of the angle the ray makes with the axis. This result tells us that all paraxial rays focus at the same point I.

As with mirrors, we must use a sign convention to apply Equation 36.8 to a variety of cases. We define the side of the surface in which light rays originate as the front side. The other side is called the back side. In contrast with mirrors, where real images are formed in front of the reflecting surface, real images are formed by refraction of light rays to the back of the surface. Because of the difference in location of real images, the refraction sign conventions for q and R are opposite the reflection sign conventions. For example, q and R are both positive in Figure 36.17. The sign conventions for spherical refracting surfaces are summarized in Table 36.2.

We derived Equation 36.8 from an assumption that $n_{1}<n_{2}$ in Figure 36.17. This assumption is not necessary, however. Equation 36.8 is valid regardless of which index of refraction is greater.

TABLE 36.2

Sign Conventions for Refracting Surfaces		
Quantity	Positive When ...	Negative When ...
Object location (p)	object is in front of surface (real object). image is in back of surface (real image).	object is in back of surface (virtual object). image is in front of surface (virtual image).
Image height $\left(h^{\prime}\right)$	image is upright. center of curvature is in back of surface.	image is inverted. center of curvature is in front of surface.

Flat Refracting Surfaces

If a refracting surface is flat, then R is infinite and Equation 36.8 reduces to

$$
\begin{align*}
& \frac{n_{1}}{p}=-\frac{n_{2}}{q} \\
& q=-\frac{n_{2}}{n_{1}} p \tag{36.9}
\end{align*}
$$

From this expression, we see that the sign of q is opposite that of p. Therefore, according to Table 36.2 , the image formed by a flat refracting surface is on the same side of the surface as the object as illustrated in Active Figure 36.18 for the situation in which the object is in the medium of index n_{1} and n_{1} is greater than n_{2}. In this case, a virtual image is formed between the object and the surface. If n_{1} is less than n_{2}, the rays on the back side diverge from one another at lesser angles than those in Active Figure 36.18. As a result, the virtual image is formed to the left of the object.

Quick Quiz 36.4 In Figure 36.16, what happens to the image point I as the object point O is moved to the right from very far away to very close to the refracting surface? (a) It is always to the right of the surface. (b) It is always to the left of the surface. (c) It starts off to the left, and at some position of O, I moves to the right of the surface. (d) It starts off to the right, and at some position of O, I moves to the left of the surface.

Quick Quiz 36.5 In Active Figure 36.18, what happens to the image point I as the object point O moves toward the right-hand surface of the material of index of refraction n_{1} ? (a) It always remains between O and the surface, arriving at the surface just as O does. (b) It moves toward the surface more slowly than O so that eventually O passes I. (c) It approaches the surface and then moves to the right of the surface.

CONCEPTUAL EXAMPLE 36.5 Let's Go Scuba Diving!

Objects viewed under water with the naked eye appear blurred and out of focus. A scuba diver using a mask, however, has a clear view of underwater objects. Explain how that works, using the information that the indices of refraction of the cornea, water, and air are $1.376,1.333$, and 1.00029 , respectively.

SOLUTION

Because the cornea and water have almost identical indices of refraction, very little refraction occurs when a person under water views objects with the naked eye. In this case, light rays from an object focus behind the retina, resulting in a blurred image. When a mask is used, however, the air space between the eye and the mask surface provides the normal amount of refraction at the eye-air interface; consequently, the light from the object focuses on the retina.

EXAMPLE 36.6 Gaze into the Crystal Ball

A set of coins is embedded in a spherical plastic paperweight having a radius of 3.0 cm . The index of refraction of the plastic is $n_{1}=1.50$. One coin is located 2.0 cm from the edge of the sphere (Fig. 36.19). Find the position of the image of the coin.

SOLUTION

Conceptualize Because $n_{1}>n_{2}$, where $n_{2}=1.00$ is the index of refraction for air, the rays originating from the coin in Figure 36.19 are refracted away from the normal at the surface and diverge outward.

Categorize Because the light rays originate in one material and then pass through a curved surface into another material, this example involves an image formed by refraction.

Analyze Apply Equation 36.8, noting from Table 36.2 that R is negative:

Figure 36.19 (Example 36.6) Light rays from a coin embedded in a plastic sphere form a virtual image between the surface of the object and the sphere surface. Because the object is inside the sphere, the front of the refracting surface is the interior of the sphere.

$$
\begin{aligned}
\frac{n_{2}}{q} & =\frac{n_{2}-n_{1}}{R}-\frac{n_{1}}{p} \\
\frac{1}{q} & =\frac{1.00-1.50}{-3.0 \mathrm{~cm}}-\frac{1.50}{2.0 \mathrm{~cm}} \\
q & =-1.7 \mathrm{~cm}
\end{aligned}
$$

Finalize The negative sign for q indicates that the image is in front of the surface; in other words, it is in the same medium as the object as shown in Figure 36.19. Therefore, the image must be virtual. (See Table 36.2.) The coin appears to be closer to the paperweight surface than it actually is.

EXAMPLE 36.7 The One That Got Away

A small fish is swimming at a depth d below the surface of a pond (Fig. 36.20).
(A) What is the apparent depth of the fish as viewed from directly overhead?

SOLUTION

Conceptualize Because $n_{1}>n_{2}$, where $n_{2}=1.00$ is the index of refraction for air, the rays originating from the fish in Figure 36.20a are refracted away from the normal at the surface and diverge outward.

Categorize Because the refracting surface is flat, R is infinite. Hence, we can use Equation 36.9 to determine the location of the image with $p=d$.

(a)

(b)

Figure $\mathbf{3 6 . 2 0}$ (Example 36.7) (a) The apparent depth q of the fish is less than the true depth d. All rays are assumed to be paraxial. (b) Your face appears to the fish to be higher above the surface than it is.

Analyze Use the indices of refraction given in Figure 36.20a in Equation 36.9:

$$
q=-\frac{n_{2}}{n_{1}} p=-\frac{1.00}{1.33} d=-0.752 d
$$

Finalize Because q is negative, the image is virtual as indicated by the dashed lines in Figure 36.20a. The apparent depth is approximately three-fourths the actual depth.
(B) If your face is a distance d above the water surface, at what apparent distance above the surface does the fish see your face?

SOLUTION

The light rays from your face are shown in Figure 36.20b.

Conceptualize Because the rays refract toward the normal, your face appears higher above the surface than it actually is.

Categorize Because the refracting surface is flat, R is infinite. Hence, we can use Equation 36.9 to determine the location of the image with $p=d$.

Analyze Use Equation 36.9 to find the image distance:

$$
q=-\frac{n_{2}}{n_{1}} p=-\frac{1.33}{1.00} d=-1.33 d
$$

Finalize The negative sign for q indicates that the image is in the medium from which the light originated, which is the air above the water.

What If? What if you look more carefully at the fish and measure its apparent height from its upper fin to its lower fin? Is the apparent height h^{\prime} of the fish different from the actual height h ?

Answer Because all points on the fish appear to be fractionally closer to the observer, we expect the height to be smaller. Let the distance d in Figure 36.20a be measured to the top fin, and let the distance to the bottom fin be $d+h$. Then the images of the top and bottom of the fish are located at

$$
\begin{aligned}
q_{\text {top }} & =-0.752 d \\
q_{\text {bottom }} & =-0.752(d+h)
\end{aligned}
$$

The apparent height h^{\prime} of the fish is

$$
h^{\prime}=q_{\text {top }}-q_{\text {bottom }}=-0.752 d-[-0.752(d+h)]=0.752 h
$$

Hence, the fish appears to be approximately three-fourths its actual height.

36.4 Thin Lenses

Lenses are commonly used to form images by refraction in optical instruments such as cameras, telescopes, and microscopes. Let's use what we just learned about images formed by refracting surfaces to help locate the image formed by a lens. Light passing through a lens experiences refraction at two surfaces. The development we shall follow is based on the notion that the image formed by one refracting surface serves as the object for the second surface. We shall analyze a thick lens first and then let the thickness of the lens be approximately zero.

Consider a lens having an index of refraction n and two spherical surfaces with radii of curvature R_{1} and R_{2} as in Figure 36.21 (page 1022). (Notice that R_{1} is the radius of curvature of the lens surface the light from the object reaches first and R_{2} is the radius of curvature of the other surface of the lens.) An object is placed at point O at a distance p_{1} in front of surface 1 .

Let's begin with the image formed by surface 1. Using Equation 36.8 and assuming $n_{1}=1$ because the lens is surrounded by air, we find that the image I_{1} formed by surface 1 satisfies the equation

$$
\begin{equation*}
\frac{1}{p_{1}}+\frac{n}{q_{1}}=\frac{n-1}{R_{1}} \tag{36.10}
\end{equation*}
$$

where q_{1} is the position of the image formed by surface 1 . If the image formed by surface 1 is virtual (Fig. 36.21a), q_{1} is negative; it is positive if the image is real (Fig. 36.21b).

Now let's apply Equation 36.8 to surface 2, taking $n_{1}=n$ and $n_{2}=1$. (We make this switch in index because the light rays approaching surface 2 are in the material

Figure 36.21 To locate the image formed by a lens, we use the virtual image at I_{1} formed by surface 1 as the object for the image formed by surface 2. The point C_{1} is the center of curvature of surface 1 . (a) The image due to surface 1 is virtual, so I_{1} is to the left of the surface. (b) The image due to surface 1 is real, so I_{1} is to the right of the surface.

Figure 36.22 Simplified geometry for a thin lens.

(a)

(b)
of the lens, and this material has index n.) Taking p_{2} as the object distance for surface 2 and q_{2} as the image distance gives

$$
\begin{equation*}
\frac{n}{p_{2}}+\frac{1}{q_{2}}=\frac{1-n}{R_{2}} \tag{36.11}
\end{equation*}
$$

We now introduce mathematically that the image formed by the first surface acts as the object for the second surface. If the image from surface 1 is virtual as in Figure 36.21a, we see that p_{2}, measured from surface 2 , is related to q_{1} as $p_{2}=-q_{1}+$ t, where t is the thickness of the lens. Because q_{1} is negative, p_{2} is a positive number. Figure 36.21 b shows the case of the image from surface 1 being real. In this situation, q_{1} is positive and $p_{2}=-q_{1}+t$, where the image from surface 1 acts as a virtual object, so p_{2} is negative. Regardless of the type of image from surface 1 , the same equation describes the location of the object for surface 2 based on our sign convention. For a thin lens (one whose thickness is small compared with the radii of curvature), we can neglect t. In this approximation, $p_{2}=-q_{1}$ for either type of image from surface 1. Hence, Equation 36.11 becomes

$$
\begin{equation*}
-\frac{n}{q_{1}}+\frac{1}{q_{2}}=\frac{1-n}{R_{2}} \tag{36.12}
\end{equation*}
$$

Adding Equations 36.10 and 36.12 gives

$$
\begin{equation*}
\frac{1}{p_{1}}+\frac{1}{q_{2}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{36.13}
\end{equation*}
$$

For a thin lens, we can omit the subscripts on p_{1} and q_{2} in Equation 36.13 and call the object distance p and the image distance q, as in Figure 36.22. Hence, we can write Equation 36.13 as

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{36.14}
\end{equation*}
$$

This expression relates the image distance q of the image formed by a thin lens to the object distance p and to the lens properties (index of refraction and radii of curvature). It is valid only for paraxial rays and only when the lens thickness is much less than R_{1} and R_{2}.

