Application of Zemax Programming Language

Open Source Photonics

osphotonics.wordpress.com

Sponsored by

www.612photonics.com

Application of Zemax Programming Language Open Source Photonics

Table of Contents

Preface
Chapter 1 Zemax optical design software and Zemax Programming Language (ZPL)
1.1 Introduction to Zemax
1.2 Introduction to Zemax Programming Language ZPL
Chapter 2 Basics of Zemax Programming Language
2.1 Basic Structure
2.2 Variable and Constant
2.3 Function
2.4 Keywords
2.5 Flow Control
2.6 Sub-Function
2.7 1/0 and File Operation
Chapter 3 ZPL commands in details
3.1 Numerical Operation Functions
3.2 String Functions
3.3 Setting and Reading Zemax System Properties
3.4 Setting and Reading Lens Properties
3.5 Merit Function
3.6 Solve
3.7 Optimization
3.8 Ray Tracing
3.9 System Analysis
3.10 Non-Sequential Components

3.11 Multi-Configuration
osphotonics.wordpress.com 2

Application of Zemax Programming Language Open Source Photonics

3.12 Display
3.13 File Operation
3.14 ZBF File
Chapter 4 ZPL Application Examples
4.1 Sequential Optical Systems
4.1-1 Basic ray-tracing parameters
4.1-2 Light spot near focal plan
4.1-3 Geometrical beam and Gaussian beam comparison
4.1-4 Comparison of transmission property of different glass materials
4.1-5 Reading refractive index and transmission data of catalog glass
4.2 Non-Sequential Optical Systems
4.2-1 Light Pipe
4.2-2 Cosine Fourth Rule
4.2-3 Importance sampling
4.2-4 Interference fringes
4.2-5 Efficiency of the integrating sphere

4.2-6 Generating 3D light distribution with Detector Volume

osphotonics.wordpress.com 3

Application of Zemax Programming Language Open Source Photonics

Preface

The rapid development of modern computer technologies greatly changed the method and efficiency of
optical design. Work previously can only be done by a few experts now becomes much easier with the
aid of powerful optical design software such as Zemax. Any optical engineer, after trained, can now
easily design complex optical systems.

Zemax is popular because it is powerful, flexible, easy to learn, and cost-effective. Besides many
standard functions, Zemax also provides a tool called Zemax Programming Language (ZPL). This tool
allows us to extend the standard function of Zemax to meet our special needs. In fact, this tool is so
helpful that more and more Zemax users are trying hard to learn it and use it in their design works.

On the other hand, the learning process is usually not smooth, sometimes even quite frustrating. Since
we have gone through this process ourselves, we fully understand that we need help during our learning.
This is why we published a series of blogs on osphotonics.wordpress.com to share what we learned in

the past and hope they can help readers to learn ZPL quicker and easier. Some of the examples and
plots are based on older versions of Zemax, and some are based on more recent versions. However, the
main idea should remain the same. We encourage readers to refer to official Zemax User’s Manual for
the updates on ZPL.

osphotonics.wordpress.com 4

Application of Zemax Programming Language Open Source Photonics

Chapter 1

Zemax optical design software and Zemax Programming Language

1.1 Introduction to Zemax

Zemax is a commonly used optical design program for Microsoft Windows sold by American company
Radiant Zemax. It is used for the design and analysis of both imaging and illumination systems.

The main method used in Zemax is Ray Tracing, including Sequential Ray Tracing and Non-Sequential
Ray Tracing.

In Sequential Ray Tracing mode, Zemax defines an optical system as being made up of various surfaces,
and assumes that a light ray starts from the object surface, goes through the various surfaces of the
system in a pre-defined order, and finally reaches the image surface. Figure 1.1-1 shows an example of
Sequential Ray Tracing:

Surface Surface

1 2
Object
J Ra}f 1 Rav 1 |mage
' ' =
- \ J r
Ray 2 Ray 2

Fig. 1.1-1 Sequential ray-tracing.

osphotonics.wordpress.com 5

http://en.wikipedia.org/wiki/Optical_design
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Lighting

Application of Zemax Programming Language Open Source Photonics

As we can see, Ray 1 starts from the Object surface, goes through Surface 1 and Surface 2, and then
arrives at Image surface. Ray 2 goes along a different path, but the sequence of the surfaces it goes
through is exactly the same as that for Ray 1. In another word, the order each ray goes through the
optical surfaces is exactly the same, therefore, the behavior of each ray in the optical system is
predictable. By tracing the light path of each ray, Zemax knows the performance of the whole system.

However, in some other cases, different ray goes through the surfaces of the same optical system in
different orders. Therefore, non-sequential ray tracing method is needed.

In Non-Sequential Ray Tracing mode, Zemax defines the optical system as being made up of many
components (or solid modules), and each component is called an object. For example, a lens is an
object with not only two surfaces, but also an edge that might scatter or absorb light, and even fattened
outer faces for mounting. Other common objects supported in Non-Sequential Ray Tracing include
prisms, light pipes, lens arrays, light sources, detectors, TIR reflectors, partial transmissive and partial
reflective compnents, etc.

Figure 1.1-2 shows an example of non-sequential ray tracing:

Surface
2
i Surface Detector

Surface ,
1 o L g
g Ray 1
Source _ - d o
——#»— | Ray2 ~
e
Ray 3 p

Surface

4

Fig. 1.1-2 Non-Sequential ray-tracing

osphotonics.wordpress.com 6

Application of Zemax Programming Language Open Source Photonics

As can be seen, Ray 1 starts from the Source, passes through Surface 1, Surface 3, and then reaches the
Detector. Ray 2 starts also from the Source, however, it is reflected by surface 1, and never reaches the
Detector. Ray 3 starts from the Source, passes through Surface 1, is reflected by Surface 4, passes
through Surface 3, and finally reaches the Detector. This shows that in a non-sequential system,
different rays may follow different paths, interact with some or all of the surfaces in different orders.
Therefore, Zemax needs to trace each ray in the optical system to know its optical path, and get the
overall performance of the system.

In order to set up a functional sequential optical system in Zemax, the following data needs to be
provided:

* number of surfaces

* parameters of each surface
* system aperture

* working wavelength

* field of view

In order to set up a functional non-sequential optical system in Zemakx, at least the following data needs
to be provided:

* parameters of each object (including the source and the detector) and their relative position in
the space

* working wavelength

Besides the full sequential ray tracing mode and the full non-sequential ray tracing mode, Zemax also
provides a mixed ray tracing mode (NSC with port). In this mode, part of the optical system is treated as
sequential system, and part of the optical system is treated as non-sequential system.

The user interface of Zemax is made up of different types of windows, each of which serves a different
purpose. When running Zemax, a default window called Main window will be seen, as shown in figure
1.1-3.

osphotonics.wordpress.com 7

Application of Zemax Programming Language Open Source Photonics

ZEMAX-EE
Fle Ediors System Analyss Tooks Feports Macros Extersions Window Help
Hew| Ope | Siv | Sae Upd | Gen| Fan | 'wiaw Lay | L3d | Ry | Oped| Fet| Spt| M | Fps | Ene Opt | Ham| Tol | Gla | Len Syz | Po | Chkc

BaEl: Type Comment Radius Thickness Glass Fami-Dianener Conic Far Ofunased) Par 1iumused) A

[Frandard Infinisy| InganiTy| 0. 000000 9. 090090
570/ Frandard Intinity) @, GO0000 0, Q00900) ©. 000090
IHA} Srandard Infinity| =| 0. 000000| 0. 000080

EFFL: 194010 WRNCE B0000 EMNPD: 0 TOTR: @

Fig. 1.1-3 Zemax Main Window

Besides the Main window, Zemax also provides other types of windows:

Editor windows: used to define and edit surface data and other data.
Graphic windows: used to display graphic data, such as layouts, ray fans, and MTF plots.

Text windows: used to display text data such as prescription data, aberration coefficients, and numerical
data.

Dialogs: used to change options or data, or report error messages.

In the main window shown in figure 1.1-3, we already saw the lens data editor (LDE). Figure 1.1-4~
figure 1.1-11 show some editors and windows commonly used in Zemax.

osphotonics.wordpress.com 8

Application of Zemax Programming Language Open Source Photonics

Merit Function Editor: 0.000000E+000

Edit Tools “iew Help
oper § |

Type ‘ | | ‘ ‘ | | | Target Weight Value
| BLIE|

[& Concrib |
<l

Fig. 1.1-4 Merit Function Editor

Multi-Configuration Editor
Edit Solves Tools Wiew Help

Aetiwve @ 171 Config 1*

1: MoFE|]

Tolerance Data Editor
Edit Tools View Help
Oper # [
PECE|

-] Hominal I - [-1

0 i)

Comment |

Fig. 1.1-6 Tolerance Data Editor

Extra Data Editor

Edt Solves Tooks Wew Help

Surf:Type Mot Used 1 Mot Used 2 Mot Used 3 Hot Used 4
0BT Standard|

Mot Used & Hot Used & Mot Used 7
sT0 Standard|

I

Standard|

am

Fig. 1.1-7 Extra Data Editor

Mon-Sequential Component Editor

Edit Solves Errors Detectors Database Toolks Wiew Help
Dbject Type |

Coument [
1| Hull UbjE:t.l |

Ref Object ‘ Inside 0f ‘ X Position ‘ Y Position |

z Position [
0. oooooo] |

o[] of] 0. 0oooo0] | 0.ooo000] |

Tile Abeur X |

0.000000] |
3

Fig. 1.1-8 Non-Sequential Component Editor

osphotonics.wordpress.com

Application of Zemax Programming Language Open Source Photonics

#1 1: Layout
pdate Settings Print ‘Window

LAYAUT

OOUBELE CAU=EE
TOTAL AXTAL LEMCTH: 122,38242 MH

Fig. 1.1-9 Graphic Window

osphotonics.wordpress.com 10

Application of Zemax Programming Language Open Source Photonics

#) 4: Prescription Data - | E|[z|
Update Setkings Print Sindow
Title: DOUBLE GATISS

LENZ NOTES:

Notes. ..

GCENERLL LENS DATA:

Sur faces : 1z

Stop : &

Svstem Aperture : Entratice Pupil Diameter = 33.33
Glass Catalogs : BCHOTT

Bay Aiming : Off

Apodization : Mmiform, factor = O_00000E4+000
Tenperature (G} : Z_0C0000E+001

Pressure (ATH) : 1. 00000E+000

Adjust Index Data To Environment : Off

Effaectiwve Focal Length - 99 _ L0062 (in air at system temperature and pressure]
Effective Focal Length - 29 _E0058 (in image space)
Back Focal Length : 5E7.459737

3|)

Fig. 1.1-10 Text Window

2D Layout Diagram Settings

First Surface: 1 - W avelength: | 2 -

Laszt Surface: 12 - Field: all -

Mumber of Fays: | Scale Factor: |EI.EIEIEIEIEIEI

| Delete Vignetted Y Shetch: W
[Suppress Frame pper Pupil: W
[Fletch Rays Lawer Pupil IW
[Marginal and Chief Only Color Baysz By: m
ITI Cancel | Save | Load | R eset | Help |

Fig. 1.1-11 Dialog Box

osphotonics.wordpress.com 11

Application of Zemax Programming Language Open Source Photonics

In general, Zemax has very powerful optical design capabilities. It can accurately calculate light path,
refraction and reflection, phase and optical path difference, optical image and distortion, polarization,
transmission and absorption in thin film coating, scattering, etc. However, despite its powerfulness,
Zemax cannot help you to master basic principles in optical design. A good optical designer should only
use Zemax as an effective tool to help his or her design, but cannot simply rely on this tool. When
needed, the optical designer needs to know how to extend this tool to make it more capable.

For better knowledge of how to use Zemax, please refer to Zemax User’s Manual.

For better knowledge of general optical design, please refer to the following book list:

Bass, Handbook of Optics, McGraw-Hill

Born & Wolf, Principles of Optics, Pergamon Press

Fischer & Tadic-Galeb, Optical System Design, McGraw-Hill

Geary, Joseph M., Introduction to Lens Design: With Practical Zemax Examples, Willmann-Bell
Hecht, Optics, Addison Wesley

Kingslake, Rudolph, Lens Design Fundamentals, Academic Press

Laikin, Milton, Lens Design, Third Edition, Marcel Dekker

Mahajan, Virendra, Aberration Theory Made Simple, SPIE Optical Engineering Press
O' Shea, Donald, Elements of Modern Optical Design, John Wiley and Sons

Rutten and van Venrooij, Telescope Optics, Willmann-Bell

Shannon, Robert, The Art and Science of Optical Design, Cambridge University Press
Smith, Gregory Hallock, Practical Computer-Aided Lens Design, Willmann-Bell, Inc.
Smith, Warren, Modern Optical Engineering, McGraw-Hill

Smith, Warren, Modern Lens Design, McGraw-Hill

Welford, Aberrations of Optical Systems, Adam Hilger Ltd.

Welford, Useful Optics, University of Chicago Press

osphotonics.wordpress.com 12

Application of Zemax Programming Language Open Source Photonics

1.2 Introduction to Zemax Programming Language ZPL

As mentioned in last section, although Zemax is already very powerful in optical design, there are times
the designer needs to further extend its functions to fit some special design needs. Therefore, Zemax
provided a tool called Zemax Programming Language (ZPL) to allow users to write their own procedures.
ZPL is a macro language specifically designed for use with Zemax. It’s similar to the BASIC programming
language, except not all BASIC constructs and keywords are supported, and capabilities and functions
unique to ray tracing have been added.

ZPL macros can be created and edited with any text editor (such as Notepad editor in Windows). The
file may have any name but must end in the .ZPL extension. File name may include letter (upper case
and lower case letters are treated as the same) and numbers, but may not include some special
characterssuchas ~()=+-*/1><A& | #. The file must be placed in the ZPL Folder, which by default
is “\Macros”. The default folder can be changed through Zemax main menu: File > Preferences 2>
Directories, as shown in figure 1.2-1:

#1 Preferences E| E|

Colors 112 | Colors 1324 | Buttons 1416 | Buttons 17-32 | Buttons 3348 |
Address Directaries l Graphics] Mizc.] E ditors] Printing] Statuz Bar]

Zemar Path: |E:'\F‘ru:ugram Files"ZE M

Output Path: |I::"'.F'r|:|gram Filez'rE i
Lenz Path: |I::"'.F'r|:|gram Filez""E Mas\SAMPLES

ZFL Path: Dby M acios

[Indo Path: |E:'\F'ru:ugram Filez"E MaxN MO0
Stock Path: |E:'\F'ru:ugram Filezh?EMas\STOCKCAT
Objects Path: |E:"xF'r|:|gram Files'"ZE M= 0bjects

Sources Path: |E:'\F'r|:|gram Filez\EM&=\0BJECTS
[3lazz Path: |E:'\F'rn:|gram FileshrEMAXMGLASSCAT

Coating FPath: |E:'\F‘ru:ugram Files"ZEMAXNCOATINGS

Reset |

k. | Cancel Apply | Help |

Fig. 1.2-1 ZPL path setting.

osphotonics.wordpress.com 13

Application of Zemax Programming Language Open Source Photonics

Each time after modifying the path, the macro list should be refreshed through Zemax main menu:
Macros = Refresh Macro List, so the ZPL files in the updated folder can be seen properly.

