OPAC 101
 Introduction to Optics

Topic 4
 Aberrations

Department of

Optical \& Acustical Engineering
Gaziantep University

Content

1. Introduction
2. Spherical Aberrations
3. Chromatic Aberrations
4. Other Types of Aberrations
5. Exercises
6. References

Introduction

- In an ideal optical system, all rays of light from a point in the object plane would converge to the same point in the image plane, forming a clear image.
- The influences which cause different rays to converge to different points are called aberrations.
- Aberration leads to blurring of the image produced by an image-forming optical system. It occurs when light from one point of an object after transmission through the system does not converge into (or does not diverge from) a single point.
- Optical Instrument-makers need to correct optical systems to compensate for aberration.
- In this chapter, we will consider spherical and chromatic aberrations and their corrections.

Spherical Aberrations (SA)

- Spherical aberrations occur because the focal points of rays far from the principal axis of a spherical lens (or mirror) are different from the focal points of rays of the same wavelength passing near the axis.
- Figures given below illustrate spherical aberrations for parallel rays passing through a converging lens, and reflecting from a concave mirror. Rays are converged to different points instead of a single focal point.

- Spherical aberration can be reduced by a screening method.
- To do this, a screen (pupil) can be placed in front of the mirror or lens allowing parallel rays to focus on a single point.

(c)
- NOTE THAT
$>$ Screening reduces the brightness (light intensity) of the image while it reduces the spherical aberrations.
> Many cameras have an adjustable aperture to control light intensity and reduce spherical aberration.

Longitudinal \& Transverse Aberrations in Mirror

For ray R:
LA = Paraxial distance - Trigonometric distance $=|\mathrm{OA}|-|\mathrm{OB}|$ $\mathrm{TA}=\mathrm{LA} \tan (\mathrm{u}) \quad$ [u is the angle with the principle axis].

Example 1

A ray traveling parallel to the principal axis strike a convex mirror whose radius of curvature is $R=25 \mathrm{~cm}$ as shown in Figure. Assume that the ray is at distance $h=10 \mathrm{~cm}$. (a) Find the angle θ.
(b) Find LA and TA

SOLUTION

Example 2

A light ray traveling parallel to the principal axis at a distance x from the principal axis strike a concave mirror having a radius of curvature R as shown.
The ray is focused on point S such that $|O S|=f$. (a) Find the distance f if $\mathrm{x}=2 \mathrm{~cm}$ and $R=10 \mathrm{~cm}$.
(b) Find LA and TA

SOLUTION

- To overcome the spherical aberration in mirrors, parabolic reflecting surface rather than a spherical surface is used.
- Parabolic surfaces are not used often --> very expensive to make.
- Parallel light rays incident on a parabolic surface focus at a common point, regardless of their distance from the principal axis.
- Parabolic reflecting surfaces are used in many astronomical telescopes to enhance image quality.
- One can prove why we need parabolic reflecting surface (See Appendix at the end)

A parabolic solar dish
The mirror of the Hubble Space Telescope

Example 3

A light ray traveling parallel to the principal axis at a distance x from the principal axis strike a parabolic mirror. Find f if the equation is $y=2 x^{2}$. Here both x and y are measured in cm .

See Appendix.

SOLUTION

$$
f=\frac{x^{2}}{4 y}=\frac{x^{2}}{4\left(2 x^{2}\right)}=\frac{1}{8}=0.125 \mathrm{~cm}
$$

Longitudinal \& Transverse Aberrations in Lens

For ray R:
LA = Paraxial distance - Trigonometric distance $=|\mathrm{OA}|-|\mathrm{OB}|$ $\mathrm{TA}=\mathrm{LA} \tan (\mathrm{u}) \quad[\mathrm{u}$ is the angle with the principle axis].

Longitudinal \& Transverse Aberrations

The spherical aberration of a system is usually represented graphically.

- Longitudinal spherical is plotted against the ray height.
- Transverse spherical is plotted against the final slope of the ray,

Example 4

Plano-convex lens:
$\mathrm{R}=40.0 \mathrm{~cm}$
$\mathrm{D}=12.0 \mathrm{~cm}$
$\mathrm{h}=4.0 \mathrm{~cm}$
$\mathrm{n}=1.5$

(a) Find the effective focal length (paraxial focal length)
(b) Find longitudinal and transverse spherical aberrations.
(c) Plot h vs LA and h vs TA graphs.
[Ans: $f=80 \mathrm{~cm}, L A=0.9040 \mathrm{~cm}, \mathrm{TA}=0.0456 \mathrm{~cm}$].
What if you change the orientation of the lens?
(That is to say, curved face will look at the incoming ray)
Repeat case (a), (b) and (c).