The focal length f of a thin lens is the image distance that corresponds to an infinite object distance, just as with mirrors. Letting p approach ∞ and q approach f in Equation 36.14, we see that the inverse of the focal length for a thin lens is

$$
\begin{equation*}
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{36.15}
\end{equation*}
$$

This relationship is called the lens-makers' equation because it can be used to determine the values of R_{1} and R_{2} needed for a given index of refraction and a desired focal length f. Conversely, if the index of refraction and the radii of curvature of a lens are given, this equation can be used to find the focal length. If the

lens is immersed in something other than air, this same equation can be used, with n interpreted as the ratio of the index of refraction of the lens material to that of the surrounding fluid.

Using Equation 36.15, we can write Equation 36.14 in a form identical to Equation 36.6 for mirrors:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{1}{f} \tag{36.16}
\end{equation*}
$$

This equation, called the thin lens equation, can be used to relate the image distance and object distance for a thin lens.

Because light can travel in either direction through a lens, each lens has two focal points, one for light rays passing through in one direction and one for rays passing through in the other direction. These two focal points are illustrated in Figure 36.23 for a plano-convex lens (a converging lens) and a plano-concave lens (a diverging lens).

Figure 36.24 is useful for obtaining the signs of p and q, and Table 36.3 gives the sign conventions for thin lenses. These sign conventions are the same as those for refracting surfaces (see Table 36.2).

Various lens shapes are shown in Figure 36.25. Notice that a converging lens is thicker at the center than at the edge, whereas a diverging lens is thinner at the center than at the edge.

Magnification of Images

Consider a thin lens through which light rays from an object pass. As with mirrors (Eq. 36.2), a geometric construction shows that the lateral magnification of the image is

$$
\begin{equation*}
M=\frac{h^{\prime}}{h}=-\frac{q}{p} \tag{36.17}
\end{equation*}
$$

From this expression, it follows that when M is positive, the image is upright and on the same side of the lens as the object. When M is negative, the image is inverted and on the side of the lens opposite the object.

TABLE 36.3

Sign Conventions for Thin Lenses		
Quantity	Positive When ...	Negative When . .
Object location (p)	object is in front of lens (real object). image is in back of lens (real image).	object is in back of lens (virtual object). image is in front of lens (virtual image).
Image location (q)	image is inverted. Image height $\left(h^{\prime}\right)$ center of curvature is in back of lens. R_{1} and R_{2}	center of curvature is in front of lens.
Focal length (f)	a diverging lens.	

Figure 36.23 Parallel light rays pass through (a) a converging lens and (b) a diverging lens. The focal length is the same for light rays passing through a given lens in either direction. Both focal points F_{1} and F_{2} are the same distance from the lens.

PITFALL PREVENTION 36.5 A Lens Has Two Focal Points but Only One Focal Length

A lens has a focal point on each side, front and back. There is only one focal length, however; each of the two focal points is located the same distance from the lens (Fig. 36.23). As a result, the lens forms an image of an object at the same point if it is turned around. In practice, that might not happen because real lenses are not infinitesimally thin.

Figure $\mathbf{3 6 . 2 4}$ A diagram for obtaining the signs of p and q for a thin lens. (This diagram also applies to a refracting surface.)

Figure $\mathbf{3 6 . 2 5}$ Various lens shapes. (a) Converging lenses have a positive focal length and are thickest at the middle. (b) Diverging lenses have a negative focal length and are thickest at the edges.

Ray Diagrams for Thin Lenses

Ray diagrams are convenient for locating the images formed by thin lenses or systems of lenses. They also help clarify our sign conventions. Active Figure 36.26 shows such diagrams for three single-lens situations.

To locate the image of a converging lens (Active Fig. 36.26a and b), the following three rays are drawn from the top of the object:

- Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this ray passes through the focal point on the back side of the lens.
- Ray 2 is drawn through the center of the lens and continues in a straight line.
- Ray 3 is drawn through the focal point on the front side of the lens (or as if coming from the focal point if $p<f$) and emerges from the lens parallel to the principal axis.

To locate the image of a diverging lens (Active Fig. 36.26c), the following three rays are drawn from the top of the object:

- Ray 1 is drawn parallel to the principal axis. After being refracted by the lens, this ray emerges directed away from the focal point on the front side of the lens.
- Ray 2 is drawn through the center of the lens and continues in a straight line.
- Ray 3 is drawn in the direction toward the focal point on the back side of the lens and emerges from the lens parallel to the principal axis.

For the converging lens in Active Figure 36.26a, where the object is to the left of the focal point $(p>f)$, the image is real and inverted. When the object is between the focal point and the lens $(p<f)$ as in Active Figure 36.26b, the image is virtual and upright. In that case, the lens acts as a magnifying glass, which we study in more detail in Section 36.8. For a diverging lens (Active Fig. 36.26c), the image is always virtual and upright, regardless of where the object is placed. These geometric constructions are reasonably accurate only if the distance between the rays and the principal axis is much less than the radii of the lens surfaces.

Notice that refraction occurs only at the surfaces of the lens. A certain lens design takes advantage of this behavior to produce the Fresnel lens, a powerful lens

ACTIVE FIGURE 36.26
Ray diagrams for locating the image formed by a thin lens. (a) When the object is in front of and outside the focal point of a converging lens, the image is real, inverted, and on the back side of the lens. (b) When the object is between the focal point and a converging lens, the image is virtual, upright, larger than the object, and on the front side of the lens. (c) When an object is anywhere in front of a diverging lens, the image is virtual, upright, smaller than the object, and on the front side of the lens.
Sign in at www.thomsonedu.com and go to ThomsonNOW to move the objects and change the focal length of the lenses to see the effect on the images.
without great thickness. Because only the surface curvature is important in the refracting qualities of the lens, material in the middle of a Fresnel lens is removed as shown in the cross sections of lenses in Figure 36.27. Because the edges of the curved segments cause some distortion, Fresnel lenses are generally used only in situations in which image quality is less important than reduction of weight. A classroom overhead projector often uses a Fresnel lens; the circular edges between segments of the lens can be seen by looking closely at the light projected onto a screen.

Quick Quiz 36.6 What is the focal length of a pane of window glass? (a) zero (b) infinity (c) the thickness of the glass (d) impossible to determine

EXAMPLE 36.8 Images Formed by a Converging Lens

A converging lens has a focal length of 10.0 cm .
(A) An object is placed 30.0 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

SOLUTION

Conceptualize Because the lens is converging, the focal length is positive (see Table 36.3). We expect the possibilities of both real and virtual images.

Categorize Because the object distance is larger than the focal length, we expect the image to be real. The ray diagram for this situation is shown in Figure 36.28a.

Analyze Find the image distance by using Equation 36.16:

Find the magnification of the image from Equation 36.17:

Figure 36.28 (Example 36.8) An image is formed by a converging lens. (a) The object is farther from the lens than the focal point. (b) The object is closer to the lens than the focal point.

Figure 36.27 The Fresnel lens on the left has the same focal length as the thick lens on the right but is made of much less glass.

.

Analyze Find the image distance by using Equation 36.16:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{10.0 \mathrm{~cm}} \\
q & =\infty
\end{aligned}
$$

Finalize This result means that rays originating from an object positioned at the focal point of a lens are refracted so that the image is formed at an infinite distance from the lens; that is, the rays travel parallel to one another after refraction.
(C) An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

SOLUTION

Categorize Because the object distance is smaller than the focal length, we expect the image to be virtual. The ray diagram for this situation is shown in Figure 36.28b.

Analyze Find the image distance by using Equation 36.16:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{5.00 \mathrm{~cm}} \\
q & =-10.0 \mathrm{~cm} \\
M=-\frac{q}{p} & =-\left(\frac{-10.0 \mathrm{~cm}}{5.00 \mathrm{~cm}}\right)=+2.00
\end{aligned}
$$

Find the magnification of the image from Equation 36.17:

Finalize The negative image distance tells us that the image is virtual and formed on the side of the lens from which the light is incident, the front side. The image is enlarged, and the positive sign for M tells us that the image is upright.

What If? What if the object moves right up to the lens surface, so that $p \rightarrow 0$? Where is the image?
Answer In this case, because $p \ll R$, where R is either of the radii of the surfaces of the lens, the curvature of the lens can be ignored. The lens should appear to have the same effect as a flat piece of material, which suggests that the image is just on the front side of the lens, at $q=0$. This conclusion can be verified mathematically by rearranging the thin lens equation:

$$
\frac{1}{q}=\frac{1}{f}-\frac{1}{p}
$$

If we let $p \rightarrow 0$, the second term on the right becomes very large compared with the first and we can neglect $1 / f$. The equation becomes

$$
\frac{1}{q}=-\frac{1}{p} \rightarrow q=-p=0
$$

Therefore, q is on the front side of the lens (because it has the opposite sign as p) and right at the lens surface.

EXAMPLE 36.9 Images Formed by a Diverging Lens

A diverging lens has a focal length of 10.0 cm .
(A) An object is placed 30.0 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

Figure 36.29 (Example 36.9) An image is formed by a diverging lens. (a) The object is farther from the lens than the focal point. (b) The object is at the focal point. (c) The object is closer to the lens than the focal point.

SOLUTION

Conceptualize Because the lens is diverging, the focal length is negative (see Table 36.3). The ray diagram for this situation is shown in Figure 36.29a.

Categorize Because the lens is diverging, we expect it to form an upright, reduced, virtual image for any object position.

Analyze Find the image distance by using Equation 36.16:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{-10.0 \mathrm{~cm}}-\frac{1}{30.0 \mathrm{~cm}} \\
q & =-7.50 \mathrm{~cm}
\end{aligned}
$$

Find the magnification of the image from Equation 36.17:

$$
M=-\frac{q}{p}=-\left(\frac{-7.50 \mathrm{~cm}}{30.0 \mathrm{~cm}}\right)=+0.250
$$

Finalize This result confirms that the image is virtual, smaller than the object, and upright. Look through the diverging lens in a door peephole to see this type of image.
(B) An object is placed 10.0 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

SOLUTION

The ray diagram for this situation is shown in Figure 36.29b.

Analyze Find the image distance by using Equation 36.16:

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{f}-\frac{1}{p} \\
\frac{1}{q} & =\frac{1}{-10.0 \mathrm{~cm}}-\frac{1}{10.0 \mathrm{~cm}} \\
q & =-5.00 \mathrm{~cm}
\end{aligned}
$$

Find the magnification of the image from Equation 36.17:

$$
M=-\frac{q}{p}=-\left(\frac{-5.00 \mathrm{~cm}}{10.0 \mathrm{~cm}}\right)=+0.500
$$

Finalize Notice the difference between this situation and that for a converging lens. For a diverging lens, an object at the focal point does not produce an image infinitely far away.
(C) An object is placed 5.00 cm from the lens. Construct a ray diagram, find the image distance, and describe the image.

SOLUTION

The ray diagram for this situation is shown in Figure 36.29c.