Subfolders under the updated path can also be added, and ZPL files can be put into the subfolders
without modifying the path settings. This is convenient and can help managing files. For example,
under the path “D:\My Macros” shown in figure 1.2-1, two subfolders Project 1 and Project 2 can be
created, and different ZPL files can be put in each of the subfolders, and shown in figure 1.2-2:

#) ZEMAX -EE
File Editars

Extensions Window Help

EditfRun ZPL Macros,,, F9
Refresh Macro Lisk

Mew| Ope| Sav | Saz

1! Lens Data Editor PROJECT 1

Edit Solves Wiew Help MACRO3
MACRO4
Surf: Type Comment Badius MACROS ==
oB.J Standard Infinity MACROS oooag
aTO Standard Infinity odoooon
IMA Standard Infinity -

Fig. 1.2-2 Managing ZPL files through subfolders

Rememeber to refresh the macro list under the main menu each time after creating new subfolders and
writing new ZPL programs.

ZPL programs can be run from the main menu, select Macros = Edit/ Run ZPL Macros. When doing so,
ZPL control dialog box will pop up in the main window, as shown in figure 1.2-3:

osphotonics.wordpress.com 14

Application of Zemax Programming Language Open Source Photonics

ZEMAX Programming Language

RN S PR OJECT 24MACROS.ZPL
v Close After Execution [Quiet Mode [Check Obsolete Syntax
Statuz: Idle

Execute | Cancel Edit Wigw

Fig. 1.2-3 ZPL control dialog box

The following options are in the ZPL control dialog box:

Active File: A drop-down list of macros available. The target macro can be chosen here.

Close After Execution: If checked, the ZPL control dialog box will automatically close after the macro
execution.

Quiet Mode: If checked, the default output text window will not be shown. This is useful for graphics
macros that do not generate useful text.

Check Obsolete Syntax: If checked, Zemax will test the macro for use of obsolete syntax.

Status: During execution of the macro, Zemax will use this area to print a status message stating the line
number of the macro being executed. The status message is updated every quarter second.

Terminate: The terminate button will stop execution of the macro currently running.

Cancel: The cancel button terminates the current macro if one is running. If no macro is running, cancel
closes the ZPL control dialog box.

Edit: The edit button invokes the Windows NOTEPAD editor. The editor can be used to modify or
rename the macro.

View: The view button will display the contents of the macro file in a text window which can be scrolled
or printed. No editing is allowed in the view window.

To run a macro, simply select the macro from the "Active File" list, and then click on Execute

Besides using ZPL control dialog box to run ZPL programs, one can also directly click the macro name in
the “Macros” menu under the main menu to run it, as shown in figure 1.2-4:

osphotonics.wordpress.com 15

Application of Zemax Programming Language Open Source Photonics

) ZEMAX-EE

File Editors System Analysis Tools Reparts WExtensions Window Help

Upd| Upa| Gen|'w: Edit/Run ZPL Macros,.. F9
Refresh Macro List

PROIECT 1

il Non-Sequential Component Editor

Edit Solves Errors Detectors Database Todl®

MACROS

MACROG

Object Type Commert Bef Object of ¥ Position

l| Null Object ol MACROG ol 0000000

Fig. 1.2-4 Run ZPL program directly

Zemax also provides some shortcut buttons to allow convenient access to frequently used macros. By

assigning macros to some buttons, one can directly run the macro by simply pressing the shortcut

button. Macros can be assigned from the main menu, select File > Preferences, and in the Preferences

dialog, a macro can be connected to a button, as shown in figure 1.2-5:

osphotonics.wordpress.com

16

Application of Zemax Programming Language Open Source Photonics

#1 Preferences

Addrezs] Directones] Graphicz] Misc.] Editors] Frinting] Status Bar]
Colors112 | Colors1324 | Butors146 Butons17-32 | Butons 3348 |

17 |Mtf: Modulation TF ﬂ 25 |Len: Lens Search ﬂ
18 |Fps: FFT PSF | 25 |0 None |
13 |Er‘u:: Diff Encircled Enerngy j 27 |S_|,|SZ Spstern Data j
20: |fo: Maone j 28 |F're: Prescriphion Data j
21: |EI|::t: O ptimization ﬂ 23 |Ehk: Swstern Check ﬂ
22 |Ham: Harnmer Optimization ﬂ a0: |Elff: More ﬂ
23 |T|:|I: Talerancing ﬂ 31 |Elff: More ﬂ
<% |Gla Glass Catalog B 1140 PROJECT 18MachnT ZPL [

Feszet

k. | Cancel Apply Help

Fig. 1.2-5 Shortcut button setting

osphotonics.wordpress.com 17

Application of Zemax Programming Language Open Source Photonics

Chapter 2

Basics of Zemax Programming Language

2.1 Basic Structure

First, let’s take a look at a basic ZPL program, as shown in example 2.1-1:

Example 2.1-1: basic structure of ZPL program

1! ex20101

2 ! This program introduces the basic structure of ZPL

3

4 ! The following 3 line= show 3 different ways of Comment
£ REM This iz the first way

& ! This is the second way

78 Thi= i= the third way

8

9 ! The following 3 lines show Some AsSsSignments

1l0x = 3

11 y = SINE(x) # built in function

12 newStringd = "This 3 & string!"™ # string assignment
13

14 ' The following line shows the PRINT Eevword

18 PRINT "H pi g | M

1€

From the example we can see that ZPL program is a text file made up of a series of command lines. The
content of the command line can be comments, assignments or keywords. We added a line mark in
front of each line, but it’s just for the convenience of explanation. The line marks don’t exist in actual
ZPL programs.

There are 3 different ways to add comments in ZPL, as shown in lines 5, 6 and 7, respectively. The first
way starts with key word REM, indicating this line is a comment line. The second way starts with symbol
“1”, also indicates this line is a comment line. The third way is to add symbol “#” at any place in a line,
indicating that any content following this symbol in the same line is comment, and won’t be executed.
Comments make programs easier to understand and modify, and have no effect on performance.

osphotonics.wordpress.com 18

Application of Zemax Programming Language Open Source Photonics

The basic assignment format in ZPL is:

variable = (expression)

In the assignment, variable should start with a letter, and can be any combination of letters and
numbers including “_", but cannot include special characterssuchas~ ()=+-*/1><A& | #” and
space. Upper case letters and lower case letters are treated as the same. The total length of the
variable should not exceed 28 characters. Some examples of valid variables are x, y1, variable_z,
myVariable, etc. However, variable shouldn’t use ZPL reserved keywords and function names. As a
good practice, the name of a variable should be simple and easy to understand, especially when many
people work on the same program.

There are 3 types of variables in ZPL: numeric variables, array variables and string variables. We will
discuss those different types of variables in details in next blog.

In an assignment, the (expression) may consist of a constant value, other variable name containing some
preassigned value, or a complex mathematical expression involving functions, constants, and variables.
When an assighment is executed, the expression on the right side of the equal sign is evaluated, and the
result is assigned to the variable designated on the left.

The keywords in ZPL are used to fulfill some special tasks. For example, the PRINT keyword in the
program is used to display result on the screen.

osphotonics.wordpress.com 19

Application of Zemax Programming Language Open Source Photonics

2.2 Variable and Constant

In ZPL, constant values are some pre-determined values or strings, such as 0, -5, 3.1416, “Here is my
string”, etc. Variables are divided into numeric variables, array variables, and string variables. They are
used to store different types of data.

1. Numeric variables

Numeric variables are used to store numeric values whose exact value may not be known when the
program is written, but is defined when the program is run. If not specifically mentioned, the default
memory space allocated to a numeric variable by Zemax is 64 bit, and the values are stored in the
format of double precision numbers. ZPL also supports 32 bit (including sign bit) integer variables.
Unlike many other high level programming languages, numeric variables don’t need to be declared in
ZPL.

2. Calculation of numeric variables

Basic arithmetic operations can be done directly on variables in ZPL, including addition (+), subtraction (-
), multiplication (*), and division (/). More complicated operations such as power and square root can
be done through different numeric functions defined internally by ZPL. We will discuss those functions
later.

3. Array variables

Array variables are used to store single- or multi-dimensioned arrays numeric values. Unlike simple
numeric variables we discussed before, array variables must be declared prior to their use. The
declaration syntax is:

DECLARE name, type, num_dimensions, dimension1 [, dimension 2 [, dimension 3 [, dimension 4] etc...]]

The name may be any legal variable name as described in the previous section. The type must be either
DOUBLE or INTEGER, indicating the type of array variable. The integer value num_dimensions defines
the number of dimensions of the array (not the size), and must be between 1 and 4, inclusive. The
integers dimensionl, dimension2, etc., define the size of the array in that dimension. Note that array
variables start at index 1, and thus an array of size 10 has valid indices from 1 to 10. An exception is that
ZPL defined 4 one-dimension array variables VEC1 ~ VEC4 with indices from 0.

osphotonics.wordpress.com 20

Application of Zemax Programming Language Open Source Photonics

Array variables may be defined anywhere inside the program, not necessarily at the beginning.

To release the memory associated with an array variable, use the RELEASE keyword. The syntax is

RELEASE name

The RELEASE keyword is optional, as the memory associated with the declared variable is automatically
released when the program terminates. However the RELEASE keyword is useful for conserving memory
if large arrays are only needed during a portion of the program execution.

Array variables are assigned values using the following syntax:

name (index1, index2, ...) = value

It can assign numeric value to the array variable name(index1, index2, ...). After assignment, the values
stored in the array may be retrieved with the following syntax:

newValue = name (index1, index2, ...)

Now let’s see an example of array variables.

osphotonics.wordpress.com 21

Application of Zemax Programming Language

Example 2.2-1 Assignment and operation on numeric variables:

Open Source Photonics

! exZ0Z0ol

1
4

2

4 DECLARE A, INTEGER, 2, 3, 3
5 A(1,1) =

6 A(1,2) =
7 A(1,3) =
g A(2,1) =
9 A(2,2) =
10 A(2,3) =
11 A(3,1) =
12 A(3,2) =
13 A(3,3) =

L R B R N

=
o
E

1

Af1,1) + &¢1,2) + A(1,3)
Afl,1) + &{2,1) + A(3,1)
Bil,1) + A(2,2) + A(3,3)

[
- W
]
nom

19 PRINT
20 PRINT "x = ”’ X L VoS ", v, " - = h" =

22 RELEASE A

! This example shows declaration and operations of Array Variables

In this example, we defined a 3 x 3 integer magic matrix. This matrix is a 2 dimensional array with the

same summation of each row, each column, and two diagonals.

Save this program as EX20201.ZPL. Follow the method introduced in blog 1.2, click the program

EX20201 in Macros of Main Menu, and the following result can be obtained:

#) 1: Text Viewer

Update Setkings Print window
Executing D: WMy MacrosCH2ZWEXZ0zO01l. ZPL.

x®x = 15,0000 < = 1lE. 0000 = = 15.0000

Fig. 2.2-1 Execution result of program ex20201.ZPL

osphotonics.wordpress.com

22

Application of Zemax Programming Language Open Source Photonics

For user’s convenience, ZPL defined 4 one-dimensional array (vector) VEC1, VEC2, VEC3 and VEC4 to
store double precision floating numbers. The default length of each array is 1000. Those 4 arrays can be
directly used without additional definition. It needs to be pointed out that the index of those 4 arrays
can start from 0, such as VEC1(0), so the default length 1000 can have 1001 array elements, i.e. VEC1(0)
~ VEC1(1000). If the length of the array needs to be modified, one can use keyword SETVECSIZE to do it.
We will discuss more on this later on.

4. Numeric logical operators

Logical operators are used to construct complex commands which ultimately evaluate to one or zero.
Most logical operations take the form (left_expression) (operator) (right_expression), similar to
mathematical expressions such as 1 + 2. The exception is the not operator "!" which takes only a single
argument, of the form !(right_expression).

The following table lists numeric logical operators supported by ZPL:

Table 2.2-1 Numeric logical operators supported by ZPL

Logical Description

& And, returns 1 only if both expressions are non-zero.

| Or, returns 1 if at least one expression is non-zero.

A Xor, returns 1 if only one expression is non-zero.

! Not, returns 0 if (right_expression) is non-zero, else returns 1.

Equality, returns 1 if expressions are equal.

> Greater than, returns 1 if left_expression is greater than
right_expression.

< Less than, returns 1 if left_expression is less than right_expression.

>= Greater than or equal to, returns 1 if left_expression is greater than
or equal to right_expression.

<= Less than or equal to, returns 1 if left_expression is less than or equal
to right_expression.

I= Inequality, returns 1 if expressions are unequal.

osphotonics.wordpress.com 23

Application of Zemax Programming Language Open Source Photonics

5. String variables and operations

ZPL supports string variables and basic string operations. Like numerical variables, string variables don’t
need to be declared. A string variable ends with symbol “S”. The way to assign a value to a string
variable is:

myStringS = “Here is my string”

awn

where myString$ is a string variable, and the content between “” (exclusive) is the string constant.

ZPL also defines many string related function. We will discuss them later.

Different strings (including string constants and string variables) can be joined by operator +, as shown
below:

totals = "ASis "+ AS + "and BS is " + BS

The content of a string can be displayed in a text window by using keyword PRINT. Note that PRINT only
supports single string variable, and thus neither string operation nor string function can be allowed with

o n

PRINT. If one wants to display different strings in the same line, he can use “,” to do it, as shown below:

PRINT AS, BS, CS

«n

Also, if the last character in a PRINT command is “,”, no new line will be started after the finish of
current command, and the next print line starts to display at the current cursor location.

PRINT is also often used with another keyword REWIND. The function of REWIND is to erase the last line
of message displayed by PRINT command, and change the cursor to the end of last line. In this way new
messages can be displayed by overwriting old ones. This is often used when counters are needed.

6. String logical operators

String logical operators are very similar to the numeric logical operators. The major difference is that the
expressions being compared are strings rather than numbers. The supported string logical operators are
defined in the following table.

osphotonics.wordpress.com 24

Application of Zemax Programming Language Open Source Photonics

Table 2.2-2 String logical operators supported by ZPL

Logical Description
S== Equality, returns 1 if left_string and right_string are identical.
S> Greater than, returns 1 if left_string is greater than right_string.
S< Less than, returns 1 if left_string is less than right_string.
S>= Greater than or equal to, returns 1 if left_string is greater than or
identical to right_string.
S<= Less than or equal to, returns 1 if left_string is less than or identical to
right_string.
Sl= Inequality, returns 1 if left_string and right_string are not identical.

osphotonics.wordpress.com

25

Application of Zemax Programming Language

2.3 Function

Open Source Photonics

A lot of numerical functions are defined in ZPL, and they can be used to calculate various numeric values.
Those functions may require no arguments, one argument, or multiple arguments. In all cases, a pair of
round brackets () are needed to follow the function name. If arguments are needed, they should be put

in the brackets. All functions return a single value.

Example 2.3-1 shows the usage of sinusoidal function SINE(x)

' ex20301
!' This program shows how to use ZPL functions

pi = 3.1416 # define a constant

x 45 # angle in degree

vy = SINE(x*pi/180)

WoWm - & R WD M

[
o

PRINT "SINE(",x," degree v,y

Many string functions are also defined in ZPL, and their return values are strings. We will discuss them

in details later.

osphotonics.wordpress.com

26

Application of Zemax Programming Language Open Source Photonics

2.4 Keywords

Keywords is an important part of ZPL. They are used to control instruction flow, output result, and do
other important tasks such as modifying lens parameters and ray tracings. The words DECLARE,
RELEASE and PRINT we’ve seen are some common keywords of ZPL.

The general syntax for a keyword is

KEYWORD argumentl, argument2, argument3...

Some keywords have no arguments, others have many. Arguments may be either numeric expressions
or string constants or string variables. Some keywords accept a mixture of numeric and string arguments.

We will discuss ZPL keywords in details later.