Example 4 (Plots)

Chromatic Aberrations (CA)

- A lens will not focus different colors in exactly the same place.
- CA occurs because lenses have a different refractive index for different wavelengths of light (the dispersion of the lens).

$$
1<n\left(\lambda_{\text {red }}\right)<n\left(\lambda_{\text {yellow }}\right)<n\left(\lambda_{\text {blue }}\right)
$$

Index Dispersion

- The index of refraction of an optical material varies with wavelength.
- The dashed portions of the curve represent absorption bands.

- In optical engineering, useful spectral region lies between the UV and infrared.

Dispersion Formulae

(a, b, c, \ldots are constants)
Cauchy

$$
n(\lambda)=a+\frac{b}{\lambda^{2}}+\frac{c}{\lambda^{4}}+\cdots
$$

Hartmann

$$
n(\lambda)=a+\frac{b}{(c-\lambda)}+\frac{d}{(e-\lambda)}
$$

Conrady

$$
n(\lambda)=a+\frac{b}{\lambda}+\frac{c}{\lambda^{3.5}}
$$

Kettler-Drude

$$
n^{2}(\lambda)=a+\frac{b}{c-\lambda^{2}}+\frac{d}{e-\lambda^{2}}+\cdots
$$

Sellmeier

$$
n^{2}(\lambda)=a+\frac{b \lambda^{2}}{c-\lambda^{2}}+\frac{d \lambda^{2}}{e-\lambda^{2}}+\frac{f \lambda^{2}}{g-\lambda^{2}}+\cdots
$$

Herzberger

$$
n(\lambda)=a+b \lambda^{2}+\frac{e}{\left(\lambda^{2}-0.035\right)}+\frac{d}{\left(\lambda^{2}-0.035\right)^{2}}
$$

Old Schott

$$
n^{2}(\lambda)=a+b \lambda^{2}+\frac{c}{\lambda^{2}}+\frac{d}{\lambda^{4}}+\frac{e}{\lambda^{6}}+\frac{f}{\lambda^{8}}
$$

Dispersion formula for BK7

$\square \mathrm{n} \square \mathrm{k} \square \log \square \mathrm{eV}$

$$
n^{2}-1=\frac{1.03961212 \lambda^{2}}{\lambda^{2}-0.00600069867}+\frac{0.231792344 \lambda^{2}}{\lambda^{2}-0.0200179144}+\frac{1.01046945 \lambda^{2}}{\lambda^{2}-103.560653}
$$

Dispersion Measure

Reference color lines:
C ($\lambda=656.3 \mathrm{~nm}$, red),
D ($\lambda=589.2 \mathrm{~nm}$, yellow),
$F(\lambda=486.1 \mathrm{~nm}$, blue $)$

Newton's prism

$$
\text { Abbe value }=V=\frac{n_{D}-1}{n_{F}-n_{C}}
$$

For a crown glass:

$$
V_{\text {crown }}=\frac{1.5233-1.0000}{1.5290-1.5204}=60.8
$$

Example 5

Figure shows a bi-convex lens of same radius ($R=10 \mathrm{~cm}$) made up of a BK7. Determine the distance (x) between paraxial focal lengths for the blue ($n=1.5308$) and red ($n=1.5131$)
 lights if the lens is illuminated by a white light.

SOLUTION

Focal length as a function of curvature R and refractive index (n) is:

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R}-\frac{1}{-R}\right) \rightarrow \quad f=\frac{R}{2(n-1)}
$$

The distance between focal lengths:

$$
\begin{aligned}
x=f^{\text {red }}-f^{\text {blue }} & =\frac{R}{2\left(n^{\text {red }}-1\right)}-\frac{R}{2\left(n^{\text {blue }}-1\right)} \\
& =\frac{10}{2(1.5131-1)}-\frac{10}{2(1.5308-1)}=0.3250 \mathrm{~cm}
\end{aligned}
$$

- One way to minimize this aberration is to use glasses of different dispersion in a doublet or other combination.

The use of a strong positive lens made from a low dispersion glass like crown glass ($n<1.6$) coupled with a weaker high dispersion glass like flint glass ($n>1.6$) can correct the chromatic aberration for two colors, e.g., red and blue.