Analyze Find the image distance by using Equation 36.16:

Find the magnification of the image from Equation 36.17:

$$
\begin{aligned}
& \frac{1}{q}=\frac{1}{f}-\frac{1}{p} \\
& \frac{1}{q}=\frac{1}{-10.0 \mathrm{~cm}}-\frac{1}{5.00 \mathrm{~cm}} \\
& q=-3.33 \mathrm{~cm} \\
& M=-\left(\frac{-3.33 \mathrm{~cm}}{5.00 \mathrm{~cm}}\right)=+0.667
\end{aligned}
$$

Finalize For all three object positions, the image position is negative and the magnification is a positive number smaller than 1, which confirms that the image is virtual, smaller than the object, and upright.

Combination of Thin Lenses

If two thin lenses are used to form an image, the system can be treated in the following manner. First, the image formed by the first lens is located as if the second lens were not present. Then a ray diagram is drawn for the second lens, with the image formed by the first lens now serving as the object for the second lens. The second image formed is the final image of the system. If the image formed by the first lens lies on the back side of the second lens, that image is treated as a virtual object for the second lens (that is, in the thin lens equation, p is negative). The same procedure can be extended to a system of three or more lenses. Because the magnification due to the second lens is performed on the magnified image due to the first lens, the overall magnification of the image due to the combination of lenses is the product of the individual magnifications:

$$
\begin{equation*}
M=M_{1} M_{2} \tag{36.18}
\end{equation*}
$$

This equation can be used for combinations of any optical elements such as a lens and a mirror. For more than two optical elements, the magnifications due to all elements are multiplied together.

Let's consider the special case of a system of two lenses of focal lengths f_{1} and f_{2} in contact with each other. If $p_{1}=p$ is the object distance for the combination, application of the thin lens equation (Eq. 36.16) to the first lens gives

$$
\frac{1}{p}+\frac{1}{q_{1}}=\frac{1}{f_{1}}
$$

where q_{1} is the image distance for the first lens. Treating this image as the object for the second lens, we see that the object distance for the second lens must be $p_{2}=-q_{1}$. (The distances are the same because the lenses are in contact and assumed to be infinitesimally thin. The object distance is negative because the object is virtual.) Therefore, for the second lens,

$$
\frac{1}{p_{2}}+\frac{1}{q_{2}}=\frac{1}{f_{2}} \rightarrow-\frac{1}{q_{1}}+\frac{1}{q}=\frac{1}{f_{2}}
$$

where $q=q_{2}$ is the final image distance from the second lens, which is the image distance for the combination. Adding the equations for the two lenses eliminates q_{1} and gives

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
$$

If the combination is replaced with a single lens that forms an image at the same location, its focal length must be related to the individual focal lengths by the expression

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \tag{36.19}
\end{equation*}
$$

Therefore, two thin lenses in contact with each other are equivalent to a single thin lens having a focal length given by Equation 36.19.

Focal length for a combination of two thin lenses in contact

EXAMPLE 36.10 Where Is the Final Image?

Two thin converging lenses of focal lengths $f_{1}=10.0 \mathrm{~cm}$ and $f_{2}=20.0 \mathrm{~cm}$ are separated by 20.0 cm as illustrated in Figure 36.30 . An object is placed 30.0 cm to the left of lens 1. Find the position and the magnification of the final image.

SOLUTION

Conceptualize Imagine light rays passing through the first lens and forming a real image (because $p>f$) in the absence of a second lens. Figure 36.30 shows these light rays forming the inverted image I_{1}. Once the light rays converge to the image point, they do not stop. They con-

Figure 36.30 (Example 36.10) A combination of two converging lenses. The ray diagram shows the location of the final image due to the combination of lenses. The black dots are the focal points of lens 1 and the red dots are the focal points of lens 2. tinue through the image point and interact with the second lens. The rays leaving the image point behave in the same way as the rays leaving an object. Therefore, the image of the first lens serves as the object of the second lens.

Categorize We categorize this problem as one in which the thin lens equation is applied in a stepwise fashion to the two lenses.

Analyze Find the location of the image formed by lens 1 from the thin lens equation:

$$
\begin{aligned}
\frac{1}{q_{1}} & =\frac{1}{f}-\frac{1}{p_{1}} \\
\frac{1}{q_{1}} & =\frac{1}{10.0 \mathrm{~cm}}-\frac{1}{30.0 \mathrm{~cm}} \\
q_{1} & =+15.0 \mathrm{~cm} \\
M_{1}=-\frac{q_{1}}{p_{1}} & =-\frac{15.0 \mathrm{~cm}}{30.0 \mathrm{~cm}}=-0.500
\end{aligned}
$$

The image formed by this lens acts as the object for the second lens. Therefore, the object distance for the second lens is $20.0 \mathrm{~cm}-15.0 \mathrm{~cm}=5.00 \mathrm{~cm}$.

Find the location of the image formed by lens 2 from the thin lens equation:

Find the magnification of the image from Equation 36.17:

Find the overall magnification of the system from Equation 36.18:

$$
\begin{aligned}
& \frac{1}{q_{2}}=\frac{1}{20.0 \mathrm{~cm}}-\frac{1}{5.00 \mathrm{~cm}} \\
& q_{2}=-6.67 \mathrm{~cm}
\end{aligned}
$$

$$
M_{2}=-\frac{q_{2}}{p_{2}}=-\frac{(-6.67 \mathrm{~cm})}{5.00 \mathrm{~cm}}=+1.33
$$

$$
M=M_{1} M_{2}=(-0.500)(1.33)=-0.667
$$

Finalize The negative sign on the overall magnification indicates that the final image is inverted with respect to the initial object. Because the absolute value of the magnification is less than 1, the final image is smaller than the object. Because q_{2} is negative, the final image is on the front, or left, side of lens 2 . These conclusions are consistent with the ray diagram in Figure 36.30.

What If? Suppose you want to create an upright image with this system of two lenses. How must the second lens be moved?

Answer Because the object is farther from the first lens than the focal length of that lens, the first image is inverted. Consequently, the second lens must invert the image once again so that the final image is upright. An inverted image is only formed by a converging lens if the object is outside the focal point. Therefore, the image formed by the first lens must be to the left of the focal point of the second lens in Figure 36.30. To make that happen, you must move the second lens at least as far away from the first lens as the sum $q_{1}+f_{2}=15.0 \mathrm{~cm}+20.0 \mathrm{~cm}=$ 35.0 cm .

Figure 36.31 Spherical aberration caused by a converging lens. Does a diverging lens cause spherical aberration?

Figure 36.32 Chromatic aberration caused by a converging lens. Rays of different wavelengths focus at different points.

36.5 Lens Aberrations

Our analysis of mirrors and lenses assumes rays make small angles with the principal axis and the lenses are thin. In this simple model, all rays leaving a point source focus at a single point, producing a sharp image. Clearly, that is not always true. When the approximations used in this analysis do not hold, imperfect images are formed.

A precise analysis of image formation requires tracing each ray, using Snell's law at each refracting surface and the law of reflection at each reflecting surface. This procedure shows that the rays from a point object do not focus at a single point, with the result that the image is blurred. The departures of actual images from the ideal predicted by our simplified model are called aberrations.

Spherical Aberration

Spherical aberration occurs because the focal points of rays far from the principal axis of a spherical lens (or mirror) are different from the focal points of rays of the same wavelength passing near the axis. Figure 36.31 illustrates spherical aberration for parallel rays passing through a converging lens. Rays passing through points near the center of the lens are imaged farther from the lens than rays passing through points near the edges. Figure 36.8 earlier in the chapter showed a similar situation for a spherical mirror.

Many cameras have an adjustable aperture to control light intensity and reduce spherical aberration. (An aperture is an opening that controls the amount of light passing through the lens.) Sharper images are produced as the aperture size is reduced; with a small aperture, only the central portion of the lens is exposed to the light and therefore a greater percentage of the rays are paraxial. At the same time, however, less light passes through the lens. To compensate for this lower light intensity, a longer exposure time is used.

In the case of mirrors, spherical aberration can be minimized through the use of a parabolic reflecting surface rather than a spherical surface. Parabolic surfaces are not used often, however, because those with high-quality optics are very expensive to make. Parallel light rays incident on a parabolic surface focus at a common point, regardless of their distance from the principal axis. Parabolic reflecting surfaces are used in many astronomical telescopes to enhance image quality.

Chromatic Aberration

In Chapter 35, we described dispersion, whereby a material's index of refraction varies with wavelength. Because of this phenomenon, violet rays are refracted more than red rays when white light passes through a lens (Fig. 36.32). The figure
shows that the focal length of a lens is greater for red light than for violet light. Other wavelengths (not shown in Fig. 36.32) have focal points intermediate between those of red and violet, which causes a blurred image and is called chromatic aberration.

Chromatic aberration for a diverging lens also results in a shorter focal length for violet light than for red light, but on the front side of the lens. Chromatic aberration can be greatly reduced by combining a converging lens made of one type of glass and a diverging lens made of another type of glass.

36.6 The Camera

The photographic camera is a simple optical instrument whose essential features are shown in Figure 36.33. It consists of a lighttight chamber, a converging lens that produces a real image, and a film behind the lens to receive the image.

Digital cameras are similar to film cameras except that the light does not form an image on photographic film. The image in a digital camera is formed on a charge-coupled device (CCD), which digitizes the image, turning it into binary code as we discussed for sound in Section 17.5. (A CCD is described in Section 40.2.) The digital information is then stored on a memory chip for playback on the camera's display screen, or it can be downloaded to a computer. In the discussion that follows, we assume the camera is digital.

A camera is focused by varying the distance between the lens and the CCD. For proper focusing-which is necessary for the formation of sharp images-the lens-to-CCD distance depends on the object distance as well as the focal length of the lens.

The shutter, positioned behind the lens, is a mechanical device that is opened for selected time intervals, called exposure times. You can photograph moving objects by using short exposure times or photograph dark scenes (with low light levels) by using long exposure times. If this adjustment were not available, it would be impossible to take stop-action photographs. For example, a rapidly moving vehicle could move enough in the time interval during which the shutter is open to produce a blurred image. Another major cause of blurred images is the movement of the camera while the shutter is open. To prevent such movement, either short exposure times or a tripod should be used, even for stationary objects. Typical shutter speeds (that is, exposure times) are $\frac{1}{30} \mathrm{~s}, \frac{1}{60} \mathrm{~s}, \frac{1}{125} \mathrm{~s}$, and $\frac{1}{250} \mathrm{~s}$. In practice, stationary objects are normally shot with an intermediate shutter speed of $\frac{1}{60} \mathrm{~s}$.

The intensity I of the light reaching the CCD is proportional to the area of the lens. Because this area is proportional to the square of the diameter D, it follows that I is also proportional to D^{2}. Light intensity is a measure of the rate at which energy is received by the CCD per unit area of the image. Because the area of the image is proportional to q^{2} and $q \approx f$ (when $p \gg f$, so p can be approximated as infinite), we conclude that the intensity is also proportional to $1 / f^{2}$ and therefore that $I \propto D^{2} / f^{2}$.