As a reference, here are the list of keywords used in ZPL:

APMN, APMX, APTP, APXD, APYD DELETEFILE
ATYP, AVAL DELETEMCO
BEEP DELETEMFO
CALLMACRO DELETEOBIJECT
CALLSETDBL DELETETOL
CALLSETSTR EDVA

COAT END

CLOSE EXPORTBMP
CLOSEWINDOW EXPORTCAD
COLOR EXPORTIPG
COMMAND EXPORTWMF
COMMENT FINDFILE

CONI FLDX, FLDY, FWGT, FVDX, FVDY, FVCX, FVCY,
CONVERTFILEFORMAT FVAN

COPYFILE FOR, NEXT
CURV FORMAT
DECLARE FTYP
DEFAULTMERIT GCRS

DELETE GDATE
DELETECONFIG GETEXTRADATA

osphotonics.wordpress.com 27

Application of Zemax Programming Language Open Source Photonics

GETGLASSDATA
GETLSF

GETMTF

GETPSF
GETSYSTEMDATA
GETTEXTFILE
GETVARDATA
GETZERNIKE
GLAS
GLASSTEMPLATE
GLENSNAME
GLOBALTOLOCAL
GOSUB, SUB, RETURN, and END
GOTO

GRAPHICS

GTEXT
GTEXTCENT
GTITLE

HAMMER
IF-THEN-ELSE-ENDIF
IMA
IMAGECOMBINE
IMAGEEXTRACT
IMASHOW
IMASUM
IMPORTEXTRADATA
INPUT

INSERT
INSERTCONFIG
INSERTMCO
INSERTMFO
INSERTOBIJECT
INSERTTOL
LABEL

LINE
LOADARCHIVE
LOADCATALOG
LOADDETECTOR
LOADLENS
LOADMERIT
LOADTOLERANCE
LOCALTOGLOBAL
LOCKWINDOW
MAKEFACETLIST

MAKEFOLDER
MODIFYSETTINGS
NEXT

NSLT

NSTR
NUMFIELD
NUMWAVE
OPEN
OPENANALYSISWINDOW
OPTIMIZE
OPTRETURN
OUTPUT

PARM
PARAXIAL
PAUSE

PIXEL

PLOT

PLOT2D
POLDEFINE
POLTRACE

POP

PRINT
PRINTFILE
PRINTWINDOW
PWAV
QUICKFOCUS
RADI
RANDOMIZE
RAYTRACE
RAYTRACEX
READ
READNEXT
READSKIP
READSTRING
RELEASE
RELOADOBIJECTS
REM, |, #
REMOVEVARIABLES
RENAMEFILE
RETURN
REWIND
SAVEARCHIVE
SAVEDETECTOR
SAVELENS

osphotonics.wordpress.com 28

Application of Zemax Programming Language

SAVEMERIT
SAVETOLERANCE
SAVEWINDOW
SCATTER

SDIA

SETAIM
SETAIMDATA
SETAPODIZATION
SETCONFIG
SETDETECTOR
SETMCOPERAND
SETNSCPARAMETER
SETNSCPOSITION
SETNSCPROPERTY
SETOPERAND
SETSTDD
SETSURFACEPROPERTY, SURP
SETSYSTEMPROPERTY, SYSP
SETTEXTSIZE
SETTITLE

SETTOL

SETUNITS

SETVAR

SETVECSIZE

SETVIG
SHOWBITMAP
SHOWEFILE
SOLVEBEFORESTOP
SOLVERETURN
SOLVETYPE

STOPSURF
SUB
SURFTYPE
TELECENTRIC
TESTPLATEFIT
THIC

TIMER
TOLERANCE

UNLOCKWINDOW

UPDATE

VEC1, VEC2, VEC3, VEC4

WAVL, WWGT
XDIFFIA
ZBF2MAT
ZBFCLR
ZBFMULT
ZBFPROPERTIES
ZBFREAD
ZBFRESAMPLE
ZBFSHOW
ZBFSUM
ZBFTILT
ZBFWRITE
ZRD2MAT
ZRDAPPEND
ZRDFILTER
ZRDPLAYBACK
ZRDSAVERAYS
ZRDSUM

osphotonics.wordpress.com

Open Source Photonics

29

Application of Zemax Programming Language Open Source Photonics

2.5 Flow Control

Flow control is a key part of computer programing. ZPL provided the following keywords for flow
control:

FOR-NEXT
IF-THEN-ELSE-ENDIF
LABEL

GOTO

PAUSE
GOSUB-SUB-RETURN-END

We will discuss FOR-NEXT, IF-THEN-ELSE-ENDIF, LABEL, GOTO and PAUSE in this section. Keywords
GOSUB-SUB-RETURN-END will be discussed in the next section.

FOR-NEXT are always used together to define a program block that needs to be run a specific number of
times. The syntax is:

FOR variable, start_value, stop_value, increment
(commands)
NEXT

The keyword FOR marks the beginning of a group of commands to be executed a multiple number of
times. FOR requires a variable to be specified which acts as a counter (it need not be an integer), a
starting value for the counter, a stop value, and an increment. The increment value should always be an
integer. The NEXT keyword marks the end of the group of commands. FOR-NEXT loops may be nested.
The number of FOR and NEXT commands must be the same.

The “,” after the first variable in the FOR command line can also be replace with “=", i.e.

FOR variable = start_value, stop_value, increment

Many programmers prefer this format for its readability.

Also, in the NEXT command line, other characters can be added after the keyword NEXT without
impacting the execution of the program. Many programmers like to add corresponding loop variable
after NEXT to make program more readable, especially when multiple loops are nested. But we need to

osphotonics.wordpress.com 30

Application of Zemax Programming Language Open Source Photonics

know that any character after NEXT doesn’t have actual impact on the program. Its only purpose is to
improve readability of the program.

Upon reaching a FOR command, the expressions for the start, stop, and increment values are evaluated
and saved. The stop and increment values are not evaluated again, even if the expressions defining the
values consist of variables whose values change within the program block. Only the values valid at the
beginning of the FOR loop are used.

If the start value and stop value are the same, the loop executes exactly once. If the start value is less
than the stop value, then the loop continues until the counter variable is greater than the stop value. If
the start value is greater than stop value, then the loop continues until the counter variable is less than
the stop value.

Example 2.5-1 shows an application of FOR-NEXT loop.

' ex20501
! This program shows how to use FOR/NEXT key words

start_valus = 0O
stop value = 5
inerement = 1

PRINT

FOR i, start walue, stop walue, increment
start_wvalus = § # try vo modify loop constant
stop walue = &0 # try to modify loop constant
increment = 2 # try to modify loop constant
FRINT "i i

14 NEXT

WO sl oA W N

=
Ww M=o

(=
wn

Please note that even we tried to assign new values to variables start_value, stop_value and increment
within the loop, however, the result was not impacted, as shown in figure 2.5-1.

osphotonics.wordpress.com 31

Application of Zemax Programming Language Open Source Photonics

#1) 1: Text Viewer E|@|E|

pdate Setkings Print Window
Executing D: WMy MacroshCHEZWEXEOEOL. Z2PL.

i =
i =
i =
i =
i =
i =

. Qooo
. Qooo
. Qooo
. Qooo
.gooo
. Qooo

o WM O

Fig. 2.5-1 Result of program ex20501.ZPL

IF-THEN-ELSE-ENDIF provides conditional macro execution and branching. The syntax is:

IF (expression)
(commands)
ELSE
(commands)
ENDIF
or

IF (expression) THEN (command)

The value of expression is considered false if it is zero, otherwise it is considered true. When the
expression is true, commands after IF will be executed, otherwise commands after ELSE will be executed.
Please note that parenthesis () can be omitted here. In general, IF and ENDIF are always used together,
and ELSE is optional. Keywords IF-ENDIF may be nested.

IF (expression) THEN (command) is a simplified format of conditional expression, and is usually used
when only a single command needs to be executed. In the simplified format, ENDIF is not needed, and
ELSE is not supported.

Example 2.5-2 shows an example of using IF-THEN-ELSE-ENDIF conditional expression. A random
number generation function RAND(x) is used in the program to generate a random floating number
between 0 and x.

osphotonics.wordpress.com 32

Application of Zemax Programming Language Open Source Photonics

! ex2050zZ
!' This program shows how to use IF-ELSE-ENDIF key words

thertal = 45
theta = RAND (90)

PRINT
IF (theta > thetal)
PRINT ctheta, " is larger than 4!
EL3E
IF (theta == thetal) THEN PRINT "the
IF (theta < thetal] THEN PRINT theta,
ENDIF

LTI S T S I

v =
WM O

In some special cases, the program needs to jump to another place to continue to execute, so keyword
GOTO is needed. Keyword GOTO is always used with another keyword LABEL. The syntax is:

LABEL label_number

GOTO label-number
or

LABEL text _label

GOTO text_label

Keyword LABEL can be followed with any number or string (here we can think of numbers as a special
string), and can be put at the front of any line in the program. When GOTO command is executed, the
program will jump to corresponding LABEL line, and continue to execute the commands after that.

Example 2.5-3 shows an application of GOTO command:

osphotonics.wordpress.com

33

Application of Zemax Programming Language

Open Source Photonics

1 ! ex20503
2 ! This program shows how to use GOTO/LABEL kevy words
2
4 PRINT
& LABEL 01.23
& x = RAND(10)
7 PRINT "x P 4
g8 IF x »= 5 THEN GOTO 01.23
92 PRINT %, ™ i=s less than 5"
10 PRINT
11
12 LABEL anotherLabel
12 v = RAND(10)
14 PRINT "v = ", w
18 IF v <= 5 THEN GOTO anotherLabel
16 PRINT v, ™ i= larger than 57
The result is:

#) 1: Text Viewer

Update Setkings Print Window
Executing D: WMy Macros CHEZWEXZO0EOZ. ZPL.

& 0403
& 4838
= Z_19Z9
21329 is less than &

MM oMM

3.9E11
4 ETESQ
1.2114
= 9.13za
21926 is larger than &

W v g
]

Fig. 2.5-2 Result of program ex20503.ZPL

It needs to be pointed out that in structured programming, GOTO command is in general not
recommended, because it can often cause unclearness of the program structure and is hard to debug.
Unfortunately, ZPL doesn’t support conditional loop command such as WHILE in C language, so we can
only use GOTO-LABEL command to do the job, and extra attention needs to be paid.

osphotonics.wordpress.com

34

Application of Zemax Programming Language Open Source Photonics

ZPL also provides another keyword PAUSE for program control. It is used to pause the execution of the

current program, display information in the message window, and wait for user response. When the
user hits the OK button, the current program will continue to run from where it pauses. The syntax is:

PAUSE
or

PAUSE message

Where message can be any number or string.

Example 2.5-4 shows an application of PAUSE command:

! exz0504
! This program shows hov to use PAUIE key word

PRINT
FOR i, 1, 5, 1
PRINT "3 R §
IF 1 == 5
FRINT "
PAUSE "lle
ENDIF
NEXT
PRINT
PRINT "AFFF

WO s oA s W N

b e
PR T T =

When the program runs to i == 5, a message window will be displayed, and the program will be paused,

as shown in figure 2.5-3:

osphotonics.wordpress.com

35

Application of Zemax Programming Language Open Source Photonics

#10 1: Text Viewer

pdate Settings Print Window
Executing D:\My Macros \ CHEWEXEOEO4 . ZPL.

_oooo
. Qoo
. Qoo
_oooo
= L_0oono
Maiting for approval ...

[T R TR TR T
nmon
W WM

Message

L]
- | } We just finished i = 5, please responde. ..

Fig. 2.5-3 Result of program ex20504.ZPL at pause.

After hit OK button, the program continue to execute, and the final result is shown below:

$) 1: Text Viewer

Update Settings Print Window
Executing D: WMy Macros'CH2WEXZ0E504 . Z2PL.

. aooo
. aooo
Qoo
. aoaa
= 5.0000
WMaiting for approval ...

HOHe H R R
no
A S

APPROVED !

Fig. 2.5-4 Final result of program ex20504.ZPL

osphotonics.wordpress.com 36

Application of Zemax Programming Language Open Source Photonics

2.6 Sub-Function

Sub-function or sub-program can be defined in a ZPL program, and can be called in the main program or
other sub-programs. The way to define sub-program is:

SUB sub_name
(commands)
RETURN

The sub-program starts with keyword SUB, followed by the name of the sub-program sub_name. The
commands part is the main body of the sub-program, which is put together to finish a special task. The
sub-program must end with RETURN, but other RETURN commands can also be used at other places
within the main body of the sub-program. Sometimes for the sake of readability, the name of the sub-
program can be added after RETURN in the same line, however, please remember that the name has no
actual impact on the program so it can be anything, so special attention needs to be paid in order not to
make any confusion.

As a rule, ZPL requires that if sub-program is used in a program, at least one END command is needed to
mark the end of the main program, and the main program needs to be put in front of the sub-program.

It's important to remember that the variables in ZPL are global variable. Therefore, if a variable is
modified in a sub-program, the value of the same variable at other places in the whole ZPL program will
also be modified.

Example 2.6-1 shows an application of sub-program:

osphotonics.wordpress.com 37

Application of Zemax Programming Language Open Source Photonics

1 ! ex20601

2 ! This program shows how to use GOSUB-SUB-RETURN-END keywords
3

4 ! Thi= i= the main progrsm

S5x =3

6y = 2

7 GOSUE findMax

8 PRINT

9 PRINT ™ x = ", %, ", v= ", ¢, ", and ", max, " is larger than ", min
10 END # This is the end of the main program

1l

12 ' This is the sub-routine

12 SUE findMax

14 x = RAND(10)

15 v = RALND(10)

16 IF % > ¥

17 max = ¥

18 min = y

13 RETURN # This is another RETUERN
20 ENDIF

Zl max = y

22 min = X

23 RETURN # This is the end of the sub-routine

Please notice that we first assigned values to variables x and y in the main program, but in the sub-
program, new x and y values generated by random function replaced the old values, and thus in the final
result the displayed x and y values are their new values. Also, we used two RETURN commands in the
sub-program. If x>y, the sub-program will end at the first RETURN, and go back to the main program
without running the rest of the sub-program.

Figure 2.6-1 shows the result of the program:

#) 1: Text Viewer : EI[‘&_TI

Update Setkings Print Window
Executing D: WMy Macros'CH2WEXZ0601. ZPL.

¥ = 69206, v = 1_E1z0, and &.920&6 i=s larger than 1.51Z0

Fig. 2.6-1 Result of program ex20601.ZPL

osphotonics.wordpress.com 38

Application of Zemax Programming Language Open Source Photonics

2.7 1/0 and File Operation

ZPL provides a keyword INPUT to allow user type in numerical or string information when a program is
running. The syntax of INPUT is:

INPUT "Prompt String", variable
INPUT variable
INPUT "Prompt String", string_variable$

INPUT string_variableS

Example 2.7-1 shows an application of keyword INPUT:

1 ! ex20701

2 ' This program shows how to use INPUT keyword
3

4 INFUT "Enter wvalue for =:", X

5 PRINT "x T, %

&

7 INPUT "Enter string:", string$

g PRINT "string i=s '", string$,

When the program runs to each INPUT command, a dialog window will pop up, showing corresponding
messages and waiting for the input, as shown in figure 2.7-1:

ZPL Macro Input

Enter walue for ||

oK |

Fig. 2.7-1 The first pop-up window of running program ex20701.ZPL.

osphotonics.wordpress.com 39

Application of Zemax Programming Language Open Source Photonics

When the user type in the numerical or string information and press OK button to confirm, the value
typed in will be stored in the corresponding variable, and the program continues to run.

