OPAC 101 Introduction to Optics

Lenses

Optical \& Acustical Engineering
Gaziantep University

Department of
http://www1.gantep.edu.tr/~bingul/opac101

Dec 2020

Lensmaker's Formula (Thin lens)

$$
\frac{1}{f}=\frac{1}{p}+\frac{1}{q}
$$

if $t->0$ (lens size >> center thickness)

$$
\frac{1}{f}=\left(\frac{n-n_{m}}{n_{m}}\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

if $n_{\mathrm{m}}=1$ and $t->0$

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

Lensmaker's Formula (Thick lens)

$$
\frac{1}{f}=\frac{1}{p}+\frac{1}{q}
$$

General equation:

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) t}{n R_{1} R_{2}}\right]
$$

This is the effective focal length of the lens.

Thin Lens Equivalent Pictures

Various Lens Shapes

Biconvex		Planoconvex
	- (meniscus)	
Biconcave		Planoconcave

CONVEX CONCAVE

$R_{1}>0$	$R_{1}<0$
$R_{2}<0$	$R_{2}>0$
Bi-convex	Bi-concavc
$R_{1}=\infty$	$R_{1}-\infty$
$R_{2}<0$	$R_{2}>0$
Planar convex	Planar concave
$R_{1}>0$	$R_{1}>0$
$R_{2}>0$	$R_{2}>0$
	Meniscus Meniscus convex

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

$$
\mathrm{R}_{1} \mathrm{R}_{\mathrm{R}} \quad \begin{aligned}
& R_{1}>0 \text { and } R_{2}<0 \\
& \\
& \\
& \frac{1}{R_{1}}-\frac{1}{R_{2}}>0 \Rightarrow f>0
\end{aligned}
$$

Converging lens

$$
\mathrm{R}_{1} \mathrm{R}_{2} \quad \begin{aligned}
& R_{1}=\infty \text { and } R_{2}<0 \\
& \frac{1}{R_{1}}-\frac{1}{R_{2}}>0=>f>0
\end{aligned}
$$

Converging lens

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

$$
\begin{aligned}
& R_{1}<0 \text { and } R_{2}>0 \\
& \frac{1}{R_{1}}-\frac{1}{R_{2}}<0 \quad=>f<0
\end{aligned}
$$

Diverging lens

$$
\begin{aligned}
& R_{1}=\infty \text { and } R_{2}>0 \\
& \frac{1}{R_{1}}-\frac{1}{R_{2}}<0 \quad \Rightarrow \quad f<0
\end{aligned}
$$

Power of a Lens

Power (P) of a lens is defined by:

$$
P=\frac{1}{f}
$$

If focal length is measured in meter (m) then power is measured in Diopter (D)

$$
1 \mathrm{D}=1 \mathrm{~m}^{-1}
$$

This relationship is usually used by opticians.

f-number

Aperture (D) is a hole or an opening through which light travels.

The ratio f / D is called the f-number (lens speed) of a lens:

$$
f-\text { number }=\frac{f}{D}
$$

$\mathrm{f} / 4$ means f -number $=\mathrm{f} / \mathrm{D}=4$

Production of lenses

Show video ...

Image Formation by lens

Focal length:

$$
\frac{1}{f}=\frac{1}{p}+\frac{1}{q}
$$

Magnification:

$$
m=\frac{h_{i}}{h_{o}}=-\frac{q}{p}
$$

f	+ for converging lens
	- for diverging lens

Newton's equation:

$$
f^{2}=x_{o} x_{i}
$$

$\mathrm{x}_{0}=$ distace between focus and object.
$\mathrm{x}_{\mathrm{i}}=$ distance between focus and image.

Lens Combinations

- Consider we have two thin lenses with common optical axis. They are seperated by distance d and their focal lengths are f_{1} and f_{2} respectively.
- The main idea of lens system is image of an object obtained from first lens can be considered as an object for the second one.
- These kind of lens system is used in many optical devises such as: Telescopes and microscopes.

Back Focal and Front Focal Lengths

$$
m=m_{1} m_{2}
$$

$$
\text { B.F. } L=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

$$
F . F . L=\frac{f_{1}\left(d-f_{2}\right)}{d-\left(f_{2}+f_{1}\right)}
$$

EFL and BFL of an Optical System

EFL: Effective Focal Length is defined as

$$
f=-\frac{y_{i}}{u_{f}}
$$

BFL: Back Focal Length (BFL) is the distance from the last element to focus.

EFL and BFL of an Optical System

For an optical system containing two lenses

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \quad \text { B.F. } L=\frac{f_{2}\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

EFL and BFL of an Optical System

Figure below shows a telephoto lens system.
Calculate effective focal length and back focal length of the system if $f_{1}=20 \mathrm{~mm}, \mathrm{f}_{2}=-10 \mathrm{~mm}$ and $\mathrm{d}=14 \mathrm{~mm}$.

Lens Combinations

For n lens in contact:

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\cdots+\frac{1}{f_{n}} \\
& m=m_{1} m_{2} \cdots m_{n}
\end{aligned}
$$

A Camera Lens System

Example

Find the BFL and FFL of the lens system.

Example

Find the position and magnification of the final image produced by the given lens system.

Exercise

What component powers are necessary in a two-element lens system if one requires a $20-\mathrm{cm}$ focal length, a $10-\mathrm{cm}$ back focus, and a $5-\mathrm{cm}$ air space?

Beam Expander

Beam expansion or reduction is a common application requirement in most labs using lasers.

Keplerian Beam Expander (Telescope)

$$
\mathrm{m}=\mathrm{f}_{2} / \mathrm{f}_{1}=\mathrm{R}_{2} / \mathrm{R}_{1}=\mathrm{h}_{2} / \mathrm{h}_{1}
$$

Galilean Beam Expander (Telescope)

Exercise

You have two set of spherical eye-glasses whose powers are ranging from $\pm 0.25 \mathrm{D}$ to $\pm 3.00 \mathrm{D}$, namely

$$
\begin{aligned}
& P 1=\{-3.00,-2.75,-2.50, \ldots,-0.50,-0.25\} \\
& P 2=\{+3.00,+2.75,+.2 .50, \ldots,+0.50,+0.25\}
\end{aligned}
$$

Design a $5 x$ beam expander by using the lenses form these two sets.