The ratio f / D is called the f-number of a lens:

$$
\begin{equation*}
f \text {-number } \equiv \frac{f}{D} \tag{36.20}
\end{equation*}
$$

Hence, the intensity of light incident on the CCD varies according to the following proportionality:

$$
\begin{equation*}
I \propto \frac{1}{(f / D)^{2}} \propto \frac{1}{(f \text {-number })^{2}} \tag{36.21}
\end{equation*}
$$

The f-number is often given as a description of the lens's "speed." The lower the f-number, the wider the aperture and the higher the rate at which energy from the light exposes the CCD; therefore, a lens with a low f-number is a "fast" lens. The conventional notation for an f-number is " $f /$ " followed by the actual number. For

Figure 36.33 Cross-sectional view of a simple digital camera. The CCD is the light-sensitive component of the camera. In a nondigital camera, the light from the lens falls onto photographic film. In reality, $p \gg q$.
example, " $f / 4$ " means an f-number of 4 ; it does not mean to divide f by 4 ! Extremely fast lenses, which have f-numbers as low as approximately $f / 1.2$, are expensive because it is very difficult to keep aberrations acceptably small with light rays passing through a large area of the lens. Camera lens systems (that is, combinations of lenses with adjustable apertures) are often marked with multiple f-numbers, usually $f / 2.8, f / 4, f / 5.6, f / 8, f / 11$, and $f / 16$. Any one of these settings can be selected by adjusting the aperture, which changes the value of D. Increasing the setting from one f-number to the next higher value (for example, from $f / 2.8$ to $f / 4$) decreases the area of the aperture by a factor of 2 . The lowest f-number setting on a camera lens corresponds to a wide-open aperture and the use of the maximum possible lens area.

Simple cameras usually have a fixed focal length and a fixed aperture size, with an f-number of about $f / 11$. This high value for the f-number allows for a large depth of field, meaning that objects at a wide range of distances from the lens form reasonably sharp images on the CCD. In other words, the camera does not have to be focused.

Quick Quiz 36.7 A camera can be modeled as a simple converging lens that focuses an image on the CCD, acting as the screen. A camera is initially focused on a distant object. To focus the image of an object close to the camera, must the lens be (a) moved away from the CCD, (b) left where it is, or (c) moved toward the CCD?

EXAMPLE 36.11 Finding the Correct Exposure Time

The lens of a digital camera has a focal length of 55 mm and a speed (an f-number) of $f / 1.8$. The correct exposure time for this speed under certain conditions is known to be $\frac{1}{500} \mathrm{~s}$.
(A) Determine the diameter of the lens.

SOLUTION

Conceptualize Remember that the f-number for a lens relates its focal length to its diameter.
Categorize We evaluate results using equations developed in this section, so we categorize this example as a substitution problem.

Solve Equation 36.20 for D and substitute numerical values:

$$
D=\frac{f}{f \text {-number }}=\frac{55 \mathrm{~mm}}{1.8}=31 \mathrm{~mm}
$$

(B) Calculate the correct exposure time if the f-number is changed to $f / 4$ under the same lighting conditions.

SOLUTION

The total light energy hitting the CCD is proportional to the product of the intensity and the exposure time. If I is the light intensity reaching the CCD, the energy per unit area received by the CCD in a time interval Δt is proportional to $I \Delta t$. Comparing the two situations, we require that $I_{1} \Delta t_{1}=I_{2} \Delta t_{2}$, where Δt_{1} is the correct exposure time for $f / 1.8$ and Δt_{2} is the correct exposure time for $f / 4$.

Use this result and substitute for I from Equation 36.21:

$$
I_{1} \Delta t_{1}=I_{2} \Delta t_{2} \rightarrow \frac{\Delta t_{1}}{\left(f_{1} \text {-number }\right)^{2}}=\frac{\Delta t_{2}}{\left(f_{2} \text {-number }\right)^{2}}
$$

Solve for Δt_{2} and substitute numerical values:

$$
\Delta t_{2}=\left(\frac{f_{2} \text {-number }}{f_{1} \text {-number }}\right)^{2} \Delta t_{1}=\left(\frac{4}{1.8}\right)^{2}\left(\frac{1}{500} \mathrm{~s}\right) \approx \frac{1}{100} \mathrm{~s}
$$

As the aperture size is reduced, the exposure time must increase.

36.7 The Eye

Like a camera, a normal eye focuses light and produces a sharp image. The mechanisms by which the eye controls the amount of light admitted and adjusts to produce correctly focused images, however, are far more complex, intricate, and effective than those in even the most sophisticated camera. In all respects, the eye is a physiological wonder.

Figure 36.34 shows the basic parts of the human eye. Light entering the eye passes through a transparent structure called the cornea (Fig. 36.35), behind which are a clear liquid (the aqueous humor), a variable aperture (the pupil, which is an opening in the iris), and the crystalline lens. Most of the refraction occurs at the outer surface of the eye, where the cornea is covered with a film of tears. Relatively little refraction occurs in the crystalline lens because the aqueous humor in contact with the lens has an average index of refraction close to that of the lens. The iris, which is the colored portion of the eye, is a muscular diaphragm that controls pupil size. The iris regulates the amount of light entering the eye by dilating, or opening, the pupil in low-light conditions and contracting, or closing, the pupil in high-light conditions. The f-number range of the human eye is approximately $f / 2.8$ to $f / 16$.

The cornea-lens system focuses light onto the back surface of the eye, the retina, which consists of millions of sensitive receptors called rods and cones. When stimulated by light, these receptors send impulses via the optic nerve to the brain, where an image is perceived. By this process, a distinct image of an object is observed when the image falls on the retina.

The eye focuses on an object by varying the shape of the pliable crystalline lens through a process called accommodation. The lens adjustments take place so swiftly that we are not even aware of the change. Accommodation is limited in that objects very close to the eye produce blurred images. The near point is the closest distance for which the lens can accommodate to focus light on the retina. This distance usually increases with age and has an average value of 25 cm . At age 10, the near point of the eye is typically approximately 18 cm . It increases to approximately 25 cm at age 20 , to 50 cm at age 40 , and to 500 cm or greater at age 60 . The far point of the eye represents the greatest distance for which the lens of the relaxed eye can focus light on the retina. A person with normal vision can see very distant objects and therefore has a far point that can be approximated as infinity.

Recall that the light leaving the mirror in Figure 36.7 becomes white where it comes together but then diverges into separate colors again. Because nothing but air exists at the point where the rays cross (and hence nothing exists to cause the colors to separate again), seeing white light as a result of a combination of colors must be a visual illusion. In fact, that is the case. Only three types of color-sensitive

Figure 36.34 Important parts of the eye.

Figure 36.35 Close-up photograph of the cornea of the human eye.

Figure 36.36 Approximate color sensitivity of the three types of cones in the retina.
cells are present in the retina. They are called red, green, and blue cones because of the peaks of the color ranges to which they respond (Fig. 36.36). If the red and green cones are stimulated simultaneously (as would be the case if yellow light were shining on them), the brain interprets what is seen as yellow. If all three types of cones are stimulated by the separate colors red, blue, and green as in Figure 36.7, white light is seen. If all three types of cones are stimulated by light that contains all colors, such as sunlight, again white light is seen.

Color televisions take advantage of this visual illusion by having only red, green, and blue dots on the screen. With specific combinations of brightness in these three primary colors, our eyes can be made to see any color in the rainbow. Therefore, the yellow lemon you see in a television commercial is not actually yellow, it is red and green! The paper on which this page is printed is made of tiny, matted, translucent fibers that scatter light in all directions, and the resultant mixture of colors appears white to the eye. Snow, clouds, and white hair are not actually white. In fact, there is no such thing as a white pigment. The appearance of these things is a consequence of the scattering of light containing all colors, which we interpret as white.

Conditions of the Eye

When the eye suffers a mismatch between the focusing range of the lens-cornea system and the length of the eye, with the result that light rays from a near object reach the retina before they converge to form an image as shown in Figure 36.37a, the condition is known as farsightedness (or hyperopia). A farsighted person can usually see faraway objects clearly but not nearby objects. Although the near point of a normal eye is approximately 25 cm , the near point of a farsighted person is much farther away. The refracting power in the cornea and lens is insufficient to focus the light from all but distant objects satisfactorily. The condition can be corrected by placing a converging lens in front of the eye as shown in Figure 36.37b. The lens refracts the incoming rays more toward the principal axis before entering the eye, allowing them to converge and focus on the retina.

A person with nearsightedness (or myopia), another mismatch condition, can focus on nearby objects but not on faraway objects. The far point of the nearsighted eye is not infinity and may be less than 1 m . The maximum focal length of the nearsighted eye is insufficient to produce a sharp image on the retina, and rays from a distant object converge to a focus in front of the retina. They then continue past that point, diverging before they finally reach the retina and causing blurred vision (Fig. 36.38a). Nearsightedness can be corrected with a diverging lens as shown in Figure 36.38b. The lens refracts the rays away from the principal axis before they enter the eye, allowing them to focus on the retina.

Beginning in middle age, most people lose some of their accommodation ability as their visual muscles weaken and the lens hardens. Unlike farsightedness, which is a mismatch between focusing power and eye length, presbyopia (literally, "old-age vision") is due to a reduction in accommodation ability. The cornea and

Figure 36.37 (a) When a farsighted eye looks at an object located between the near point and the eye, the image point is behind the retina, resulting in blurred vision. The eye muscle contracts to try to bring the object into focus. (b) Farsightedness is corrected with a converging lens.

Figure 36.38 (a) When a nearsighted eye looks at an object that lies beyond the eye's far point, the image is formed in front of the retina, resulting in blurred vision. (b) Nearsightedness is corrected with a diverging lens.
lens do not have sufficient focusing power to bring nearby objects into focus on the retina. The symptoms are the same as those of farsightedness, and the condition can be corrected with converging lenses.

In eyes having a defect known as astigmatism, light from a point source produces a line image on the retina. This condition arises when either the cornea, the lens, or both are not perfectly symmetric. Astigmatism can be corrected with lenses that have different curvatures in two mutually perpendicular directions.

Optometrists and ophthalmologists usually prescribe lenses ${ }^{1}$ measured in diopters: the power P of a lens in diopters equals the inverse of the focal length in meters: $P=1 / f$. For example, a converging lens of focal length +20 cm has a power of +5.0 diopters, and a diverging lens of focal length -40 cm has a power of -2.5 diopters.

Quick Quiz 36.8 Two campers wish to start a fire during the day. One camper is nearsighted, and one is farsighted. Whose glasses should be used to focus the Sun's rays onto some paper to start the fire? (a) either camper (b) the nearsighted camper (c) the farsighted camper

36.8 The Simple Magnifier

The simple magnifier, or magnifying glass, consists of a single converging lens. This device increases the apparent size of an object.

Suppose an object is viewed at some distance p from the eye as illustrated in Figure 36.39. The size of the image formed at the retina depends on the angle θ subtended by the object at the eye. As the object moves closer to the eye, θ increases and a larger image is observed. An average normal human eye, however, cannot focus on an object closer than about 25 cm , the near point (Fig. 36.40a, page 1036). Therefore, θ is maximum at the near point.

To further increase the apparent angular size of an object, a converging lens can be placed in front of the eye as in Figure 36.40b, with the object located at point O, immediately inside the focal point of the lens. At this location, the lens forms a virtual, upright, enlarged image. We define angular magnification m as the ratio of the angle subtended by an object with a lens in use (angle θ in Fig. 36.40 b) to the angle subtended by the object placed at the near point with no lens in use (angle θ_{0} in Fig. 36.40a):

$$
\begin{equation*}
m \equiv \frac{\theta}{\theta_{0}} \tag{36.22}
\end{equation*}
$$

[^1]

Figure 36.39 The size of the image formed on the retina depends on the angle θ subtended at the eye.