We know in previous sections that ZPL can output numerical or string information to the message
window using keyword PRINT. In fact, PRINT not only can output messages to the display, but can also
output messages to files. This is controlled by keyword OUTPUT. The syntax of OUTPUT is:

OUTPUT SCREEN
OUTPUT filename$

OUTPUT filename5, APPEND

If OUTPUT is followed by SCREEN, then the following PRINT command will display the result on the
screen. If OUTPUT is followed by filename$, then the following PRINT command will output the result
into the corresponding file. Further, if APPEND is used with OUTPUT, then the result will be added at the
end of the corresponding file without overwriting the existing content of the file.

Example 2.7-2 shows an application of keyword OUTPUT:

! exz0702

' This program shows how to use OUTPUT keyword
filename§ = "D:

OUTPUT filensmed
PRINT "]

WO o~ ot o WM

OUTPUT 3CREEN

10 PRINT

11 PRINT "Y¥

1z

13 OUTPUT filensame$, APPEND
14 PRINT "¥You will 2 this
15

16 OUTPUT "D:% My

17 PRINT "You wi

In this example, we assume the folder “D:\My Macros\ch2\output_files\” already exists, otherwise
ZEMAX will report error message. Figure 2.7-2 is the result of the program seen on the screen and in
different files:

osphotonics.wordpress.com 40

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer g@@

Update Settings Print Window
Executing D:\Hy Macros\CHZ\EXZ070Z.ZPL.

You will see this line on the screen, buc not in the file.

B testi.txt - Notepad B test2.txt - Notepad
File Edit Format View Help File Edit Format Yiew Help
[ouwill see this line in the file, but not on the screen. You will see this line in a different file.

Youwill see this line in the file as a new line.

Fig. 2.7-2 Result of program ex20702.ZPL

Keyword PRINT is often used with another keyword FORMAT. FORMAT can be used to control the
output numerical precision format of the message window or the file. The syntaxis:

FORMAT m.n
FORMAT m.n EXP
FORMAT m [INT]

FORMAT "C_format_string" LIT

The integers m and n are separated by a decimal point. The values for m and n used must be explicit, i.e.
values stored as variables cannot be used. The value m refers to the total number of characters to be
printed, even though some of them may be blank. The value n refers to the number of places to display
after the decimal point. The optional keyword EXP after the m.n expression indicates exponential
notation should be used. The optional keyword INT indicates the value should be first converted to an
integer and printed in integer format using the number of places specified by m. The optional keyword
LIT (for literal) indicates the value should be printed according to the “C” language format specifier. The
C format specification can be found in any programming reference for the C language.

osphotonics.wordpress.com 41

Application of Zemax Programming Language Open Source Photonics

Example 2.7-3 shows some applications of keyword FORMAT.

! ex20703
! This prograwm shows how to use keyword FORMAT

¥ = 3.14159
PRINT
FORMAT 6.4

PRINT "FORMAT 6.4 prints AL 4

lo FORMAT 12.2 EXP
11 PRINT "FORMAT 12.2 EXP prints :", X

13 FORMAT 6 INT
14 PRINT "FORMAT & INT prints e ox

16 FORMAT "
17 PRINT "F

Figure 2.7-3 shows the result of the program seen in the pop-up window:

) 1: Text Viewer : E|r5__(|
pdate Settings Print Window

Executing D: WMy MacrosWCHZWEXZ0703. ZPL.

FORMAT &.4 prints t3.1416
FOPMAT 12Z.Z EXP prints : Z.14E+4000
FORMAT & INT prints : 3
FORMAT %#$#06i LIT prints:000003

Fig. 2.7-3 Result of program ex20703.ZPL

Besides the way to type in information from the keyboard, ZPL also supports importing numeric or string
information from a text file, with the following keywords and functions:

osphotonics.wordpress.com 42

Application of Zemax Programming Language Open Source Photonics

OPEN, READ, READNEXT, READSTRING, CLOSE, EOFF()

Keyword OPEN is used to open a text file. The syntax is:
OPEN “filename”
or

OPEN filenameS

After the file is open, the needed information can be read with keywords READ, READNEXT or
READSTRING.

READ is used to read a whole line and store numeric values into variables followed by READ. The syntax
is:

READ X, y, z, ...

When using READ, the number of variables listed in the read command should match the number of
columns in the text file, otherwise ZEMAX will assign 0 to extra variables. Numeric data in the file should
be delimited by spaces.

Besides READ, keyword READNEXT can also be used to read data. The main difference is READ will read
the entire data line from the opened file, up to the newline character, while READNEXT reads only
enough characters to fill the number of arguments. The syntax of READNEXT is:

READNEXT x,y,z, ...

If string information is needed to read, keyword READSTRING can be used. The syntax is:

READSTRING textStringS
READSTRING reads the whole line of string information and stores it to the string variable textStrings.

Sometimes we need to know if the end of a file has been reached. ZPL provides a function EOFF() to do
so. If the end of the file is reached, the function returns values 1, otherwise it returns value 0. Function
EOFF() can only be used after keywords READ, READNEXT or READSTRING.

osphotonics.wordpress.com 43

Application of Zemax Programming Language Open Source Photonics

And remember, keyword CLOSE is needed to close the file after finish reading.

Now let’s assume we have a text file “data.txt” with the following content:

I data.txt - Notepad E@

File Edit Format Wiew Help

11 12 153
21 22 23
31 32 33
41 42 43

51 532 53
61 62 63
71 71 73
81 82 83
81 02 93
This is the last line of the file |

In example 2.7-4 , we will used the keywords introduced above to read information from the file
“data.txt”, as shown below:

osphotonics.wordpress.com 44

Application of Zemax Programming Language

Open Source Photonics

1z

! ex20704

! This program shows how to use READ series keyword

filename§ = "D:\ My MHacros'

OPEN filename$

CHZ2Vdata files\data.tx

FPRINT
READ =1, =2, %3
PRINT %1 = rr' }:1: — ', xzr r = " x3
READ w1, w2
PRINT "vi = ", vi1, yz = ", y2
READ z1, =22, 23, z4
PRINT "z1 = ", z1, g2 =", g&, " g3 = ", z3,
READNEXT al, aZ
PRINT "al = ", al, az = ", a2
READNEXT a3, a4, a5, ab
PRINT "a3 = ", a3, " ad4 = ", a4, " a5 = ", al§,
LAEEL 1
IF (EOFF() '= 1)
READSTRING text$
PRINT "textcd i= '™, wext§, '
GOTO 1
ENDIF
CLOSE

The result is shown in figure2.7-4:

$) 1: Text Viewer

Update Settings

Executing D:

Window

Prink
WMy Macros)\CHz"WEXzZO0704 . ZPL.

®x1l = 1.1000 xZ = 1l.EZ000 x3 = 1_3000

vl = 2.1000 & = 2_z000

zl = 2.1000 =Z = 3.Z000 =3 = 3_3000 =4
al = 4. 1000 azZ = 4_Z00OO0

azd = 4_3000 a4 = 5_1000 afk = E_E000 ag
text: is '6.1 [[2c

texty is '7.1 7.2 A

texti is '2.1 Bz 5.3

texti: is '5.1 9.z 9.3

texti is 'This is the last line of the
text? ¥ is 'This is the last line of the

0. oooa

L. 3000

file.'
file.'

Fig. 2.7-4 Result of program ex20704.ZPL

osphotonics.wordpress.com

45

Application of Zemax Programming Language Open Source Photonics

(Note in some earlier versions of ZEMAX the last line of the text file was displayed twice on the screen.

This might be a bug of ZEMZX and may be fixed in a later version.)

We will discuss more about Input/Output and file operation in later sections.

osphotonics.wordpress.com 46

Application of Zemax Programming Language Open Source Photonics

Chapter 3

ZPL commands in details

ZPL provides a lot of keywords and functions, especially those related to optical design. In Zemax User’s
Manual, each of the keywords and functions were discussed in alphabetic order. However, sometimes
we feel it will be more convenient to classify those keywords and functions and put them in a more
organized context. So in this chapter we will introduce many ZPL keywords and functions from a
different angle of view, and hope this effort can help Zemax users to be more efficient in learning ZPL.
Even to an experienced ZPL programmer, this can be used as a handy tool to find the right keyword or
function to use when programming.

From now on, we will no longer separate keywords and functions. We call them as commands in
general. The main difference is that keyword doesn’t have return values, and function usually has one
or more return values.

As Zemax is rapidly being updated every year, some of the older commands we discuss here may be
obsolete in later versions of Zemax. In such cases, please refer to Zemax User’s Manual for the details.

osphotonics.wordpress.com 47

Application of Zemax Programming Language

3.1 Numerical Operation Functions

Open Source Photonics

In last chapter, we already discussed some numerical operation functions in ZPL. In fact, ZPL provides a
lot of functions to perform numerical operations. Table 3.1-1 shows numerical operation functions

supported by ZPL:

Table 3.1-1 ZPL Numerical Operation Functions

Function Argument Return Value

ABSO(x) Numeric expression The absolute value of the expression.

ACOS(X) Numeric expression Arc cosine in radians.

ASIN(X) Numeric expression Arc sine in radians.

ATAN(X) Numeric expression Arc tangent in radians.

COSI(x) Numeric expression in radians | Cosine of the expression.

EXPE(X) Numeric expression e to the power of the expression.

EXPT(x) Numeric expression 10 to the power of the expression.

GAUS(x) Standard deviation Returns a random value with a Gaussian
distribution, zero mean, and the specified standard
deviation.

INTE(X) Numeric expression Returns the largest integer not greater than the
argument.

LOGE(x) Positive numeric expression Log base e of the expression.

LOGT(x) Positive numeric expression Log base ten of the expression.

MAGN(X,y) x and y are any real numbers Computes the square root of x squared plus y
squared.

POWR(X,y) x and y are any numbers Computes the absolute value of x to the power of y.

RAND(x) Positive numeric expression Random floating point number uniformly
distributed between 0 and the expression.

SIGN(x) Numeric expression Returns -1 if the argument is less than zero, 0 if the
argument is zero, and +1 if the argument is
positive.

SINE(x) Numeric expression in radians | Sine of the expression.

SQRT(X) Positive numeric expression Square root of the expression.

TANG(X) Numeric expression in radians | Tangent of the expression.

osphotonics.wordpress.com 48

Application of Zemax Programming Language Open Source Photonics

3.2 String Functions

We have learned that ZPL provides many functions with string as arguments or return values. Table 3.2-
1 shows string functions supported by ZPL:

Table 3.2-1 ZPL String Functions

Function Description
$BUFFER() Returns the current string in the lens buffer. This function is used to extract
string data from various ZPL keywords and functions.
$SCALLSTR(i) Returns the string from the CALLMACRO string buffer at index i.
$COAT(i) Returns the coating name for the ith surface.
$COATINGPATH() Returns the path name for coating files.
$COMMENT(i) Returns the comment string for the ith surface.
$DATE() Returns the current date and time string.

$SEXTENSIONPATH() Returns the path name for Zemax extensions.

$FILENAME() Returns the current lens file name, without the path.

$FILEPATH() Returns the current lens file name, with the complete path.

$GETSTRING(AS, n) Returns the nth sub-string for the string A$ using spaces for delimiters. For
example, if A$ = “one two three”, then SGETSTRING(AS, 2) returns
“tWO”,

$GETSTRINGC(A$, n) Returns the nth sub-string for the string A$ using commas for delimiters.
For example, if A$ = “one,two,three”, then SGETSTRING(AS, 2) returns
“tWO”,

$GLASS(i) Returns the glass name of surface number i.

$GLASSCATALOG(i) Returns the name of the ith loaded glass catalog for the current lens. If i is

less than 1, then the names of all the loaded catalogs separated by spaces
are returned in a single string.

$GLASSPATH() Returns the path name for glass catalog files.

$LEFTSTRING(AS, n) Returns the left most n characters in the string A$. If A$ has fewer than n
characters, the remaining spaces will be padded with blanks. This allows
formatting of strings with a fixed length.

$LENSNAME() Returns the lens title defined in the General System dialog box.

osphotonics.wordpress.com 49

Application of Zemax Programming Language

Open Source Photonics

$MACROPATH()

Returns the path name for macro files.

$NOTE(line#)

Returns the notes information defined in the General System dialog box.
Because the notes may be very long, $NOTE returns the characters from
the notes in groups called lines. A line ends when a newline (carriage
return) character is found, or when the total number of consecutive
characters on the line reaches 100, whichever comes first. The line#
indicates which line in the notes is to be returned.

$NOTE will return a null (empty) string if there are no defined characters in
the notes for the specified line.

$OBJECTPATH() Returns the path name for NSC object files.

$PATHNAME() Returns the path name only for the current lens file. This is useful for
determining the folder where the lens file is stored.

$PROGRAMPATH() Returns the path name for program files.

$QUOTE() Returns the double quote character (*).

$RIGHTSTRING(AS, n)

Returns the right most n characters in the string A$. If A$ has fewer than n
characters, the remaining spaces will be padded with blanks. This allows
formatting of strings with a fixed length.

SCOM(AS, BS)

If the two strings A$ and B$ are equal, SCOM returns 0. If A$ is less than
B$, then SCOM returns a value less than 0; otherwise, a value greater than
0.

SLEN(A$)

The number of characters in the string variable A$.

$STR(expression)

Returns a string formatted using the format defined by the FORMAT
keyword. The numeric expression may be any equation, including
combinations of constants, variables, and functions. See function
SVAL(AS$) to convert strings to numbers.

SVAL(AS)

String value. Returns a floating point value of the string A$.

$TAB()

Returns the tab character (\t).

$TEMPFILENAME()

Returns the name of a temporary file, with complete path, suitable for
temporary storage of text or binary data. See keyword GETTEXTFILE.

$TOLCOMMENT (operand) | Returns the comment for the specified tolerance operand.
$TOLOPERAND(operand) | Returns the operand name for the specified tolerance operand.
SUNITS() Returns either MM, CM, IN, or M, depending upon the current lens units.

osphotonics.wordpress.com 50

Application of Zemax Programming Language Open Source Photonics

3.3 Setting and Reading Zemax System Properties

Most ZEMAX users know that before you jump into your optical design using Zemax, you need to set
some basic system properties for Zemax, such as working wavelength, units, system aperture, etc. ZPL
provides a keyword SETSYSTEMPROPERTY (or its short format SYSP) to set various system properties.
The syntax is:

SETSYSTEMPROPERTY code, valuel, value2
or

SYSP code, valuel, value2

In this command, code is an integer which specifies what property is being modified, valuel and value2
are the new values for the specified property, and they may be either text in quotes, a string variable, or
a numeric expression. Most codes require only one argument valuel, while some other codes require
both valuel and value2. The details of each code is shown in table 3.3-1.

Table 3.3-1 SYSP code

Code Property

4 Adjust Index Data To Environment. Use 0 for off, 1 for on.

10 Aperture Type.

11 Aperture Value.

12 Apodization Type code. Use 0 for uniform, 1 for Gaussian, 2 for cosine cubed.

13 Apodization Factor.

14 Telecentric Object Space. Use 0 for off, 1 for on.

15 Iterate Solves When Updating. Use 0 for off, 1 for on.

16 Lens Title.

17 Lens Notes.

18 Afocal Image Space. Use 0 for off, 1 for on.

21 Global coordinate reference surface.

23 Glass catalog list. Use a string or string variable with the glass catalog name, such as
“SCHOTT”. To specify multiple catalogs use a single string or string variable containing
names separated by spaces, such as “SCHOTT HOYA OHARA”.

24 System Temperature in degrees Celsius.

25 System Pressure in atmospheres.

osphotonics.wordpress.com 51

Application of Zemax Programming Language Open Source Photonics

26 Reference OPD method. Use O for absolute, 1 for infinity, 2 for exit pupil, and 3 for
absolute 2.

30 Lens Units code. Use 0 for mm, 1 for cm, 2 for inches, or 3 for Meters. Changing lens
units does not scale or convert the lens data in any way, it only changes how the lens
prescription data is interpreted.