- Such doublets are often cemented together and called achromat.
- An achromatic lens (or achromat) is designed to limit the effects of chromatic and spherical aberration.

Example 6

Figure shows an achromatic lens consisting of a thin bi-convex crown glass (BK7) and a thin bi-concave flint glass (SF5) where radius of curvature is $R=10 \mathrm{~cm}$.

Find the distance between
paraxial focal lengths for blue and red rays with and without flint glass.

Ans:
$\Delta \mathrm{f}(\mathrm{BK} 7) \quad=0.32495 \mathrm{~cm}$
$\Delta f($ BK7 + SF5 $)=0.05657 \mathrm{~cm}$

Glass	Refractive Index	
	400 nm	700 nm
-----	------	------
BK7 $:$	1.5308	1.5131
SF5 :	1.7130	1.6637

Example 6 (code)

응 OCTAVE SCRIPT FILE
\% A simple achromatic lens calculations. \%
\% The achromatic lens consists of
\% a bi-convex converging lens (R1,R2) and
\% a diverging lens (R2, R3).
\% These two lenses are cemented together. \%
$\% \%$
\% The curvatures in cm are as follows:
$\mathrm{R}=10$;
$\mathrm{R} 1=\mathrm{R}$;
$\mathrm{R} 2=-\mathrm{R}$;
$R 3=-4 * R$;

으 Refractive indices [blue red]
n _bk $7=[1.5308 \quad 1.5131]$;
n_sf5 $=[1.7130 \quad 1.6637]$;
disp('Focal length for BK7 only:')
$\mathrm{f}_{\text {_bk }}=((\mathrm{n} \operatorname{bk} 7-1) \star(1 / R 1-1 / R 2)) . \wedge-1$
$f^{f} s f 5=\left(\left(n_{2} s f 5-1\right) *(1 / R 2-1 / R 3)\right) \cdot \wedge-1$;
$d f=f_{f} b k 7(2)-f_{f} b k 7(1)$
disp('')
disp ('Focal length for BK7+SF5:')

$d f=f^{f} \operatorname{sys}(2)-f^{\prime}$ sys (1)

PROGRAM OUTPUT

```
Focal length for BK7 only:
f_bk7 = 9.4197 9.7447
df}=0.3249
```

Focal length for BK7+SF5:
f_sys $=18.981 \quad 18.924$
$\mathrm{d} \overline{\mathrm{f}}=-0.056573$

Optimum Doublet

Consider achromatic doublet in contact. If the focal lengths of the two (thin) lenses for light at the yellow Fraunhofer D-line (589.2 nm) are f_{1} and f_{2}, then best correction occurs for the condition:

$$
f_{1} V_{1}+f_{2} V_{2}=0
$$

where V_{1} and V_{2} are the Abbe numbers of the materials of the first and second lenses, respectively. Since Abbe numbers are positive, one of the focal lengths must be negative.

Note that if f_{S} is the focal length of the system then:

$$
\begin{aligned}
& \frac{1}{f_{1}}=\frac{V_{1}}{V_{1}-V_{2}} \frac{1}{f_{S}} \\
& \frac{1}{f_{2}}=\frac{V_{2}}{V_{2}-V_{1}} \frac{1}{f_{S}}
\end{aligned}
$$

Example 7

Figure shows an achromatic lens consisting of a thin bi-convex crown glass (BK7) and a thin bi-concave flint glass (SF5).
We want an optimum* doublet such that the system focal length to be $\mathrm{f}_{\mathrm{s}}=30 \mathrm{~cm}$.
The radius of curvatures of BK7 are selected as $\left|R_{1}\right|=\left|R_{2}\right|$.

(a) Find the Abbe number of each lens.
(b) Find the focal length of each lens.
(c) Find the radii of curvatures R_{1}, R_{2} and R_{3}.
(d) Find the focal length of the doublet for each wavelength (color) given below.

	n	n	n
Glass	486 nm	589 nm	656 nm
BK7	1.5224	1.5167	1.5143
SF5	1.6875	1.6726	1.6667

* Here, optimum means that focal length of the doublet for blue and red rays are the same.

Other Types of Aberrations

- Distortion is a deviation from rectilinear projection.

Distortion Free Image

Distorted Image

- Coma refers to aberration due to imperfection in the lens
- Astigmatism is one where rays that propagate in two perpendicular planes have different focal lengths.