Figure 36.40 (a) An object placed at the near point of the eye ($p=$ 25 cm) subtends an angle $\theta_{0} \approx h / 25$ at the eye. (b) An object placed near the focal point of a converging lens produces a magnified image that subtends an angle $\theta \approx h^{\prime} / 25$ at the eye.

A simple magnifier, also called a magnifying glass, is used to view an enlarged image of a portion of a map.

(a)

(b)

The angular magnification is a maximum when the image is at the near point of the eye, that is, when $q=-25 \mathrm{~cm}$. The object distance corresponding to this image distance can be calculated from the thin lens equation:

$$
\frac{1}{p}+\frac{1}{-25 \mathrm{~cm}}=\frac{1}{f} \rightarrow p=\frac{25 f}{25+f}
$$

where f is the focal length of the magnifier in centimeters. If we make the smallangle approximations

$$
\begin{equation*}
\tan \theta_{0} \approx \theta_{0} \approx \frac{h}{25} \text { and } \tan \theta \approx \theta \approx \frac{h}{p} \tag{36.23}
\end{equation*}
$$

Equation 36.22 becomes

$$
\begin{gather*}
m_{\max }=\frac{\theta}{\theta_{0}}=\frac{h / p}{h / 25}=\frac{25}{p}=\frac{25}{25 f /(25+f)} \\
m_{\max }=1+\frac{25 \mathrm{~cm}}{f} \tag{36.24}
\end{gather*}
$$

Although the eye can focus on an image formed anywhere between the near point and infinity, it is most relaxed when the image is at infinity. For the image formed by the magnifying lens to appear at infinity, the object has to be at the focal point of the lens. In this case, Equations 36.23 become

$$
\theta_{0} \approx \frac{h}{25} \quad \text { and } \quad \theta \approx \frac{h}{f}
$$

and the magnification is

$$
\begin{equation*}
m_{\min }=\frac{\theta}{\theta_{0}}=\frac{25 \mathrm{~cm}}{f} \tag{36.25}
\end{equation*}
$$

With a single lens, it is possible to obtain angular magnifications up to about 4 without serious aberrations. Magnifications up to about 20 can be achieved by using one or two additional lenses to correct for aberrations.

EXAMPLE 36.12 Magnification of a Lens

What is the maximum magnification that is possible with a lens having a focal length of 10 cm , and what is the magnification of this lens when the eye is relaxed?

SOLUTION

Conceptualize Study Figure 36.40b for the situation in which a magnifying glass forms an enlarged image of an object placed inside the focal point. The maximum magnification occurs when the image is located at the near point of the eye. When the eye is relaxed, the image is at infinity.

Categorize We evaluate results using equations developed in this section, so we categorize this example as a substitution problem.

Evaluate the maximum magnification from Equation 36.24:

Evaluate the minimum magnification, when the eye is relaxed, from Equation 36.25:
$m_{\max }=1+\frac{25 \mathrm{~cm}}{f}=1+\frac{25 \mathrm{~cm}}{10 \mathrm{~cm}}=3.5$
$m_{\min }=\frac{25 \mathrm{~cm}}{f}=\frac{25 \mathrm{~cm}}{10 \mathrm{~cm}}=2.5$

36.9 The Compound Microscope

A simple magnifier provides only limited assistance in inspecting minute details of an object. Greater magnification can be achieved by combining two lenses in a device called a compound microscope shown in Active Figure 36.41a. It consists of one lens, the objective, that has a very short focal length $f_{o}<1 \mathrm{~cm}$ and a second lens, the eyepiece, that has a focal length f_{e} of a few centimeters. The two lenses are separated by a distance L that is much greater than either f_{o} or f_{e}. The object, which is placed just outside the focal point of the objective, forms a real, inverted image at I_{1}, and this image is located at or close to the focal point of the eyepiece. The eyepiece, which serves as a simple magnifier, produces at I_{2} a virtual, enlarged image of I_{1}. The lateral magnification M_{1} of the first image is $-q_{1} / p_{1}$. Notice from Active Figure 36.41a that q_{1} is approximately equal to L and that the object is very close to the focal point of the objective: $p_{1} \approx f_{0}$. Therefore, the lateral magnification by the objective is

$$
M_{o} \approx-\frac{L}{f_{o}}
$$

The angular magnification by the eyepiece for an object (corresponding to the image at I_{1}) placed at the focal point of the eyepiece is, from Equation 36.25,

$$
m_{e}=\frac{25 \mathrm{~cm}}{f_{e}}
$$

The overall magnification of the image formed by a compound microscope is defined as the product of the lateral and angular magnifications:

$$
\begin{equation*}
M=M_{o} m_{e}=-\frac{L}{f_{o}}\left(\frac{25 \mathrm{~cm}}{f_{e}}\right) \tag{36.26}
\end{equation*}
$$

The negative sign indicates that the image is inverted.

ACTIVE FIGURE 36.41
(a) Diagram of a compound microscope, which consists of an objective lens and an eyepiece lens. (b) A compound microscope. The three-objective turret allows the user to choose from several powers of magnification. Combinations of eyepieces with different focal lengths and different objectives can produce a wide range of magnifications.
Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the focal lengths of the objective and eyepiece lenses and see the effect on the final image.

The microscope has extended human vision to the point where we can view previously unknown details of incredibly small objects. The capabilities of this instrument have steadily increased with improved techniques for precision grinding of lenses. A question often asked about microscopes is, "If one were extremely patient and careful, would it be possible to construct a microscope that would enable the human eye to see an atom?" The answer is no, as long as light is used to illuminate the object. For an object under an optical microscope (one that uses visible light) to be seen, the object must be at least as large as a wavelength of light. Because the diameter of any atom is many times smaller than the wavelengths of visible light, the mysteries of the atom must be probed using other types of "microscopes."

36.10 The Telescope

Two fundamentally different types of telescopes exist; both are designed to aid in viewing distant objects, such as the planets in our solar system. The refracting telescope uses a combination of lenses to form an image, and the reflecting telescope uses a curved mirror and a lens.

Like the compound microscope, the refracting telescope shown in Active Figure 36.42a has an objective and an eyepiece. The two lenses are arranged so that the objective forms a real, inverted image of a distant object very near the focal point of the eyepiece. Because the object is essentially at infinity, this point at which I_{1} forms is the focal point of the objective. The eyepiece then forms, at I_{2}, an enlarged, inverted image of the image at I_{1}. To provide the largest possible magnification, the image distance for the eyepiece is infinite. The light rays exit the eyepiece lens parallel to the principal axis, and the image due to the objective lens must form at the focal point of the eyepiece. Hence, the two lenses are separated by a distance $f_{o}+f_{e}$, which corresponds to the length of the telescope tube.

The angular magnification of the telescope is given by θ / θ_{o}, where θ_{o} is the angle subtended by the object at the objective and θ is the angle subtended by the final image at the viewer's eye. Consider Active Figure 36.42a, in which the object is a very great distance to the left of the figure. The angle θ_{o} (to the left of the objective) subtended by the object at the objective is the same as the angle (to the right of the objective) subtended by the first image at the objective. Therefore,

ACTIVE FIGURE 36.42
(a) Lens arrangement in a refracting telescope, with the object at infinity. (b) A refracting telescope.

Sign in at www.thomsonedu.com and go to ThomsonNOW to adjust the focal lengths of the objective and eyepiece lenses and see the effect on the final image.

$$
\tan \theta_{o} \approx \theta_{o} \approx-\frac{h^{\prime}}{f_{o}}
$$

where the negative sign indicates that the image is inverted.
The angle θ subtended by the final image at the eye is the same as the angle that a ray coming from the tip of I_{1} and traveling parallel to the principal axis makes with the principal axis after it passes through the lens. Therefore,

$$
\tan \theta \approx \theta \approx \frac{h^{\prime}}{f_{e}}
$$

We have not used a negative sign in this equation because the final image is not inverted; the object creating this final image I_{2} is I_{1}, and both it and I_{2} point in the same direction. Therefore, the angular magnification of the telescope can be expressed as

$$
\begin{equation*}
m=\frac{\theta}{\theta_{o}}=\frac{h^{\prime} / f_{e}}{-h^{\prime} / f_{o}}=-\frac{f_{o}}{f_{e}} \tag{36.27}
\end{equation*}
$$

This result shows that the angular magnification of a telescope equals the ratio of the objective focal length to the eyepiece focal length. The negative sign indicates that the image is inverted.

When you look through a telescope at such relatively nearby objects as the Moon and the planets, magnification is important. Individual stars in our galaxy, however, are so far away that they always appear as small points of light no matter how great the magnification. To gather as much light as possible, large research telescopes used to study very distant objects must have a large diameter. It is difficult and expensive to manufacture large lenses for refracting telescopes. Another difficulty with large lenses is that their weight leads to sagging, which is an additional source of aberration.

These problems associated with large lenses can be partially overcome by replacing the objective with a concave mirror, which results in a reflecting telescope. Because light is reflected from the mirror and does not pass through a lens, the mirror can have rigid supports on the back side. Such supports eliminate the problem of sagging.

Figure 36.43a shows the design for a typical reflecting telescope. The incoming light rays are reflected by a parabolic mirror at the base. These reflected rays converge toward point A in the figure, where an image would be formed. Before this image is formed, however, a small, flat mirror M reflects the light toward an opening in the tube's side and it passes into an eyepiece. This particular design is said to have a Newtonian focus because Newton developed it. Figure 36.43b shows such a telescope. Notice that the light never passes through glass (except through the

Figure 36.43 (a) A Newtonian-focus reflecting telescope. (b) A reflecting telescope. This type of telescope is shorter than that in Figure 36.42b.
small eyepiece) in the reflecting telescope. As a result, problems associated with chromatic aberration are virtually eliminated. The reflecting telescope can be made even shorter by orienting the flat mirror so that it reflects the light back toward the objective mirror and the light enters an eyepiece in a hole in the middle of the mirror.

The largest reflecting telescopes in the world are at the Keck Observatory on Mauna Kea, Hawaii. The site includes two telescopes with diameters of 10 m , each containing 36 hexagonally shaped, computer-controlled mirrors that work together to form a large reflecting surface. Discussions and plans have been initiated for telescopes with different mirrors working together, as at the Keck Observatory, resulting in an effective diameter up to 21 m . In contrast, the largest refracting telescope in the world, at the Yerkes Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m .

Summary

ThomsonNOW" Sign in at www.thomsonedu.com and go to ThomsonNOW to take a practice test for this chapter.

DEFINITIONS

The lateral magnification M of the image due to a mirror or lens is defined as the ratio of the image height h^{\prime} to the object height h. It is equal to the negative of the ratio of the image distance q to the object distance p :

$$
M \equiv \frac{\text { image height }}{\text { object height }}=\frac{h^{\prime}}{h}=-\frac{q}{p}
$$

(36.1, 36.2, 36.17)

The ratio of the focal length of a camera lens to the diameter of the lens is called the f-number of the lens:

$$
\begin{equation*}
f \text {-number } \equiv \frac{f}{D} \tag{36.20}
\end{equation*}
$$

The angular magnification m is the ratio of the angle subtended by an object with a lens in use (angle θ in Fig. 36.40b) to the angle subtended by the object placed at the near point with no lens in use (angle θ_{0} in Fig. 36.40a):

$$
\begin{equation*}
m \equiv \frac{\theta}{\theta_{0}} \tag{36.22}
\end{equation*}
$$

CONCEPTS AND PRINCIPLES

In the paraxial ray approximation, the object distance p and image distance q for a spherical mirror of radius R are related by the mirror equation:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{2}{R}=\frac{1}{f} \tag{36.4,36.6}
\end{equation*}
$$

where $f=R / 2$ is the focal length of the mirror.