31 Source Units Prefix. Use 0 for Femto, 1 for Pico, 2 for Nano, 3 for Micro, 4 for Milli, 5
for None, 6 for Kilo, 7 for Mega, 8 for Giga, and 9 for Tera.

32 Source Units. Use 0 for Watts, 1 for Lumens, and 2 for Joules.

33 Analysis Units Prefix. Use 0 for Femto, 1 for Pico, 2 for Nano, 3 for Micro, 4 for Milli, 5
for None, 6 for Kilo, 7 for Mega, 8 for Giga, and 9 for Tera.

34 Analysis Units “per” Area. Use 0 for square mm, 1 for square cm, 2 for square inches, 3
for square Meters, and 4 for square feet.

35 MTF Units code. Use 0 for cycles per millimeter, or 1 for cycles per milliradian.

40 Coating File name.

41 Scatter Profile name.

42 ABg Data File name.

43 GRADIUM Profile name.

50 NSC Maximum Intersections Per Ray.

51 NSC Maximum Segments Per Ray.

52 NSC Maximum Nested/Touching Objects.

53 NSC Minimum Relative Ray Intensity.

54 NSC Minimum Absolute Ray Intensity.

55 NSC Glue Distance In Lens Units.

56 NSC Missed Ray Draw Distance In Lens Units.

57 NSC Retrace Source Rays Upon File Open. Use 0 for no, 1 for yes.

58 NSC Maximum Source File Rays In Memory.

59 Simple Ray Splitting. Use 0 for no, 1 for yes.

60 Polarization Jx.

61 Polarization Jy.

62 Polarization X-Phase.

63 Polarization Y-Phase.

64 Convert thin film phase to ray equivalent. Use 0 for no, 1 for yes.

65 Unpolarized. Use 0 for no, 1 for yes.

66 Method. Use 0 for X-axis, 1 for Y-axis, and 2 for Z-axis.

70 Ray Aiming. Use 0 for off, 1 for on, 2 for aberrated.

osphotonics.wordpress.com 52

Application of Zemax Programming Language Open Source Photonics

71,72,73 Ray aiming pupil shift x, y, and z.
74 Use Ray Aiming Cache. Use 0 for no, 1 for yes.
75 Robust Ray Aiming. Use 0 for no, 1 for yes.
76 Scale Pupil Shift Factors By Field. Use 0 for no, 1 for yes.

77,78 Ray aiming pupil compress X, y.

100 Field type code.
101 Number of fields.

102, 103 The field number is valuel, value? is the field X, y coordinate.
104 The field number is valuel, value? is the field weight.

105, 106 The field number is valuel, value? is the field vignetting decenter x, decenter y.

107, 108 The field number is valuel, value2 is the field vignetting compression x, compression y.
109 The field number is valuel, value? is the field vignetting angle.
110 The field normalization method, value 1 is O for radial and 1 for rectangular.
200 Primary wavelength number.
201 Number of wavelengths.
202 The wavelength number is valuel, value 2 is the wavelength in micrometers.
203 The wavelength number is valuel, value 2 is the wavelength weight.
901 The number of CPU’s to use in multi-threaded computations, such as optimization. If the

passed value is zero, the number of CPU’s will be set to the default value. When testing
this value using the function SYPR, this returns the total number of CPU’s available as
reported by the operating system.

Opposite to system property setting, if we want to read system parameters, we can use function SYPR()
provided by ZPL. Most system properties set by keyword SETSYSTEMPROPERTY can be obtained using
this function. The syntax of SYPR() is:

returnValue = SYPR(code)

where code is the same as defined for keyword SETSYSTEMPROPERTY in table 3.3-1, and returnValue is
a numeric or string value for the corresponding system data. If the result is a string, the content can be
read out with string function Sbuffer(). It needs to be pointed out that function SYPR() doesn’t support
two argument properties in SETSYSTEMPROPERTY. Some special functions are needed to read two
argument system properties, such as using WAVL(n) to get the value of nth wavelength, and using
WWGT(n) to get the weight of nth wavelength, etc.

osphotonics.wordpress.com 53

Application of Zemax Programming Language Open Source Photonics

Besides using SYPR to read system properties, we can also use keyword GETSYSTEMDATA to get most
system specific data. The syntax is:

GETSYSTEMDATA vector_expression

where vector_expression is the order of the 4 one-dimension array provided by ZPL (i.e. VEC1, VEC2,
VEC3, VEC4). For example, GETSYSTEMDATA 3 means to read system properties and store them in array
VEC3. The order of storage is shown in table 3.3-2:

Table 3.3-2 System Properties stored in array

Array Position System Property

0 The number of system data values in the vector

Aperture Value

Apodization Factor

Apodization Type (0:none, 1:gaussian, 2:tangent)

Adjust Index Data To Environment setting (1 if true, 0 if false)

Temperature in degrees ¢ (valid only if Use Env Data true)

o o1 B W N

Pressure in ATM (valid only if Use Env Data true)

7 Effective Focal Length

Image Space F/#

9 Obiject Space Numerical Aperture
10 Working F/#

11 Entrance Pupil Diameter

12 Entrance Pupil Position

13 Exit Pupil Diameter

14 Exit Pupil Position

15 Paraxial Image Height

16 Paraxial Magnification

17 Angular Magnification

osphotonics.wordpress.com 54

Application of Zemax Programming Language

Open Source Photonics

18 Total Track

19 Ray Aiming (0 for off, 1 for paraxial, and 2 for real)
20 X Pupil Shift

21 Y Pupil Shift

22 Z Pupil Shift

23 Stop Surface Number

24 Global Coordinate Reference Surface Number
25 Telecentric object space (0 for off, 1 for on)
26 The number of configurations

27 The number of multi-configuration operands
28 The number of merit function operands

29 The number of tolerance operands

30 Afocal image space (0 for off, 1 for on)

31 X Pupil Compress

32 Y Pupil Compress

You may have noticed that the same system information may be obtained by using different keywords
or function. For example, if we want to get Apodization Type of the system, we can either use function
SYPR(12), or use keyword GETSYSTEMDATA 3 to realize. Please notice that numeric values can be
directly obtained by functions, but if we use keywords, the numeric values of system information will be
stored in one of the predefined arrays in ZPL.

We will give some examples on setting and reading system properties in ZPL.

osphotonics.wordpress.com

55

Application of Zemax Programming Language Open Source Photonics

Example 3.3-1: setting and reading of working wavelength

! ex30301
! Thia program shows how to Set and Bead working wavelsngths

FRINT

SYSP 201, 3 # set total wavelength number as 3
totaliWave lengt hNurber = SYPR(201) # read cocal vavelength number

PRINT "Tortal wavelength number is: ", totalWavelengchNumber
totalWave lengthNurber = NWAV({) # read total wavelength number again
FRINT "Total wavelength number is confirmed as: ", totalWavelsngthNurmber

SYSP 202, 1, 0.40 § set che 13t wvavelength a3 0.40 micron
SYSP 202, 2, 0.55 # =et the Znd wavelength az 0.55 micron
SYSP 202, 3, 0.70 # =et the 3rd wavelesngth as 0.70 micron

3YSP 203, 1, 0.3 ¥ ser cthe lsc wavelength weight as 0.3
SYSP 203, 2, 0.4 ¥ ser the Znd wavelength weight as 0.4
SYSP 203, 3, 0.3 # =et the 3rd wavelength weight as 0.3
wavelengthl = WAVL (1) # read cthe isc wavelength
vavelengehs = WAVL (Z2) # read the Znd wavelength
wavelengthd = WAVL(3) # read the 3rd wavelength

wave lengthWeightl = WWGT (1) # read the 13t weight

wave lengehieight2 = WWGT(2) # read the Znd weighe
vave lengthiWeights = WEGT(3) # read the 3rd weight

FRINT

FRINT "Wavelength 1: ", wavelengchl, ™ micron, veighe: ", wavelengthWeightl
PRINT "Wavelength 2: ", wavelengch2, " micron, weilght: ", wavelengchWeigho2
FRINT "Wavelength 3: ™, wavelength3, " micron, weight: ", wavelengthWeightc3

SYSP 200, 2 # =et the Znd wavelength as the primary wavelength
primaryNumber = SYPR(200) # read che primary wavelength nurber

FRINT

FRINT "The primary wavelength number is: ", primaryNumber

primar yNurber = PWAV() # read the primary wavelength number again
PRINT "The primary wavelength nunmber iz confirmed as: ¥, primaryNumber
FWAY 3 # set the 3rd wvavelength a= the primary wavelength

primar yHumber = PHAV() # read the nev primary wavelength number
PRINT

FRINT "The new primary wavelength nuber is: ", primaryNumwber

osphotonics.wordpress.com

56

Application of Zemax Programming Language Open Source Photonics

In this example, first we use SYSP 201, 3 to set the total number of working wavelengths as 3 (line 6),
and read this property with different methods SYPR(201) and NWAV() (lines 7 and 10), then we use SYSP
202, 1, 0.40 and SYSP 203, 1, 0.3 to set the first wavelength and its weight, and similarly, we set the
second and third wavelength and weight (lines 13~19), and read these properties using WAVL() and
WWGT() (lines 21~27), and finally, we use two different methods SYSP 200, 2 and PWAV 3 to set system
primary wavelength number (lines 34, 43), and read it out using SYPR(200) and PWAV/() (lines 35, 44).
The result of this program is shown in figure 3.3-1:

$) 1: Text Viewer

Update Setkings Print Window
Executing D: WMy Macros'CH3WEXZIO301. ZPL.

Total wawvelength ramber is: 33,0000
Total wawvelength rumber is confirmed as: 30000

WMavelength 1: 0.4000 micron, weight: 0_.3000
Mavelength £: 0.5500 micron, weight: 04000
Mawvelength 3: 0.7000 micron, weight: 03000

The primary wavelength nuwber is: zZ.0000
The primary wavelength number is confirmed as: E_.0000

The new primary wawvelength number i=s: 30000

Fig. 3.3-1 Result of program ex30301.ZPL

osphotonics.wordpress.com 57

Application of Zemax Programming Language Open Source Photonics

Example 3.3-2: setting and reading of units

! ex30302
! This progratm shows how to Set and Read units

1

2

3

4 PRINT

5§ FORMAT 1.0
3

7 3YSP 30, 0 # set lens unit as mm

g8 lensUnitCode = SYPR(30) # get lens unit code
9

PRINT "Lens unit code is: ", lensUnitCode
10
11 lensUnicCode = UNITI(}) # get lens unit code with a different method
12 PRINT "Lens unit code is confirmed as: ", lensUnitCode
13
14 lensUnit§ = SUNITS() # get the actual lens unit in string formwat
15 PRINT "The actual lens unit is ", lensUnit$
16

17 3¥SP 31, 4 # set source unit prefix as Milli
18 S¥YSP 32, 0 # set source unit as Watts
19 sourcelnitPrefix = SYFR(31) # get the =ource unit prefix code

20 sourcellnit = 3YPR([3Z) # get the source unit code

21 PRINT

22 PRINT "Source unit ix code i=:; ", sourcelUnitPrefix, ", means Mil1i™
23 PRINT "Source unit ", sourcelnit, ", mweans Waccs"

z4

25 3YSP 33, 3 # set analysis unit prefix as Micro

26 IYSP 34, 0 # set analysis unit "per" area as Sguare mm

27 analysisUnitPrefix = SY¥PR(33) # get the analysis unit prefix code

28 analysisUnicPerirea = 3YPR(34) # get the analysis unitc "per"™ area code
29 PRINT

30 PRINT "The analvyvsis unit prefix code is: ", analysisUnictPrefix

31 PRINT ™ anal unitc ' per’ i ", analvaisUnitPerirea

32 PRINT "Actual analysis unit is scquare mm) ." # sSee line 18
33

34 S8YSP 35, 0 # set MTF unit

35 wtfUnit = SYPR(35) # get the MTF unit code

36 PRINT

37 PRINT "The HTF unit code is: ", mtfUnitc, ", which means cycles/mm"

In this example, we first set the lens unit, and read it out with different methods, then we set and read
the source unit and prefix, and then set and read analysis unit and prefix as well as analysis unit per area
part (analysis unit of source intensity part has been set in line 18), and finally, we set and read the unit
of modulation transfer function MTF. The result of program is shown in figure 3.3-2:

osphotonics.wordpress.com 58

Application of Zemax Programming Language

#) 1: Text Viewer

Open Source Photonics

Update Settings Print Window
Executing D: WMy Macros"CHIWEXIOI0Z . ZPL.

Lens wnit code is: 0O
Lens unit code is confirmed as: 0
The actual lens unit is MM

Source unit prefix code is: 4, means Milli
Bource unit code is=s: 0, means Watts

The analysis unit prefix code is: 3
The analysis wnit 'per' area code is: 0O

Actual analysis unit is (micro-Watts) S (square mm) .

The MTF unit code is: 0, which means cycles/mm

Fig. 3.3-2 Result of ex30302.ZPL

Example 3.3-3: setting and reading of system aperture

22

24

! ex30303

' This program shows how to J3et and Read aperture

PRINT

SYSP 10, 0 # set system aperture as Entrance Pupil Diameter
apertureType = SYPR(10) # get system aperture type code

PRINT "Svystem aperture type code iz: ", apertureType

apertureType = ATYFP() # get system aperture type code again
PRINT "3ystem aperture type code 15 confirmed as: ", apertureType
PRINT "1 means Entrance Pupil Diameter.”

3Y3P 11, 5 # set system aperture value az 5 lens units
apertureValue = SYPR(1l1l) # get system aperture value

PRINT

PRINT "3ystem aperture valus 1s: ", apertureValus

apercureValue = AVAL() # get system aperture value

PRINT "3Svstem aperture value 1z confirmed as: ", apercureValue
GETSYSTEMDATA 1 # get systewm information and store them in VECL
apertureValue = VEC1(1l) # get system aperture value

PRINT "System aperture valus iz again confirmed as: ", spearcureValue

osphotonics.wordpress.com

59

Application of Zemax Programming Language

Open Source Photonics

In this example, we set the type and value of the system aperture, and read them out with three
different methods. Please note that system aperture is different from the aperture of a particular lens
surface. We will further discuss the latter one in next section. The result of the program is shown in

figure 3.3-3.

¥ 1: Text Viewer

lpdate Setkings Print Window
Executing D: WMy Macros'CH3IWEXKIO303 . ZPL.