Appendix: Derivation of parabolic surface

Bu kısımda herhangi bir eğrisel yüzeye paralel gelen 1şmlarm yansiddktan sonra asal ekseni kestiği noktanın (odaknoktası) bulunuşu gösterilecektir. Basit ve daha anlaşilır olması açısindan problem yüzey yerine bir eğri için çözülecektir.
Şekil 4'de denklemi $y=g(x)$ ile belli olan bir eğriye y eksenine paralel bir I 1 şmı geldiğni düşunelim. $\mathrm{Bu}_{1 \leqslant ̧ 1} \mathrm{~m}$ P noktasmda yansıdiktan sonra y eksenini F noktasmda kessin. Bu durumda 1 şmın y eksenini kestiği nokta, f, odak uzaklığıdır

Denklem (5) fodak uzaklığmın ile x, y ve y ' değiskenlerine bağl olarak hesaplanmasma imkan sağlar. Gerçekte bu denklem dogrusal olmayan bir diferansiyel denklemdir ve şöyle de yazılabilir:
$\left(\frac{d y}{d x}\right)^{2}+\frac{2(f-y)}{x}\left(\frac{d y}{d x}\right)=1$
Bu denklemin çözümü, $y=f(x)$, sonsuz uzaklıktan bir yüzeye paralel gelen $1 s ̧ 1 m l a r 1$ tek bir sabit noktada, f, toplayan yüzeyin denklemini verecektir. $u=y / x$ dönüşümü yapildiktan sonra denklemin çözümü:

Exercises

1. Does the image formed by a plane mirror suffer from any aberration?
2. What are spherical and chromatic of aberrations?
3. Explain how can the spherical and chromatic aberrations be reduced?
4. The magnitudes of the radii of curvature are 30 cm and 40 cm for the two faces of a biconcave lens. The glass has index of refraction 1.54 for violet light and 1.50 for red light. For a very distant object, locate and describe
(a) the image formed by violet light, and
(b) the image formed by red light.
5. Consider you have two thin lenses in contact to form a doublet. The system is illuminated by a mono-chromatic light at 589.2 nm . Given: $\mathrm{f} 1=+500 \mathrm{~mm}, \mathrm{~V} 1=$ 59.3 and $\mathrm{V} 2=30.0$.
(a) Find the optimum focal length of the second lens that minimizes the chromatic aberration.
(b) What is the focal length of this achromat at 589.2 nm ?
6. A light ray traveling parallel to the principal axis at a distance y from the principal axis strike a concave mirror having a radius of curvature R as shown. The ray is focused on point S such that $|O S|=f$.
(a) Find an expression for f in terms of y and R.
(b) What is the value of f when $R \gg y$?

Conclude the result. Hint. $\tan 2 \theta=2 \tan \theta /(1-\tan 2 \theta)$
7. (Serway 6th Edition ref[1])

Two rays traveling parallel to the principal axis strike a large plano-convex lens having a refractive index of 1.6.
If the convex face is spherical, a ray near the edge does not pass through the focal point
 (spherical aberration occurs). Assume this face has a radius of curvature of 20.0 cm and the two rays are at distances $\mathrm{h} 1=0.5 \mathrm{~cm}$ and $\mathrm{h} 2=12.0 \mathrm{~cm}$ from the principal axis. Find the difference Δx in the positions where each crosses the principal axis.
8. Two lenses made of kinds of glass having different refractive indices n_{1} and n_{2} are cemented together to form what is called an optical doublet. Optical doublets are often used to correct chromatic aberrations in optical devices. The first lens of a doublet has one flat side and one concave side of radius of curvature R. The second lens has two convex sides of radius of curvature R. Show that the doublet can be modeled as a single thin lens with a focal length described by[1]:

$$
f=\frac{R}{2 n_{1}-n_{2}-1}
$$

References

1. Serway, Beichner, Physics for Scientists and Engineers 6th ed, Brooks/Cole
2. W.J.Simith, Modern Optical Engineering, 3rd Ed., McGraw-Hill
3. Karaali S., Geometrik Optik , Ege Universitesi Basımevi
4. Ertaş I.., Denel Fizik Dersleri Cilt II, Ege Üniversitesi Basımevi
5. http://en.wikipedia.org/wiki/Optical_aberration
6. http://en.wikipedia.org/wiki/Spherical_aberration
7. http://en.wikipedia.org/wiki/Chromatic_aberration
8. http://en.wikipedia.org/wiki/Dispersion_(optics)