An image can be formed by refraction from a spherical surface of radius R. The object and image distances for refraction from such a surface are related by

$$
\begin{equation*}
\frac{n_{1}}{p}+\frac{n_{2}}{q}=\frac{n_{2}-n_{1}}{R} \tag{36.8}
\end{equation*}
$$

where the light is incident in the medium for which the index of refraction is n_{1} and is refracted in the medium for which the index of refraction is n_{2}.

The inverse of the focal length f of a thin lens surrounded by air is given by the lens-makers' equation:

$$
\begin{equation*}
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{36.15}
\end{equation*}
$$

Converging lenses have positive focal lengths, and diverging lenses have negative focal lengths.

For a thin lens, and in the paraxial ray approximation, the object and image distances are related by the thin lens equation:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{1}{f} \tag{36.16}
\end{equation*}
$$

The angular magnification of a refracting telescope can be expressed as

$$
\begin{equation*}
m=-\frac{f_{o}}{f_{e}} \tag{36.27}
\end{equation*}
$$

where f_{o} and f_{e} are the focal lengths of the objective and eyepiece lenses, respectively. The angular magnification of a reflecting telescope is given by the same expression where f_{o} is the focal length of the objective mirror.

Questions

denotes answer available in Student Solutions Manual/Study Guide; O denotes objective question

1. Consider a concave spherical mirror with a real object. Is the image always inverted? Is the image always real? Give conditions for your answers.
2. Repeat Question 1 for a convex spherical mirror.
3. \mathbf{O} (i) What is the focal length of a plane mirror? (a) 0 (b) 1 (c) -1 (d) ∞ (e) equal to the mirror height (f) Neither the focal length nor its reciprocal can be defined. (ii) What magnification does a plane mirror produce? (a) 0 (b) 1 (c) -1 (d) ∞ (e) Neither the magnification nor its reciprocal can be defined.
4. Do the equations $1 / p+1 / q=1 / f$ and $M=-q / p$ apply to the image formed by a flat mirror? Explain your answer.
5. O Lulu looks at her image in a makeup mirror. It is enlarged when she is close to the mirror. As she backs away, the image becomes larger, then impossible to iden-
tify when she is 30 cm from the mirror, then upside down when she is beyond 30 cm , and finally small, clear, and upside down when she is much farther from the mirror. (i) Is the mirror (a) convex, (b) plane, or (c) concave? (ii) What is the magnitude of its focal length? (a) 0 (b) 15 cm (c) 30 cm (d) 60 cm (e) ∞
6. Consider a spherical concave mirror with the object located to the left of the mirror beyond the focal point. Using ray diagrams, show that the image moves to the left as the object approaches the focal point.
7. O (i) Consider the mirror in Figure 36.11. What are the signs of the following? (a) the object distance (b) the image distance (c) the mirror radius (d) the focal length (e) the object height (f) the image height (g) the magnification (ii) Consider the objective lens in Active Figure 36.41a. What are the signs of the following? (a) the object distance (b) the image distance (c) the focal length (d) the object height (e) the image height (f) the magnification (iii) Answer the same questions (a) through (f) as in part (ii) for the eyepiece in Active Figure 36.41a.
8. O A person spearfishing from a boat sees a stationary fish a few meters away in a direction about 30° below the horizontal. To spear the fish, should the person (a) aim above where he sees the fish, (b) aim precisely at the fish, or (c) aim below the fish? Assume the dense spear does not change direction when it enters the water.
9. O A single converging lens can be used to constitute a scale model of each of the following devices in use simply by changing the distance from the lens to a candle representing the object. Rank the cases according to the distance from the object to the lens from the largest to the smallest. (a) a movie projector (b) Batman's signal, used to project an image on clouds high above Gotham City (c) a magnifying glass (d) a burning glass, used to make a sharp image of the Sun on tinder (e) an astronomical refracting telescope, used to make a sharp image of stars on an electronic detector (f) a searchlight, used to produce a beam of parallel rays from a point source. (g) a camera lens, used to photograph a soccer game.
10. In Active Figure 36.26a, assume the blue object arrow is replaced by one that is much taller than the lens. How many rays from the top of the object will strike the lens? How many principal rays can be drawn in a ray diagram?
11. O A converging lens in a vertical plane receives light from an object and forms an inverted image on a screen. An opaque card is then placed next to the lens, covering only the upper half of the lens. What happens to the image on the screen? (a) The upper half of the image disappears. (b) The lower half of the image disappears. (c) The entire image disappears. (d) The entire image is still visible, but is dimmer. (e) Half of the image disappears and the rest is dimmer. (f) No change in the image occurs.
12. O A converging lens of focal length 8 cm forms a sharp image of an object on a screen. What is the smallest possible distance between the object and the screen? (a) 0 (b) 4 cm (c) 8 cm (d) 16 cm (e) 32 cm (f) ∞
13. Explain this statement: "The focal point of a lens is the location of the image of a point object at infinity." Discuss the notion of infinity in real terms as it applies to object distances. Based on this statement, can you think of a simple method for determining the focal length of a converging lens?
14. Discuss the proper position of a photographic slide relative to the lens in a slide projector. What type of lens must the slide projector have?
15. O In this chapter's opening photograph, a water drop functions as a biconvex lens with radii of curvature of small magnitude. What is the location of the image photographed? (a) inside the water drop (b) on the back sur-
face of the drop, farthest from the camera (c) somewhat beyond the back surface of the drop (d) on the front surface of the drop, closest to the camera (e) somewhat closer to the camera than the front surface of the drop
16. Explain why a mirror cannot give rise to chromatic aberration.
17. Can a converging lens be made to diverge light if it is placed into a liquid? What If? What about a converging mirror?
18. Explain why a fish in a spherical goldfish bowl appears larger than it really is.
19. Why do some emergency vehicles have the symbol ЭЮИA.IUЯMA written on the front?
20. Lenses used in eyeglasses, whether converging or diverging, are always designed so that the middle of the lens curves away from the eye like the center lenses of Figures 36.25 a and 36.25 b . Why?
21. O The faceplate of a diving mask can be a corrective lens for a diver who does not have perfect vision and who needs essentially the same prescription for both eyes. Then the diver does not have to wear glasses or contact lenses. The proper design allows the person to see clearly both under water and in the air. Normal eyeglasses have lenses with both the front and back surfaces curved. Should the lens of a diving mask be curved (a) on the outer surface only, (b) on the inner surface only, or (c) on both surfaces?
22. In Figures Q36.22a and Q36.22b, which glasses correct nearsightedness and which correct farsightedness?

(a)

(b)

Figure Q36.22 Questions 22 and 23.
23. A child tries on either his hyperopic grandfather's or his myopic brother's glasses and complains, "Everything looks blurry." Why do the eyes of a person wearing glasses not look blurry? (See Figure Q36.22.)
24. In a Jules Verne novel, a piece of ice is shaped to form a magnifying lens to focus sunlight to start a fire. Is that possible?
25. A solar furnace can be constructed by using a concave mirror to reflect and focus sunlight into a furnace enclosure. What factors in the design of the reflecting mirror would guarantee very high temperatures?
26. Figure Q36.26 shows a lithograph by M. C. Escher titled Hand with Reflection Sphere (Self-Portrait in Spherical Mirror). Escher said about the work:

The picture shows a spherical mirror, resting on a left hand. But as a print is the reverse of the original drawing on stone, it was my right hand that you see depicted. (Being left-handed, I needed my left hand to make the drawing.) Such a globe reflection collects almost one's whole surroundings in one disk-shaped image. The whole room, four walls, the floor, and the ceiling, everything, albeit distorted, is compressed into that one small circle. Your own head, or more exactly the point between your eyes, is the absolute center. No matter how you turn or
twist yourself, you can't get out of that central point. You are immovably the focus, the unshakable core, of your world.

Comment on the accuracy of Escher's description.

Figure Q36.26
27. A converging lens of short focal length can take light diverging from a small source and refract it into a beam of parallel rays. A Fresnel lens as shown in Figure 36.27 is used in a lighthouse for this purpose. A concave mirror can take light diverging from a small source and reflect it into a beam of parallel rays. Is it possible to make a Fresnel mirror? Is this idea original, or has it already been done? Suggestion: Look at the walls and ceiling of an auditorium.

Problems

WebAssign The Problems from this chapter may be assigned online in WebAssign.
ThomsonNOW ${ }^{\sim}$ Sign in at www.thomsonedu.com and go to ThomsonNOW to assess your understanding of this chapter's topics with additional quizzing and conceptual questions.

1, 2, 3 denotes straightforward, intermediate, challenging; \square denotes full solution available in Student Solutions Manual/Study
Guide; Δ denotes coached solution with hints available at www.thomsonedu.com; denotes developing symbolic reasoning;
denotes asking for qualitative reasoning; denotes computer useful in solving problem

Section 36.1 Images Formed by Flat Mirrors

1. Does your bathroom mirror show you older or younger than you actually are? Compute an order-of-magnitude estimate for the age difference based on data you specify.
2. In a church choir loft, two parallel walls are 5.30 m apart. The singers stand against the north wall. The organist faces the south wall, sitting 0.800 m away from it. To enable her to see the choir, a flat mirror 0.600 m wide is mounted on the south wall, straight in front of her. What width of the north wall can the organist see? Suggestion: Draw a top-view diagram to justify your answer.
3. Determine the minimum height of a vertical flat mirror in which a person 5 ft 10 in . in height can see his or her full image. (A ray diagram would be helpful.)
4. A person walks into a room that has two flat mirrors on opposite walls. The mirrors produce multiple images of the person. When the person is 5.00 ft from the mirror on the left wall and 10.0 ft from the mirror on the right wall, find the distance from the person to the first three images seen in the mirror on the left.
5. A periscope (Fig. P36.5) is useful for viewing objects that cannot be seen directly. It can be used in submarines and when watching golf matches or parades from behind a crowd of people. Suppose the object is a distance p_{1} from the upper mirror and the two flat mirrors are separated by a distance h. (a) What is the distance of the final image from the lower mirror? (b) Is the final image real or virtual? (c) Is it upright or inverted? (d) What is its magnification? (e) Does it appear to be left-right reversed?