Bystem aperture
Svrstem aperture
Thi=s code means

Bystem aperture
Svrstem aperture
System aperture

type code is: 0O.0000
type code i=s confirmed as: O.0000
Entrance Pupil Diameter.

wvalue is: E5_0000
value is confirmed as: &_0000
value is again confirmed a=: 5.0000

Fig. 3.3-3 Result of ex30303.ZPL

osphotonics.wordpress.com

60

Application of Zemax Programming Language

Example 3.3-4: setting and reading of field

Open Source Photonics

W =] om0 P

10
11
12
13
14
15
1&
17
18
19
Z0
21
22
£3
24
25
Z6
27
g
Z9
30
3
3z
33
24
35
36
37
38
39
40
4l
4z
43

! ex30304
! This program shows how to set and read field

FRINT
SYSP 100, 1 # set field as Object Height
fieldType = SYPR{100) # get field type code

PRINT "Field type code is: ", fieldType

fieldType = FTYP(] # get
PRINT "Field type code 1s

field type code

confirmed as: ", £ieldType

SYSP 101, 3 # set total nunber of fields as 3

totalFieldNum = SYPR(101) # get total nuwber of fields

PRINT

PRINT "Total nudber of fields i=: ", totalFieldNum
totalFieldilws = NFLD{) # get total nuwber of fields

PRINT "Total number of fields is confirmed as: ", totalFieldNum

SYSP 102, 1, 0 # 3et x of field 1 as 0

SYSP 103, 1, 0 # set v of field 1 a=z 0

SYSP 104, 1, 1 # set weight of field 1 as 1

SYSP 102, 2, 0 #H =zet x of field 2 &= 0

SYSP 103, 2, 0.707 # set vy of field 2 a= 0.707

SYSP 104, 2, 0.5 # =et weight of field 2 a= 0.5

SYSP 102, 3, 0 # set x of field 3 as 0

SYSP 103, 3, 1 # set v of field 3 as 1

SYSP 104, 3, D.25 # set weight of field 3 as 0.25
£1d1X = FLDX (1) # get x of field 1

£141Y = FLDY (1) & get v of field 1

fldeightl = FUGT(1l) # get weight of filed 1

£1d2¥X = FLDX(2) # get x of field 2

£1d2Y = FLDY(2) # get v of field 2

fldeight2 = FUGT(2) # get weight of filed 2

£1d3X = FLDX(3) # get x of field 3

£143Y = FLDY(3) & get v of field 3

fldieight3 = FUGT(3) # get weight of filed 3

PRINT

PRINT "Field 1, ¥ = ", £1ld1X, ", ¥ = ", £ldlY, ", weight
PRINT "Field 2, ¥ = ", f£ld2X, ", ¥ = ", £1d2¥, ", weight
PRINT "Field 3, X = ", £1d3X, ", ¥ = ", £1d3Y, ", weight

"

"

s

;

,

fldileightl
fldieight
fldWeight3

In this example, we first set the type of field, and read it with two different methods, then we set the
total number of field, and read it with two methods, and finally we set and read x, y coordinate and
weight of each field. The result is shown below:

osphotonics.wordpress.com

61

Application of Zemax Programming Language

$) 1: Text Viewer

Open Source Photonics

Window

Prink
Executing D: WMy Macros'CH3IWEXIO304 . ZPL.

Update Settings

Field type code is: 1.0000
Field type code is confirmed a=: 1.0000

Total rmawber of fields is: Z.0000

Total nmamber of fields is confirmed as: 30000

Field 1, ¥ = 0.0000, T = 0.0000, weight = 1.0000
Field Z, ¥ = 0.0000, ¥ = 0.7070, weight = 0.5000
Field 2, ¥ = 0.0000, ¥ = 1.0000, weight = 0.Z500

Fig. 3.3-4 Result of ex30304.ZPL

Example 3.3-5: setting and reading of lens title and lens note

17 dummy = SYPR(17)

1 ! ex30305

2 ! This program shows how to set and read lens title and lens note

3

4 PRINT

L

6 S¥YSP 16, "MNew Design for ¥ Project” # set lens title

7 3YSP 17, "In this design, & Cooke Triplet iz used to ge ki i T (=R | "
g ! line 7 sets the lens note

-]

10 duwmmy = SYPRE(16) # use a dumy variable to call SYPR() function

11 lensTitle$ = SBUFFER() # the string information iz put in a buffer

12 PRINT "The lens title is: ", lensTitle$f

13

14 lensTitle§ = SLENSNAME() # get the lens title using a different method
15 PRINT "The lens title is confirmed as: ", lenaTitle$

16

use a dwmny variasble to call 3YPR()
12 lensNotef = SBUFFER() # string information can he obtained from SBUFFER()

19 PRINT

20 PRINT "The lens note is: ©

21 PRINT * ", lensiNote$

2z

23 lensNote$ = SNOTE(1) # get the lens note using a different method
24 PRINT "The lens note is confirmed as: "

25 PRINT * ", lensMNote$

function

osphotonics.wordpress.com

62

Application of Zemax Programming Language Open Source Photonics

In this example, we set the lens title and read with two different methods. Similarly, we set lens note
and read with two different methods. Please notice that if we want to read string information with
function SYPR(), the returned result will be stored in the memory buffer, and needs to be read out using
string function SBUFFER(). The result of this program is shown in figure 3.3-5.

#) 1: Text Viewer

Update Setkings Print Window
Executing D: WMy MacroshCH3WEXKI0O305_ ZPL.

The lens title is: New Design for ¥ Project
The lens title is confirmed as: Mew Design for ¥ Project

The lens note is:

In this design, a Cooke Triplet is used to get the image cuality.
The lens note is confirmed as:

In this design, a Coocke Triplet is used to get the image uality.

Fig. 3.3-5 Result of ex30305.ZPL

In the above shown examples, we discussed the basic process of setting and reading important system
properties in ZPL. Please remember that many system properties can be directly set and read in ZEMAX
environment instead of through ZPL. The user needs to determine which way is more efficient based on
his own case.

Also, we cannot cover all the commands related to system properties here. We will continue to discuss
more commands later when needed, however, we strongly encourage readers to dig into Zemax User’s
Manual for details of different commands.

osphotonics.wordpress.com 63

Application of Zemax Programming Language Open Source Photonics

3.4 Setting and Reading Lens Properties

Lens Data Editor is an important place to do lens design in Zemax. As we know, in sequential ray tracing,
Zemax defines an optical system as being made up of various surfaces, and most of the properties
related to surfaces are set in Lens Data Editor. In this section, we will discuss how to set and read lens
surface properties in ZPL through various examples.

To set lens surface properties, ZPL provides an important keyword SETSURFACEPROPERTY (or SURP in
short). The syntax is:

SETSURFACEPROPERTY surface, code, valuel, value2
or
SURP surface, code, valuel, value2

where surface is an expression that evaluates to an integer specifying the surface number. The code
may either be an expression that evaluates to an integer or a mnemonic which specifies what property
of the surface is being modified. The third and fourth arguments are the new values for the specified
property, and they may be either text in quotes, a string variable, or a numeric expression, depending
upon the code. For most codes, the property value being modified is defined by the valuel argument. A
few operands require both a valuel and a value2, as described in the table below.

Table 3.4-1
Code Property
Basic surface data
Oor TYPE Surface type. The value should be the name of the object, such as “STANDARD” for

the standard surface. The names for each surface type are listed in the Prescription
Report in the Surface Data Summary for each surface type currently in the Lens Data

Editor.
1 or COMM Comment.
2 or CURV Curvature (not radius) in inverse lens units. Use zero for an infinite radius.
3or THIC Thickness in lens units.
4 or GLAS Glass name.
5 or CONI Conic constant.
6 or SDIA Semi-diameter. If the value is zero or positive, the semi-diameter solve is set to

"Fixed". If the value is negative, the semi-diameter solve is set to "Automatic" and
the semi-diameter will be computed with the next UPDATE keyword.

osphotonics.wordpress.com 64

Application of Zemax Programming Language Open Source Photonics

7or TCE Thermal coefficient of expansion.

8 or COAT Coating name. Use a blank string for valuel to remove the coating.

9 or SDLL User defined surface DLL name.

10 or PARM Parameter value. Valuel is the new value. Value2 is the parameter number.

11 or EDVA Extra Data value. Valuel is the new value. Value2 is the extra data number.

12 Surface color, Use 0 for default.

13 Surface opacity.

14 Row color.

15 Surface cannot be hyperhemispheric. Use 1 to avoid surface being
hyperhemispheric.

16 Ignore surface. Use 1 to ignore surface, 0 to not ignore surface.

17 or CODE The integer code for the surface type. The integer code is an alternative to the
surface name used by code 0.

18 or GLAN Glass number. See also Code 4.

Surface aperture d

ata.

20 or ATYP Surface aperture type code.

21 or APP1 Surface aperture parameter 1.

22 or APP2 Surface aperture parameter 2.

23 or APDX Surface aperture decenter Xx.

24 or APDY Surface aperture decenter y.

25 or UDA User Defined Aperture (UDA) file name.

26 or APPU Surface aperture pick up from surface number. Use 0 for no pickup.

Physical Optics Propagation Settings.

30 Physical Optics setting "Use Rays To Propagate To Next Surface". Use 1 for true, 0
for false.

31 Physical Optics setting "Do Not Rescale Beam Size Using Ray Data". Use 1 for true,
0 for false.

32 Physical Optics setting "Use Angular Spectrum Propagator™. Use 1 for true, 0 for
false.

33 Physical Optics setting "Draw ZBF On Shaded Model". Use 1 for true, O for false.

34 Physical Optics setting "Recompute Pilot Beam Parameters”. Use 1 for true, O for
false.

35 Physical Optics setting "Resample After Refraction™. Use 1 for true, 0 for false.

osphotonics.wordpress.com 65

Application of Zemax Programming Language Open Source Photonics

36 Physical Optics setting "Auto Resample™. Use 1 for true, 0 for false.

37 Physical Optics setting “New X Sampling”. Use 1 for 32, 2 for 64, etc.

38 Physical Optics setting "New Y Sampling". Use 1 for 32, 2 for 64, etc.

39 Physical Optics setting "New X-Width". New total x direction width of array.

40 Physical Optics setting "New Y-Width". New total y direction width of array.

41 Physical Optics setting “Output Pilot Radius”. Use 0 for best fit, 1 for shorter, 2 for
longer, 3 for x, 4 for y, 5 for plane, 6 for user.

42,43 Physical Optics setting “X-Radius” and “Y-Radius”, respectively.

44 Physical Optics setting "Use X-axis Reference". Use 1 for true, O for false.

Coating Settings.

50 Use Layer Multipliers and Index Offsets. Use 1 for true, O for false.

51 Layer Multiplier value. Valuel is the new value. Value? is the layer number.

52 Layer Multiplier status. Value 1 is the status, use 0 for fixed, 1 for variable, or n+1
for pickup from layer n. Value2 is the layer number.

53 Layer Index Offset value. Valuel is the new value. Value2 is the layer number.

54 Layer Index Offset status. Value 1 is the status, use 0 for fixed, 1 for variable, or n+1
for pickup from layer n. Value2 is the layer number.

55 Layer Extinction Offset value. Valuel is the new value. Value2 is the layer number.

56 Layer Extinction Offset status. Value 1 is the status, use O for fixed, 1 for variable, or

n+1 for pickup from layer n. Value2 is the layer number.

Surface Tilt and Decenter Data.

60 or BOR Before tilt and decenter order. Use 0 for dec/tilt, 1 for tilt/dec.

61 or BDX Before decenter x.

62 or BDY Before decentery.

63 or BTX Before tilt about x.

64 or BTY Before tilt about y.

65 or BTZ Before tilt about z.

66 or APU After pick up status: 0 for explicit, 1/2 for pickup/reverse current surface, 3/4 for
pickup/reverse current surface minus 1, 5/6 for pickup/reverse current surface minus
2, etc...

70 or AOR After tilt and decenter order. Use O for decttilt, 1 for tilt/dec.

71 or ADX After decenter x.

72 or ADY After decenter y.

osphotonics.wordpress.com 66

Application of Zemax Programming Language Open Source Photonics

73 or ATX After tilt about x.

74 or ATY After tilt about y.

750r ATZ After tilt about z.

76 Coordinate Return status. Valid only on Coordinate Break surfaces. Use 0 for None,
1 for Orientation Only, 2 for Orientation XY, and 3 for Orientation XYZ.

77 Coordinate Return To Surface. Valid only on Coordinate Break surfaces.

Surface scatter dat

a.

80 Sets the scatter code: 0 for none, 1 for Lambertian, 2 for Gaussian, 3 for ABg, 4 for
DLL, 5 for BSDF, 6 for ABg File, and 7 for IS Scatter Catalog.

81 Sets the scatter fraction, should be between 0.0 and 1.0.

82 Sets the Gaussian scatter sigma.

83 Sets the ABg file name.

84 Sets the name of the user defined scattering DLL. To set the parameters see Code
181.

85 Sets the name of the data file used by the user defined scattering DLL.

86 Sets the BSDF file name. The value should be the name of the BSDF file with no
path (i.e. BrownVinyl.bsdf).

87 Sets the ABg File data file name. The value should be the name of the ABGF file
with no path (e.g. SampleABGF.abgf).

88 Sets the IS Scatter Catalog data file name. The value should be the name of the 1ISX
file with no path (e.g. BrownVinyl.ISX).

110 Sets the side for IS Scatter Catalog scattering. Use 0 for front, 1 for back.

111 Sets the sampling for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2

degrees, and 2 for 1 degree.

Surface draw data.

91 Sets the “Skip Rays To This Surface” checkbox status: 0 for off, 1 for on.

92 Sets the “Do Not Draw This Surface” checkbox status: 0 for off, 1 for on.

93 Sets the “Do Not Draw Edges From This Surface” checkbox status: 0 for off, 1 for
on.

96 Sets the “Draw Edges As” status: O for squared, 1 for tapered, 2 for flat.

97 Sets “Mirror Substrate” status: 0 for none, 1 for flat, 2 for curved.

98 Sets the mirror substrate thickness value.

User defined surface scatter DLL parameters.

181-186

Sets the user defined scatter DLL parameters 1-6.

osphotonics.wordpress.com 67

Application of Zemax Programming Language Open Source Photonics

To delete a certain surface, we can use the keyword DELETE provided by ZPL. The syntax is:
DELETE n

where n is the order number of the surface to be deleted.

To insert a surface at a certain location, we can use the keyword INSERT. The syntax is:
INSERT n

where n is the order number of the surface in front of which the new surface is to be inserted.

To set a surface as the system stop aperture, we can use the keyword STOPSURF. The syntax is:

STOPSURF n

This can sets the nth surface as the stop aperture.

It needs to be noticed that after the surface properties were set or modified, keyword UPDATE is usually
needed to update the surface properties.

Similar to setting surface properties, ZPL also provides two important functions SPRO() and SPRX() to
read the surface properties. The syntax is:

SPRO(surf, code)
and
SPRX(surf, code, value2)

where surf is the order number of the surface to be read, and code value is defined by keyword SURP in
table 3.4-1. Please note that code can only be an integer and cannot be mnemonic. The main
difference between the two functions is that SPRO() supports commands with one argument in table
3.4-1, and SPRX() supports commands with two arguments in table 3.4.1.

Besides SPRO() and SPRX(), ZPL also provides other important functions to read out surface related
properties, as shown in table 3.4-2:

osphotonics.wordpress.com 68

Application of Zemax Programming Language

Table 3.4-2 Some important functions used to read out surface properties

Function Return value

NSURC() The number of defined surfaces.

APMN(n) The minimum radius value. For spider apertures, this is the width of the
arms. For rectangular and elliptical apertures, it is the x-half width of the
aperture.

APMX(n) The maximum radius value. For spider apertures, this is the number of
arms. For rectangular and elliptical apertures, it is the y-half width of the
aperture.

APXD(n) The aperture x-decenter value.

APYD(n) The aperture y-decenter value.

APTP(n) An integer code describing the aperture type on the specified surface.

CONI(n) Conic constant of the surface.

CURV(n) Curvature of the surface.

EDGE(n) Edge thickness at the semi-diameter of that surface.

GLCA(n) Global vertex x vector of the specified surface.

GLCB(n) Global vertex z vector of the specified surface.

GLCC(n) Global vertex z vector of the specified surface.

GLCM(n, item)

For item equal to 1-9, the return value is R11, R12, R13, R21, R22, R23,
R31, R32, or R33. For item equal to 10-12, the return value is the

X, Y, or z component of the global offset vector.

GLCX(n) Global vertex x-coordinate of the specified surface.
GLCY(n) Global vertex y-coordinate of the specified surface.
GLCZ(n) Global vertex z-coordinate of the specified surface.

GRIN(n, w, X, Y, 2)

Returns the index of refraction at the specified X, y, z position on surface
n at wavelength number w. Works for gradient and non-gradient media.

PARM(p,n) Parameter "p" of surface "n".

RADI(n) Radius of curvature of surface. If the surface has an infinite radius, RADI
returns 0.0. This possibility must be considered to avoid potential divide
by zero errors.

SDIA(N) Semi-diameter of surface.

SURC(A%) Surface with comment. Returns the first surface number where the
comment matches the string A$. The comparison is case insensitive. If no
surface has the matching comment the function returns -1.

THIC(n) Thickness of the surface.

osphotonics.wordpress.com

Open Source Photonics

69

Application of Zemax Programming Language Open Source Photonics

Among the surface-related properties, the material of the surface is a very important one. For
convenience, let’s just call all the material as glass. In table 3.4-3 some important surface glass related
functions are listed.

Table 3.4-3 Important functions to read surface glass parameters

Function Return value
GABB(n) The glass catalog Abbe number of the glass for the specified surface.
GIND(n) The glass catalog d-light index of the glass for the specified surface.
GNUM(AS) If the string AS is the name of a valid glass, such as BK7, then GNUM

returns the number of the glass in the glass catalog. The glass number
can subsequent | y be used by SETSURFACEPROPERTY to set the glass
type on a surface. If AS does not correspond to any glass in the catalog,
GNUM returns 0. GNUM returns -1 if the string is “MIRROR”.

GPAR(n) The glass catalog partial dispersion coefficient of the glass for the
specified surface.

GRIN(n, w, X, Y, z) Returns the index of refraction at the specified x, y, z position on surface
n at wavelength number w. Works for gradient and non-gradient media.

INDX(n) Index of refraction at the primary wavelength. See ISMS.

ISMS(n) If the surface is an odd mirror, or follows an odd mirror but is not a
mirror, the return value will be one, otherwise the return value is 0.

MAXG() The number of glasses currently loaded.

TMAS() The total mass in grams of the lens from surface 1 to the image surface.

Besides the functions listed above, ZPL also provides a keyword GETGLASSDATA to read glass data in the
current catalogs. The syntax is:

GETGLASSDATA vector_expression, glass_number

where vector_expression is the sequence number of the 4 vectors provided by ZPL (VEC1, VEC2, VEC3,
VEC4), glass_number is the sequence number of the glass listed in the glass catalog, and can be read
with function GNUM(). The glass parameters are stored in vectors VECn (nis 1, 2, 3 or 4) according to
table 3.4-4.

osphotonics.wordpress.com 70

Application of Zemax Programming Language Open Source Photonics

Table 3.4-4 Glass data retrieve command

Array position Glass data
0 The number of data values in the vector
1 Formula number: The number indicates the formula as follows:

1 = Schott, 2 = Sellmeier 1, 3 = Herzberger, 4 = Sellmeier 2, 5 = Conrady, 6 =
Sellmeier 3, 7 = Handbook of Optics 1, 8 = Handbook of Optics 2, 9 =
Sellmeier 4, 10 = Extended, 11 = Sellmeier 5, 12 = Extended 2

2 Reference temperature in degrees c
3 Refractive index at d line Nd
4 Abbe number Vd
5 Thermal coefficient of expansion -30 to +70 °C
6 Thermal coefficient of expansion +20 to 300 °C
7 Density in g/cm”3
8 Deviation from normal line P gf
9 Lambda min
10 Lambda max
11~16 Constants of dispersion A0-A5 (meaning depends upon formula)
17~22 Thermal constants of dispersion
23~ (22 + Internal transmission coefficient (per mm) alpha, T = exp(alpha * path). The
#waves) alpha for wavelength 1 is stored in 23, wavelength 2 is in 24, etc., up to the

number of wavelengths used by the system.

(23 + #waves) ~ | Constants of dispersion A0-A9 (meaning depends upon formula)
(32 + #waves)

We will give some examples to show how to set and read important surface related parameters in ZPL.

osphotonics.wordpress.com 71

Application of Zemax Programming Language Open Source Photonics

Example 3.4-1: Construct a doublet.

In this example, we will start from scratch, build a doublet lens in Lens Data Editor (LDE) in Zemax
through ZPL. Assume the basic parameters of the doublet is:

Working wavelength: F = 0.48613270um, d = 0.58756180um, C = 0.65627250um
Entrance pupil diameter: 50mm

F/#: F/8

Full field angle: 10°

Boundary constraints: minimum thickness at edge and center is 4mm, maximum thickness at
center is 18mm

Glass material: BK7 and F2

After some simple calculation (omitted here), we can get initial parameters of each surface of the
doublet. In this example, we will use these parameters to construct the doublet. Later on in other
examples we will have opportunities to further analyze and optimize this doublet.

First, from Zemax file menu, choose “new” to get an empty lens data editor that includes an object
surface, an image surface, and a lens surface. In our program, we need to set some system parameters
such as the type and size of the system aperture, type and size of field, working wavelength, etc. After
that, we need to insert enough number of lens surfaces, and input lens data. The program is shown
below:

osphotonics.wordpress.com 72

Application of Zemax Programming Language

! ex30401

! This program shows how to create a doublet from scratch

! set system parameters

SYSP 30,

0 # =et lens unit as mm

SYSP 10, D # set system aperture as Entrance Pupil Diameter

3Y3P 11,

SYSP 201,
SYSP 202,
SYSP 202,
SYSP 202,
SYSP 203,
SYSP 203,
SYSP 203,

3YSP 200,

3YSF 100,
SYSP 101,
3YSP 102,
3YSP 103,
SYSP 104,
3YSP 102,
3YSP 103,
SYSP 104,
3YSP 102,
3YSP 103,
SYSP 104,

50

3
1,

set system aperture value

a3 S0

=et total wavelength number as 3

0.48613270 # set the 1lst wavelength as 0.48613270 micron
0.58756180 # set the Znd wavelength as 0.58756180 micron
0.65627250 § =ert the 3rd wavelength as 0.65627250 micron

1 # set the 1lst wavelength
1 §# set the Z2nd wavelength
1 # set the 3rd wavelength

=zet the Znd wavelength as

set the field type as Ang
=et the total field nuwmbe

weight as 1
welght as 1
weight as 1

the primary wawvelength

le
r as 3

0 # set field 1 as x = 0 degree

set field 1 as weight

L

set field 2 as y = 3
set field 2 as weight

set field 3 as y
set field 3 as weight

H D= WO = O
L]

Hoak i Ak

set field 1 as v = 0 degree

=1

get field 2 az x = 0 degree

.5 degree
= 1

get field 3 as x = 0 degree
5 degree

=1

osphotonics.wordpress.com

Open Source Photonics

73

Application of Zemax Programming Language Open Source Photonics

31

32 ! zet surface 1 as stop

33 STOFSURF 1

34

35 ! insert 3 surfaces after stop

2& INSERT 2

37 INSERT 2

3¢ INSERT 2

39

40 ! set surface parameters

41 SURP 1, THIC, 275 # set surface 1 thickness as 275

42

43 SURP 2, TYPE, # set surface 2 type as "STANDARDY, can be omitted
44 SURF 2, COMH, front 1 # set surface Z comment

45 SURP 2, CURV, 1/600 # set surface 2 curvature as 1/600
46 SURP 2, THIC, 18 # =set surface 2 thickness as 18

47 SURP 2, GLAS, "EBEK7" # set surface 2 glass type as EBE?7
48
49 SURF 3, COMM, "back fi/front £2" # set surface 3 comment

50 SURP 3, CURV, -1/115 §# =et surface 3 curvature as -1/115
51 SURP 3, THIC, 18 # set surface 3 thickness as 18

B2 JURP 3, GLAS, "FZ" # s=et surface 3 glass type as F2
53
54 SURP 4, COMM, "hack £2" # set surface 4 corment

55 SURP 4, CURV, -1/243 # set surface 4 curvature as -1/243
56 SURP 4, THIC, 395 # set surface 4 thickness as 395

57

58 UPDATE

The first part of the program (lines 5 ~ 30) sets system properties, indluding lens unit (line 5), system
aperture (lines 7 and 8), wavelengths (lines 10 ~ 18), field (lines 20 ~ 30). The second part of the
program (lines 32 ~ 58) sets lens data, indluding choosing stop surface (line 33), inserting 3 new surfaces
(lines 36 ~ 38), and defining type, comments, curvature, thickness, material of each surface (lines 41 ~
56). At the end of the program, we updated the system to assure the data are accepted. Apparantly, a
lot of data can be directly set in LDE without a ZPL program. This example just shows how to do it
through ZPL program. Also, a lot of default setting in LDE (such as “standard surface” in line 51) can be
omitted in the program.

The result of program ex30401.ZPL is shown below in figure 3.4-1:

osphotonics.wordpress.com 74

Application of Zemax Programming Language Open Source Photonics

Surf: Type Commernt Badinus Thickne=ss=s Glass Semi-Diameter Conic
OB J Standard Infinity Infinity Infinity 0.gooooo
3T0 Standard Infinity Z75.000000 Z8.000000 0. 000000
z Standard front £l £00. 000000 lg.000000 EE? 49, Z264ZE 0. 000000
3 Standard| back fl/fromt fZ —l15. 000000 lg. 000000 FZ 49, 3787328 0. 000000
4 Standard back fZ -243.000000 325.000000 E0.76EZEEE 0. 000000
IMA Standard Infinity - 34345337 0. 000000

Fig. 3.4-1 The updated content of LDE after program ex30401.ZPL is executed.

For the doublet constructed in program ex30401, we can read various parameters through ZPL program.

Some examples are given below.

Example 3.4-2: read lens surface data.

In this program, we first read the total number of surfaces of the the system (line 7), then for surface 3
we read surface type (lines 11 and 12), comments (lines 16 and 17), curvature (lines 21 and 23), radius
(line 25), thickness (lines 29 and 31) and material (lines 35, 36 and 38), and finally we read the surface
number of the stop (lines 42 and 43). We can see that when using function SPRO() to read string
information (such as surface type, comments, etc.), the returned data are stored in the buffer, and can
be read out with buffer string function Sbuffer().

osphotonics.wordpress.com

7

75

Application of Zemax Programming Language

' ex30402

! This program shows how to read surface data
!' Assume the lens is defined in ex30401

FPRINT

surfTocalNuws = NSUR()

PRINT "Total surface

FRINT

dummy = SPRO(3,0)
surfaceTypss =

FRINT "The
PRINT

dummy = SPRO(3,1)
surfaceComencs =

FRINT "The
FRINT

curvofSurf
FRINT "The
curvOfSurt
PRINT "The
radidfSurft
PRINT "The
PRINT

type of sur

comment of

= SPRO(3,2)

number 1is:

#fi get the total surface nuwber
", surfTotallum

get the type of surface 3
fbhuffer() # read the type of surface 3 from buffer

face 3 iz ", surfaceTvpe$

get the comment of surface 3
Shuffer ()

read the comvent from buffer
surface 3 1= 'Y, surfaceCommencs, "'"

get the curvacure of surface 3

curvature of surface 3 i=s ", eurvorfSurt

= CURV(3)

get the curvature by & different way

curvature of surface 3 13 confirmed as ", curvOfSurs

= RADI(3)

radius of surface 3 is=

thickness = SPRO(3,3)

get the radius of surface 3
» cadiOfSurct

e "

get the thickness of surface 3

PRINT *The thickness of surface 3 i3 ¥, thickness

chickness = THIC(2) # ger the thickness hy a different way
FRINT "The thickness of surface 3 i3 confirmed as ", thickneas
PRINT

dummy = SPRO(3,4) #

glassTyped
PRINT "The
glassType§
FPRINT "The
PRINT

GETSYSTEMDATA 1

= Shuffer ()
glass type
= JGLASS(3)

o la=ss ¢ vpe

stopNum = VEC1(23) &
FRINT "The =top surface iz surface ", stopNum

get the glass type of surface 3

read the glass type from buffer
of surface 3 12 ", glas=Typej:

get the glass type by a different way
of surface 3 iz confirmed az ", glassTyped

f# get system information and save into VEC1

read the stop surface number from VECL

The result of program ex30402.ZPL is shown in figure 3.4-2:

osphotonics.wordpress.com

Open Source Photonics

76

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Settings Print Window
Executing D:3WMy Macros' CHIWEX3I040Z . ZPL.

Total surface rmamber is: 5.0000

The type of surface 3 is STANDARD

The comment of surface 3 is 'back fl/front fz'

The curwvature of surface 3 is -0.0087

The curwvature of surface 3 is confirmed asz -0.0087

The radius of surface 3 is -115._0000

The thickness of surface 3 i= 15._0000
The thickness of surface 3 is confirmed as 12._.0000

The glass type of surface 3 is F:2
The glass type of surface 3 is confirmed as FEZ

The =stop surface is surface 10000

Fig. 3.4-2 Result of program ex30402.ZPL

osphotonics.wordpress.com 77

Application of Zemax Programming Language Open Source Photonics

Example 3.4-3: read glass material parameters:

In this example, various functions and keywords are used to read material parameters.

! ex30403

! This program shows how to read glass data

' Assume the lens system is defined in ex30401

PEINT

! get the total number of glass types currently loaded in the system
FOEMALT 1 INT

PRINT "There are ", MAXG(), "™ types of glasses loaded in the system.”

' get the glass name

surfacelum = 2
glassNamed = $GLASS (surfacelNum)
FRINT "The type of glass on surface ", surfaceNuwm, " i= ", glassNamejd, .

' get the glass number
FRINT "The serial number of ", glassName$, " glass in its catalog ",
FRINT "is ", GNUM(glassMNamed), "."

' get the refractive index of glass at d-light

FRINT "The refractive index of ", glassNamei, " at d-light is ™,
FORMAT 5.4

FEINT GIND (surfacelhun), ".7

' get the Lbkbe number of glass
PRINT "The ibbe number of ", glassMNamed, " iz ", GABE(surfaceNwmn), "."

! get the partial dispersion coefficient of glass
FRINT "The partial dispersion coefficient of ", glassNawed, " iz ",
FEINT GPAER (surfacelhuan) , .7

' ugse keyword GETGLAZIZDATL to get glass data

GETGLAZSDATL 1, GNUM(glassMNames)

PRINT

FORMAT 1 INT

PRINT "The total nuwaber of walid data wvalues returned i=s ", VEC1{0O), ™.
PRINT "The formmls nurker is ", VEC1(1), ©."

FORMAT 5.4

FRINT "The refractive index at d-light i=s ", VEC1({3), ™."

PRINT "The internal transwmission coefficient at the first wavelength is
FORMAT 7.6

PRINT VEC1(23), "."

,

In the program, function MAXG() was used in line 9 to read the total number of glasses loaded in the

system, and function SGLASS() was used in lines 12 ~ 14 to read the glass type of a given surface. Please
note that different from directly calling numeric function in line 9, since PRINT command cannot directly

osphotonics.wordpress.com

78

Application of Zemax Programming Language Open Source Photonics

call string function, the program needs to store the result in a string variable in line 13 first, and then
print out the result in line 14. Function GNUM() was used in lines 17 ~ 18 to read the order number of
the glass material in the catalog, and function GIND() was used in lines 21 ~ 23 to read the refractive
index of the glass at d line. Function GABB() in line 26 read the Abbe number for a given surface.
Function GPAR() in lines 29 ~ 30 was used to read partial dispersion of given surface material. As
mentioned before, besides using functions to read glass data, keyword GETGLASSDATA can also be used
to obtain the information. Lines 33 ~ 42 in the program shows how to do it. The information read with
keyword is stored in the default array VEC1, and can be easily read out. The result of the program is
shown in figure 3.4-3:

#) 2: Text Viewer

Update Settings Print Window
Executing D: My Macros CHIYWEX30403_ ZPL.