Figure P36.5

Section 36.2 Images Formed by Spherical Mirrors

6. A concave spherical mirror has a radius of curvature of 20.0 cm . Find the location of the image for object distances of (a) 40.0 cm , (b) 20.0 cm , and (c) 10.0 cm . For each case, state whether the image is real or virtual and upright or inverted. Find the magnification in each case.
7. A spherical convex mirror has a radius of curvature with a magnitude of 40.0 cm . Determine the position of the virtual image and the magnification for object distances of (a) 30.0 cm and (b) 60.0 cm . (c) Are the images upright or inverted?
8. At an intersection of hospital hallways, a convex mirror is mounted high on a wall to help people avoid collisions. The magnitude of the mirror's radius of curvature is 0.550 m . Locate and describe the image of a patient 10.0 m from the mirror. Determine the magnification of the image.
9. A concave mirror has a radius of curvature of 60.0 cm . Calculate the image position and magnification of an object placed in front of the mirror at distances of (a) 90.0 cm and (b) 20.0 cm . (c) Draw ray diagrams to obtain the image characteristics in each case.
10. A large church has a niche in one wall. On the floor plan, the niche appears as a semicircular indentation of radius 2.50 m . A worshiper stands on the centerline of the niche,
2.00 m out from its deepest point, and whispers a prayer. Where is the sound concentrated after reflection from the back wall of the niche?
11. A dentist uses a mirror to examine a tooth. The tooth is 1.00 cm in front of the mirror, and the image is formed 10.0 cm behind the mirror. Determine (a) the mirror's radius of curvature and (b) the magnification of the image.
12. A certain Christmas tree ornament is a silver sphere having a diameter of 8.50 cm . Determine an object location for which the size of the reflected image is three-fourths the object's size. Use a principal-ray diagram to arrive at a description of the image.
13. (a) A concave mirror forms an inverted image four times larger than the object. Find the focal length of the mirror, assuming the distance between object and image is 0.600 m . (b) A convex mirror forms a virtual image half the size of the object. Assuming the distance between image and object is 20.0 cm , determine the radius of curvature of the mirror.
14. To fit a contact lens to a patient's eye, a keratometer can be used to measure the curvature of the eye's front surface, the cornea. This instrument places an illuminated object of known size at a known distance p from the cornea. The cornea reflects some light from the object, forming an image of the object. The magnification M of the image is measured by using a small viewing telescope that allows comparison of the image formed by the cornea with a second calibrated image projected into the field of view by a prism arrangement. Determine the radius of curvature of the cornea for the case $p=30.0 \mathrm{~cm}$ and $M=0.0130$.
15. An object 10.0 cm tall is placed at the zero mark of a meterstick. A spherical mirror located at some point on the meterstick creates an image of the object that is upright, 4.00 cm tall, and located at the $42.0-\mathrm{cm}$ mark of the meterstick. (a) Is the mirror convex or concave? (b) Where is the mirror? (c) What is the mirror's focal length?
16. A dedicated sports car enthusiast polishes the inside and outside surfaces of a hubcap that is a section of a sphere. When she looks into one side of the hubcap, she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?
17. A spherical mirror is to be used to form, on a screen located 5.00 m from the object, an image five times the size of the object. (a) Describe the type of mirror
required. (b) Where should the mirror be positioned relative to the object?
18. You unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle θ in radians is related to the linear height of the object h and to the distance d by $\theta=h / d$. Assume you are driving a car and another car, 1.50 m high, is 24.0 m behind you. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? (b) What angle does the image subtend in your field of view? (c) What If? Now suppose your car has a convex rearview mirror with a radius of curvature of magnitude 2.00 m (as suggested in Fig. 36.15). How far from your eyes is the image of the car behind you? (d) What angle does the image subtend at your eyes? (e) Based on its angular size, how far away does the following car appear to be?
19. Review problem. A ball is dropped at $t=0$ from rest 3.00 m directly above the vertex of a concave mirror that has a radius of curvature of 1.00 m and lies in a horizontal plane. (a) Describe the motion of the ball's image in the mirror. (b) At what instant or instants do the ball and its image coincide?

Section 36.3 Images Formed by Refraction

20. A flint glass plate ($n=1.66$) rests on the bottom of an aquarium tank. The plate is 8.00 cm thick (vertical dimension) and is covered with a layer of water ($n=1.33$) 12.0 cm deep. Calculate the apparent thickness of the plate as viewed from straight above the water.
21. A cubical block of ice 50.0 cm on a side is placed over a speck of dust on a level floor. Find the location of the image of the speck as viewed from above. The index of refraction of ice is 1.309 .
22. One end of a long glass rod $(n=1.50)$ is formed into a convex surface with a radius of curvature of 6.00 cm . An object is located in air along the axis of the rod. Find the image positions corresponding to object distances of (a) 20.0 cm , (b) 10.0 cm , and (c) 3.00 cm from the end of the rod.
23. A glass sphere $(n=1.50)$ with a radius of 15.0 cm has a tiny air bubble 5.00 cm above its center. The sphere is viewed looking down along the extended radius containing the bubble. What is the apparent depth of the bubble below the surface of the sphere?
24. Figure P36.24 shows a curved surface separating a material with index of refraction n_{1} from a material with index n_{2}. The surface forms an image I of object O. The ray shown in
blue passes through the surface along a radial line. Its angles of incidence and refraction are both zero, so its direction does not change at the surface. For the ray shown in brown, the direction changes according to $n_{1} \sin \theta_{1}=$ $n_{2} \sin \theta_{2}$. For paraxial rays, we assume θ_{1} and θ_{2} are small, so we may write $n_{1} \tan \theta_{1}=n_{2} \tan \theta_{2}$. The magnification is defined as $M=h^{\prime} / h$. Prove that the magnification is given by $M=-n_{1} q / n_{2} p$.

Figure P36.24
25. As shown in Figure P36.25, a water tank containing lobsters has a curved front made of plastic with uniform thickness and a radius of curvature of magnitude 80.0 cm . Locate and describe the images of lobsters (a) 30.0 cm and (b) 90.0 cm from the base of the front wall. (c) Find the magnification of each image. You may use the result of Problem 24. (d) The lobsters are both 9.00 cm in height. Find the height of each image. (e) Explain why you do not need to know the index of refraction of the plastic to solve this problem.

Figure P36.25
26. A goldfish is swimming at $2.00 \mathrm{~cm} / \mathrm{s}$ toward the front wall of a rectangular aquarium. What is the apparent speed of the fish measured by an observer looking in from outside the front wall of the tank? The index of refraction of water is 1.33 .

Section 36.4 Thin Lenses

7. Δ The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm , and the right face has a radius
of curvature of magnitude 18.0 cm . The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens. (b) What If? Calculate the focal length the lens has after it is turned around to interchange the radii of curvature of the two faces.
8. A contact lens is made of plastic with an index of refraction of 1.50 . The lens has an outer radius of curvature of +2.00 cm and an inner radius of curvature of +2.50 cm . What is the focal length of the lens?
9. A converging lens has a focal length of 20.0 cm . Locate the image for object distances of (a) 40.0 cm , (b) 20.0 cm , and (c) 10.0 cm . For each case, state whether the image is real or virtual and upright or inverted. Find the magnification in each case.
10. An object located 32.0 cm in front of a lens forms an image on a screen 8.00 cm behind the lens. (a) Find the focal length of the lens. (b) Determine the magnification. (c) Is the lens converging or diverging?
11. \triangle The nickel's image in Figure P36.31 has twice the diameter of the nickel and is 2.84 cm from the lens. Determine the focal length of the lens.

Figure P36.31
32. Suppose an object has thickness $d p$ so that it extends from object distance p to $p+d p$. Prove that the thickness $d q$ of its image is given by $\left(-q^{2} / p^{2}\right) d p$. Then the longitudinal magnification is $d q / d p=-M^{2}$, where M is the lateral magnification.
33. An object is located 20.0 cm to the left of a diverging lens having a focal length $f=-32.0 \mathrm{~cm}$. Determine (a) the location and (b) the magnification of the image. (c) Construct a ray diagram for this arrangement.
34. The projection lens in a certain slide projector is a single thin lens. A slide 24.0 mm high is to be projected so that its image fills a screen 1.80 m high. The slide-to-screen
distance is 3.00 m . (a) Determine the focal length of the projection lens. (b) How far from the slide should the lens of the projector be placed so as to form the image on the screen?
35. The use of a lens in a certain situation is described by the equation

$$
\frac{1}{p}+\frac{1}{-3.50 p}=\frac{1}{7.50 \mathrm{~cm}}
$$

Determine (a) the object distance and (b) the image distance. (c) Use a ray diagram to obtain a description of the image. (d) Identify a practical device described by the given equation and write the statement of a problem for which the equation appears in the solution.
36. An antelope is at a distance of 20.0 m from a converging lens of focal length 30.0 cm . The lens forms an image of the animal. If the antelope runs away from the lens at a speed of $5.00 \mathrm{~m} / \mathrm{s}$, how fast does the image move? Does the image move toward or away from the lens?
37. An object is at a distance d to the left of a flat screen. A converging lens with focal length $f<d / 4$ is placed between object and screen. (a) Show that two lens positions exist that form an image on the screen and determine how far these positions are from the object. (b) How do the two images differ from each other?
38. In Figure P36.38, a thin converging lens of focal length 14.0 cm forms an image of the square $a b c d$, which is $h_{c}=$ $h_{b}=10.0 \mathrm{~cm}$ high and lies between distances of $p_{d}=$ 20.0 cm and $p_{a}=30.0 \mathrm{~cm}$ from the lens. (a) Let $a^{\prime}, b^{\prime}, c^{\prime}$, and d^{\prime} represent the respective corners of the image. Let q_{a} represent the image distance for points a^{\prime} and b^{\prime}, q_{d} represent the image distance for points c^{\prime} and $d^{\prime}, h_{b}^{\prime}$ represent the distance from point b^{\prime} to the axis, and h_{c}^{\prime} represent the height of c^{\prime}. Evaluate each of these quantities. Make a sketch of the image. (b) The area of the object is $100 \mathrm{~cm}^{2}$. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a^{\prime} and d^{\prime}, for which the object distance is p. Let h^{\prime} represent the distance from the axis to the point at the edge of the image between b^{\prime} and c^{\prime} at image distance q. Demonstrate that

$$
\left|h^{\prime}\right|=(10 \mathrm{~cm}) q\left(\frac{1}{14 \mathrm{~cm}}-\frac{1}{q}\right)
$$

(c) Explain why the geometric area of the image is given by

$$
\int_{q_{a}}^{q_{d}}\left|h^{\prime}\right| d q
$$

Carry out the integration to find the area of the image.

Figure P36.38
39. Figure 36.33 diagrams a cross section of a camera. It has a single lens of focal length 65.0 mm that is to form an image on the CCD at the back of the camera. Suppose the position of the lens has been adjusted to focus the image of a distant object. How far and in what direction must the lens be moved to form a sharp image of an object that is 2.00 m away?

Section 36.5 Lens Aberrations

40. The magnitudes of the radii of curvature are 32.5 cm and 42.5 cm for the two faces of a biconcave lens. The glass has index of refraction 1.53 for violet light and 1.51 for red light. For a very distant object, locate and describe (a) the image formed by violet light and (b) the image formed by red light.
41. Two rays traveling parallel to the principal axis strike a large plano-convex lens having an index of refraction of 1.60 (Fig. P36.41). If the convex face is spherical, a ray near the edge does not pass through the focal point (spherical aberration occurs). Assume this face has a radius of curvature of 20.0 cm and the two rays are at distances $h_{1}=0.500 \mathrm{~cm}$ and $h_{2}=12.0 \mathrm{~cm}$ from the principal axis. Find the difference Δx in the positions where each crosses the principal axis.

Figure P36.41

Section 36.6 The Camera

42. A camera is being used with a correct exposure at $f / 4$ and a shutter speed of $\frac{1}{16}$ s. To photograph a rapidly moving subject, the shutter speed is changed to $\frac{1}{128}$ s. Find the new f-number setting needed to maintain satisfactory exposure.

Section 36.7 The Eye

43. A nearsighted person cannot see objects clearly beyond 25.0 cm (her far point). If she has no astigmatism and contact lenses are prescribed for her, what power and type of lens are required to correct her vision?
44. The accommodation limits for nearsighted Nick's eyes are 18.0 cm and 80.0 cm . When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?

Section 36.8 The Simple Magnifier

Section 36.9 The Compound Microscope

Section 36.10 The Telescope

45. A lens that has a focal length of 5.00 cm is used as a magnifying glass. (a) To obtain maximum magnification, where should the object be placed? (b) What is the magnification?
46. The distance between eyepiece and objective lens in a certain compound microscope is 23.0 cm . The focal length of the eyepiece is 2.50 cm and that of the objective is 0.400 cm . What is the overall magnification of the microscope?
47. The refracting telescope at the Yerkes Observatory has a $1.00-\mathrm{m}$ diameter objective lens of focal length 20.0 m . Assume it is used with an eyepiece of focal length 2.50 cm .
(a) Determine the magnification of Mars as seen through this telescope. (b) Are the Martian polar caps right side up or upside down?
48. Astronomers often take photographs with the objective lens or mirror of a telescope alone, without an eyepiece. (a) Show that the image size h^{\prime} for such a telescope is given by $h^{\prime}=f h /(f-p)$, where h is the object size, f is the objective focal length, and p is the object distance. (b) What If? Simplify the expression in part (a) for the case in which the object distance is much greater than objective focal length. (c) The "wingspan" of the International Space Station is 108.6 m , the overall width of its solar panel configuration. Find the width of the image formed by a telescope objective of focal length 4.00 m when the station is orbiting at an altitude of 407 km .
49. A certain telescope has an objective mirror with an aperture diameter of 200 mm and a focal length of 2000 mm . It captures the image of a nebula on photographic film at its prime focus with an exposure time of 1.50 min . To produce the same light energy per unit area on the film,
what is the required exposure time to photograph the same nebula with a smaller telescope that has an objective with a diameter of 60.0 mm and a focal length of 900 mm ?

Additional Problems

50. A zoom lens system is a combination of lenses that produces a variable magnification of a fixed object as it maintains a fixed image position. The magnification is varied by moving one or more lenses along the axis. Multiple lenses are used in practice to obtain high-quality images, but the effect of zooming in on an object can be demonstrated with a simple two-lens system. An object, two converging lenses, and a screen are mounted on an optical bench. The first lens, which is to the right of the object, has a focal length of 5.00 cm , and the second lens, which is to the right of the first lens, has a focal length of 10.0 cm . The screen is to the right of the second lens. Initially, an object is situated at a distance of 7.50 cm to the left of the first lens, and the image formed on the screen has a magnification of +1.00 . (a) Find the distance between the object and the screen. (b) Both lenses are now moved along their common axis, while the object and the screen maintain fixed positions, until the image formed on the screen has a magnification of +3.00 . Find the displacement of each lens from its initial position in part (a). Can the lenses be displaced in more than one way?
51. The distance between an object and its upright image is 20.0 cm . If the magnification is 0.500 , what is the focal length of the lens being used to form the image?
52. The distance between an object and its upright image is d. If the magnification is M, what is the focal length of the lens being used to form the image?
53. A real object is located at the zero end of a meterstick. A large concave mirror at the $100-\mathrm{cm}$ end of the meterstick forms an image of the object at the $70.0-\mathrm{cm}$ position. A small convex mirror placed at the $20.0-\mathrm{cm}$ position forms a final image at the $10.0-\mathrm{cm}$ point. What is the radius of curvature of the convex mirror?
54. The lens and mirror in Figure P36.54 have focal lengths of +80.0 cm and -50.0 cm , respectively. An object is placed 1.00 m to the left of the lens as shown. Locate the final image, formed by light that has gone through the lens twice. State whether the image is upright or inverted and determine the overall magnification.

Figure P36.54
55. An object is originally at the $x_{i}=0 \mathrm{~cm}$ position of a meterstick located on the x axis. A converging lens of focal length 26.0 cm is fixed at the position 32.0 cm . Then we gradually slide the object to the position $x_{f}=$ 12.0 cm . Find the location x^{\prime} of the object's image as a function of the object position x. Describe the pattern of the motion of the image with reference to a graph or a table of values. As the object moves 12 cm to the right, how far does the image move? In what direction or directions?
56. The object in Figure P36.56 is midway between the lens and the mirror. The mirror's radius of curvature is 20.0 cm , and the lens has a focal length of -16.7 cm . Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. Is this image real or virtual? Is it upright or inverted? What is the overall magnification?

Figure P36.56
57. In many applications, it is necessary to expand or decrease the diameter of a beam of parallel rays of light. This change can be made by using a converging lens and a diverging lens in combination. Suppose you have a converging lens of focal length 21.0 cm and a diverging lens of focal length -12.0 cm . How can you arrange these lenses to increase the diameter of a beam of parallel rays? By what factor will the diameter increase?
58. The lens-makers' equation applies to a lens immersed in a liquid if n in the equation is replaced by n_{2} / n_{1}. Here n_{2} refers to the index of refraction of the lens material and n_{1} is that of the medium surrounding the lens. (a) A certain lens has focal length 79.0 cm in air and index of refraction 1.55. Find its focal length in water. (b) A certain mirror has focal length 79.0 cm in air. Find its focal length in water.
59. \triangle A parallel beam of light enters a glass hemisphere perpendicular to the flat face as shown in Figure P36.59. The

Figure P36.59

2 = intermediate; 3 = challenging; $\square=\mathrm{SSM} / \mathrm{SG} ; \quad \boldsymbol{\Delta}=$ ThomsonNOW; \quad = symbolic reasoning; \quad = qualitative reasoning
magnitude of the radius is 6.00 cm , and the index of refraction is 1.560 . Determine the point at which the beam is focused. (Assume paraxial rays.)
60. Review problem. A spherical lightbulb of diameter 3.20 cm radiates light equally in all directions, with power 4.50 W .
(a) Find the light intensity at the surface of the lightbulb.
(b) Find the light intensity 7.20 m away from the center of the lightbulb. (c) At this $7.20-\mathrm{m}$ distance, a lens is set up with its axis pointing toward the lightbulb. The lens has a circular face with a diameter 15.0 cm and has a focal length of 35.0 cm . Find the diameter of the image of the lightbulb. (d) Find the light intensity at the image.

An object is placed 12.0 cm to the left of a diverging lens of focal length -6.00 cm . A converging lens of focal length 12.0 cm is placed a distance d to the right of the diverging lens. Find the distance d so that the final image is at infinity. Draw a ray diagram for this case.
62. Assume the intensity of sunlight is $1.00 \mathrm{~kW} / \mathrm{m}^{2}$ at a particular location. A highly reflecting concave mirror is to be pointed toward the Sun to produce a power of at least 350 W at the image. (a) Find the required radius R_{a} of the circular face area of the mirror. (b) Now suppose the light intensity is to be at least $120 \mathrm{~kW} / \mathrm{m}^{2}$ at the image. Find the required relationship between R_{a} and the radius of curvature R of the mirror. The disk of the Sun subtends an angle of 0.533° at the Earth.
63. Δ The disk of the Sun subtends an angle of 0.533° at the Earth. What are the position and diameter of the solar image formed by a concave spherical mirror with a radius of curvature of 3.00 m ?
64. Figure P36.64 shows a thin converging lens for which the radii of curvature are $R_{1}=9.00 \mathrm{~cm}$ and $R_{2}=$ -11.0 cm . The lens is in front of a concave spherical mirror with the radius of curvature $R=8.00 \mathrm{~cm}$. (a) Assume its focal points F_{1} and F_{2} are 5.00 cm from the center of the lens. Determine its index of refraction. (b) The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine the position of the final image and its magnification as seen by the eye in the figure. (c) Is the final image inverted or upright? Explain.

Figure P36.64
65. In a darkened room, a burning candle is placed 1.50 m from a white wall. A lens is placed between candle and wall at a location that causes a larger, inverted image to form on the wall. When the lens is moved 90.0 cm toward the wall, another image of the candle is formed. Find (a) the two object distances that produce the specified images and (b) the focal length of the lens. (c) Characterize the second image.
66. A floating strawberry illusion is achieved with two parabolic mirrors, each having a focal length 7.50 cm , facing each other so that their centers are 7.50 cm apart (Fig. P36.66). If a strawberry is placed on the lower mirror, an image of the strawberry is formed at the small opening at the center of the top mirror. Show that the final image is formed at that location and describe its characteristics. Note: A very startling effect is to shine a flashlight beam on this image. Even at a glancing angle, the incoming light beam is seemingly reflected from the image! Do you understand why?

Figure P36.66
67. An object 2.00 cm high is placed 40.0 cm to the left of a converging lens having a focal length of 30.0 cm . A diverging lens with a focal length of -20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position and magnification of the final image. (b) Is the image upright or inverted? (c) What If? Repeat parts (a) and (b) for the case in which the second lens is a converging lens having a focal length of +20.0 cm .
68. Two lenses made of kinds of glass having different indices of refraction n_{1} and n_{2} are cemented together to form an optical doublet. Optical doublets are often used to correct chromatic aberrations in optical devices. The first lens of a certain doublet has one flat side and one concave side with a radius of curvature of magnitude R. The second lens has two convex sides with radii of curvature also of magnitude R. Show that the doublet can be modeled as a single thin lens with a focal length described by

$$
\frac{1}{f}=\frac{2 n_{2}-n_{1}-1}{R}
$$

Answers to Quick Quizzes

36.1 False. The water spots are 2 m away from you, and your image is 4 m away. You cannot focus your eyes on both at the same time.
36.2 (b). A concave mirror focuses the light from a large area of the mirror onto a small area of the paper, resulting in a very high power input to the paper.
36.3 (b). A convex mirror always forms an image with a magnification less than 1 , so the mirror must be concave. In a concave mirror, only virtual images are upright. This particular photograph is of the Hubble Space Telescope primary mirror. The scientists acting as the object for the image are to the left of the photograph and not visible to us.
36.4 (d). When O is far away, the rays refract into the material of index n_{2} and converge to form a real image as in Figure 36.16. For certain combinations of R and n_{2} as O moves very close to the refracting surface, the incident angle of the rays increases so much that rays are no longer refracted back toward the principal axis. The result is a virtual image as shown in the next column.

36.5 (a). No matter where O is, the rays refract into the air away from the normal and form a virtual image between O and the surface.
36.6 (b). Because the flat surfaces of the plane have infinite radii of curvature, Equation 36.15 indicates that the focal length is also infinite. Parallel rays striking the plane focus at infinity, which means that they remain parallel after passing through the glass.
36.7 (a). If the object is brought closer to the lens, the image moves farther away from the lens, behind the plane of the CCD. To bring the image back up to the CCD, the lens is moved toward the object and away from the CCD.
36.8 (c). The Sun's rays must converge onto the paper. A farsighted person wears converging lenses.

[^0]: ${ }^{1}$ The details of this proof are available in texts on optics.

[^1]: ${ }^{1}$ The word lens comes from lentil, the name of an Italian legume. (You may have eaten lentil soup.) Early eyeglasses were called "glass lentils" because the biconvex shape of their lenses resembled the shape of a lentil. The first lenses for farsightedness and presbyopia appeared around 1280; concave eyeglasses for correcting nearsightedness did not appear until more than 100 years later.