There are 320 types of glasses loaded in the system.
The type of glass on surface £ is BET7.

The serial number of BE? glass in its catalog is 37.
The refractiwve index of BE7 at d-light i= 1.5l1&58.

The Abbe number of BEY is &64.1673.

The partial dispersion coefficient of BET is —-0.0005.

The total rmamber of walid data wvalues returned is E5.

The formuala number is 2.

The refractive index at d-light iz 1.51&6%.

The internal transmission coefficient at the first wavelength i=s 0.000188.

Fig. 3.4-3 Result of program ex30403.ZPL

osphotonics.wordpress.com 79

Application of Zemax Programming Language Open Source Photonics

3.5 Merit Function

When using Zemax to design and optimize an optical system, merit function is often used. Itis a
numerical value defined by the user and used to evaluate the deviation of an optical system
performance relative to a series of design targets. In Zemax there is a merit function editor that includes
different operands. Each operand is used to evaluate a certain system constraint or design target. The
whole merit function is composed with various operands in the merit function editor with different
weights.

ZPL provided various keywords and functions to set and read merit function.

Keyword DEFAULTMERIT is used to generate a default merit function. The syntax is:

DEFAULTMERIT type, data, reference, method, rings, arms, grid, delete, axial, lateral, start,
xweight, oweight, pup_obsc

(Note: pup_obsc is used in newer versions of Zemax. In some older versions, this parameter is not
included, as in the examples below.)

This keyword generates a default merit function in the Merit Function Editor. Any existing default merit
function will be deleted. The values are as follows:

Table 3.5-1: parameters of keyword DEFAULTMERIT

Parameter Description
type use 0 for RMS, 1, for PTV.
data use 0 for wavefront, 1 for spot radius, 2 for spot x, 3 for spot y, 4 for spot x +y.
reference use O for centroid, 1 for chief, 2 for unreferenced.
method use 1 for Gaussian quadrature, 2 for rectangular array.
rings the number of annular rings (Gaussian quadrature only).
arms the number of radial arms (Gaussian quadrature only). The number of arms
must be even and no less than 6.

osphotonics.wordpress.com 80

Application of Zemax Programming Language Open Source Photonics

grid the size of the grid. Use an integer, such as 8, for an 8 x 8 grid. n must be even
and no less than 4.

delete use 0 to not delete vignetted rays, 1 to delete vignetted rays.

axial use -1 for automatic, which will use symmetry only if the system is axial
symmetric. Use 1 to assume axial symmetry, O to not assume axial symmetry.

lateral use 1 to ignore lateral color, O otherwise.

start use -1 for automatic, which will add the default merit function after any
existing DMFS operand. Otherwise use the operand number at which to add
the default merit function. Any existing operands above the specified operand
number will be retained.

xweight, the x direction weigh and overall weight for the merit function. Only the data
oweight “spot x +y” uses the xweight value.
pup_obsc the pupil obscuration ratio.

If we want to delete an operand in the merit function editor, we can use keyword DELETEMFO to do so.
The syntax is:

DELETEMFO row
or
DELETEMFO ALL

where row is the line number of the operand to be deleted, and it needs to be an integer expression
larger than 0 and smaller than the total number of operands. If “All” is used, then all the operands will
be deleted.

If we want to insert an operand in the merit function editor, we can use keyword INSERTMFO. The
syntax is:

INSERTMFO row

where row is the line number of the operand to be inserted, and it needs to be an integer expression
larger than 0 and smaller than the total number of operands. After the operation, original operands in
the line with number row and higher will be shifted one number higher. The newly inserted operand is
an empty operand. Its content needs to be defined using other keywords such as SETOPERAND.

osphotonics.wordpress.com 81

Application of Zemax Programming Language Open Source Photonics

If we need to set or update an operand in the merit function editor, we can use keyword SETOPERAND
to do so. The syntax is:

SETOPERAND row, col, value

where row is the line number of the operand to be edited, col is the column number, and the value is for
the position determined by row and col. The meaning of col depends on the operand. In general, 1 is
for operand type, 2 for Int1, 3 for Int2, 4~7 for datal~data4, 8 for target, and 9 for weight. Figure 3.5-1
shows a dialog box popped out when directly setting operand in Zemax, where Operand is the type of
the operand. To operand CNAX, Surf and Wave correspond to Intl and Int2 mentioned above, Hx, Hy,
Pol and Samp correspond to datal~data4 mentioned above.

Optimization Operand 1

Operand: m

Suuf IEIi Wave lﬂi

Hy Gooooos My Goooom

Pal? 0000000 Samp nooooon
Jo.ooooo0 000000+

Target IW Wieight IW

Row Color: Im

] 4 I Cancel | Help |

Fig. 3.5-1 Dialog box of operand setting

When setting operand type with col = 1, “value” should be an integer associated with the operand, such
as 1 for “ACOS”, 2 for “ABSO”, 4 for “DENC”, 367 for “CNAX”, etc. The integer associated with each
operand can be determined by the return value of function ONUM(AS), where AS stands for the string
of various operands.

Besides the method described above (col = 1), we can also use col = 11 to set the type of operand, and
set “value” as the string that represents the type, such as:

osphotonics.wordpress.com 82

Application of Zemax Programming Language Open Source Photonics

SETOPERAND 1, 11, “CNAX”
or
AS = “CNAX”

SETOPERAND 1, 11, AS

If we want to read the content of a certain operand in the merit function editor, we can use function
OPER(row,col), where row is the row number in the editor, col is the column number in the editor with 1
for operand type, 2 for Int1, 3 for Int2, 4~7 for datal~data4, 8 for target value, 9 for weight, 10 for
operand value, and 11 for the percentage contribution to the total merit function. Please note that
function OPER() only reads the current content of the merit function, but will not change it.

If we want to calculate the total value of the merit function, we can use function MFCN(). This function
will update the lens data, evaluate the validity of the merit function, calculate its value, and return the
final result.

Now we will give some examples to show how to set and read parameters in the merit function editor.

Example 3.5-1: set and read default merit function. In this example, we assume the optical is the one
defined in program ex30401. If we want to define a merit function to evaluate the image quality of this
optical system, i.e. to evaluate the overall quality of the light beam on the image plane formed by rays
coming from various field, a direct and most common way is to use the default merit function provided
by Zemax. This example shows how to do it with ZPL.

osphotonics.wordpress.com 83

Application of Zemax Programming Language Open Source Photonics

1 ! ex30501

2 ! This program shows how to set default merit function
2 ! Assume the lens system is defined in ex30401

4

Stp =0 # type is RHS

€ data = 1 # spot radius

7ref = 0 # centroid reference

g method = 1 # Gaussian quadrature

a2 ring = 3

10 arm = 6
11 grid = 4
12 delOrlot = 0 # not delete vignetted rays

13 ax = 1 §# assume axial symmetry

14 lat = 1 # ignore lateral color

1§ st = 1 § put the default merit function start at the beginning
16 ow = 1 # no xweight, overall weight = 1

17

18 DEFAULTHERIT tp,data,ref,method, ring, arm,grid,delOorNot, ax, lat, st,ou
19

20 PRINT

21 PRINT "The final merit function wvalus is ", MFCN{()

After execution, the content of the merit function editor is shown in figure 3.5-2:

#1 Merit Function Editor: 0.000000E+000

Edit Tools Wiew Help
Oper # Type s
1 DiFs DHFS i
Z BLNK BLNE|Default merit function: BEME spot radius centroid GO 3 rings & arms Overall gt = 0_0000
3 BLNK BLNE|No default air thickness boundary constraints.
4 BLNK BLNE|No default glass thickness boundary constraints.
5 ELNE ELNE|Operands for field 1.
& PRIN PRIN 1
7 TRAC TRAC 1 0. 000000 0.00000o0 0.33E711 0. 000000
& TRAC TRAC 1 0. 000000 0.00000o0 0.707107 0. 000000
2 TRAC TRAC 1 0. 000000 0. 000000 0.9419&6E 0. 000000
10 PRIM PRIN b4
11 TRAC TRAC b4 0. 000000 0.00000o0 0.33E711 0. 000000
1Z TRAC TRAC =4 0. 000000 0. 000000 0.707107 0. 000000
13 TRAC TRAC b4 0. 000000 0.00000o0 0.941965 0. 000000
14 PRIM PRIN 2
15 TRAC TRAC 2 0. 000000 0.00000o0 0.33E711 0. 000000
15 TRAC TRAC 3 0. 000000 0. 000000 0.707107 0. 000000
17 TRAC TRAC 2 0. 000000 0.00000o0 0.941965 0. 000000
12 ELNE BLNE|Operands for field Z.
19 PRINM PRIN | 1] | | | | |
z0 TRAC TRAC [1] 0.ooooog| 0. 700000 0. 167255 0. 290734 [=
< >

Fig. 3.5-2 Merit function generated by program ex30501.ZPL

osphotonics.wordpress.com 84

Application of Zemax Programming Language Open Source Photonics

In the mean time, the total value of the merit function obtained by function MFCN() is displayed in the
text message window, as shown in figure 3.5-3.

#) 1: Text Viewer

Update Settings Print Window
Executing D:3WMy Macros CHIWEXIOEOL1. ZPL.

The final merit function walue is 0.0Z4Z

Fig. 3.5-3 The merit function resulted from program ex30501.ZPL

The powerful optimization function of Zemax relies on changing the value of different variable to
minimize the value of the merit function. We will discuss how to optimize an optical system with ZPL
program in latter sections.

Besides the default Zemax merit function discussed above, often times the user needs to define his own
merit function to meet his special design target. We will show how to do this in the following example.

Example 3.5-2: Self-defined merit function

How to define the merit function depends on the design target of an optical system. In this example, we
still assume that the optical system is the doublet defined in program ex30401. Further, we assume that
due to the limitation of the detector size, the image height of view field 3 (6, = 5°) on the image plane
needs to be 30 lens units. So we need to modify the default merit function and construct a user-defined
merit function. To realize this, we can start from the default merit function defined in last example, and
insert a new operand CENY with a target value as 30. The program is shown below:

osphotonics.wordpress.com 85

Application of Zemax Programming Language Open Source Photonics

1 ! ex30502

z ! This prograw shows how to set user defined merit function

3 ! Assume the lens system 1z defined in ex3i0401

4 | Al=zo assume the default merit function was first created as in ex30501
=

& INIERTHFO 1 # insert a blank row in the merit function editor
7 IN3IERTHFO 1 # inzert another khlank row

2 ZETOPERAND 1, 11, "CENY™ # set operand type

3 JETCOPERALND 1, Z, O # set surface number, 0 for image surface

10 FETORPERAND 1, 3, 0 # et wavelength muawber, 0 for polychromatic
11 IETOPERAND 1, 4, 3 # zet field nuwher

lz IETOPERAND 1, &8, 30 # set target

13 JIETOPERAND 1, 9, 1 # =et weight

14

18 PRINT

16 PRINT "The final merit function walus is ", MFCN{)

In this example, we inserted two empty rows in the merit function editor, set the operand in the first
row as CENY, and then set corresponding parameters such as surface number, wavelength number, field
number, target, weight, etc., and finally output the value of the current merit function, as shown in
figure 3.5-4.

$) 1: Text Viewer

Update Setkings Print Window
Executing D: WMy Macros'CHIWEXIOLS0EZ . ZPL.

The final merit function walue is Z.3918

Fig. 3.5-4 The value of merit function after running program ex30502.ZPL

If we set surfaces of the doublet (surface 2, 3 and 4) and the distance of its back surface to the image
plane as variables, we can easily optimize this optical system with the merit function we just defined.
The value of the merit function after optimization can be 0.02. You can try it out if interested.

osphotonics.wordpress.com 86

Application of Zemax Programming Language Open Source Photonics

3.6 Solve

Zemakx is very powerful on solving and optimizing existing optical systems. To allow user to access this
feature in programs, ZPL provided many related keywords and functions. In this and next section, we
will discuss how to handle solve and optimization in ZPL programs.

A commonly used keyword for setting and modifying arguments for solve is SOLVETYPE. The syntax is:

SOLVETYPE surf, CODE, arg1, arg2, arg3, arg4

In this command, surf is the surface number to be set, and the range of which should be between 0 and
the maximum number of total surfaces. CODE is a mnemonic as listed in table 3.6-1. The argl - arg4
expressions evaluate to the first - fourth solve parameters. Please note that different solve type
requires different number and types of arguments.

Table 3.6-1 arguments used in keyword SOLVETYPE

Solve Type CODE argl arg2 arg3 argd
Curvature: Fixed (turn CF
solve off)
Curvature: Variable Ccv
Curvature: Marginal Ray | CM Angle
Curvature: Chief Ray cC Angle
Curvature: Pickup CP Surface # | Ratio Column #
Curvature: Marginal Ray | CN
Normal
Curvature: Chief Ray CO
Normal
Curvature: Aplanatic CA
Curvature: Element CE Power
Power
Curvature: Concentric CQ Concentri
With Surface c surface #
Curvature: Concentric CR Concentri
With Radius ¢ with

osphotonics.wordpress.com 87

Application of Zemax Programming Language Open Source Photonics

radius
surface #
Curvature: F/# CG Paraxial
F/#
Curvature: ZPL Macro Cz Macro
name
Thickness: Fixed (turn TF
solve off)
Thickness: Variable TV
Thickness: Marginal Ray | TM Height Aperture area
Height
Thickness: Chief Ray TC Height
Height
Thickness: Edge TE Thickness | Radical
Thickness height (O for
diameter)
Thickness: Pickup TP Surface # | Ratio Offset Column #
Thickness: Optical Path TO Optical Aperture area
Difference Path
Difference
Thickness: Position TL Surface # | Self defined
surface
length
Thickness: Compensator | TX Surface # | Total surface
thickness
Thickness: Center Of TY Surface #
Curvature at center
of
curvature
Thickness: Pupil Position | TU
Thickness: ZPL Macro TZ Macro
name
Glass: Fixed (turn solve GF
off)
Glass: Model GM D line Abbe number | Partial
refractive | Vd dispersion

osphotonics.wordpress.com 88

Application of Zemax Programming Language

Open Source Photonics

index Nd APg,F
Glass: Pickup GP Surface #
Glass: Substitute GS Catalog
name
Glass: Offset GO D line Abbe number
refractive | Vd offset
index Nd
offset
Semi-Diameter: SA
Automatic
Semi-Diameter: User SU
Defined
Semi-Diameter: Pickup SP Surface # | Ratio Column #
Semi-Diameter: SM
Maximum
Semi-Diameter: ZPL SZ Macro
Macro name
Conic: Fixed (turn solve KF
off)
Conic: Pickup KP Surface Ratio Column #
number
Conic: ZPL Macro Kz Macro
name
Parameter: Fixed (turn PF p
solve off). Replace “p”
with the parameter
number in the code.
Parameter: Pickup. PP_p Surface # | Ratio Offset Column #
Replace “p” with the
parameter number in the
code.
Parameter: Chief Ray. PC p Field # Wavelength
Replace “p” with the #
parameter number in the
code.
Parameter: ZPL Macro. PZ p Macro
Replace “p” with the

osphotonics.wordpress.com

89

Application of Zemax Programming Language

Open Source Photonics

parameter number in the name
code.
Thermal Coefficient of HF
Expansion: Fixed (turn
solve off)
Thermal Coefficient of HP
Expansion: Pickup
Extra Data Value: Fixed EF e
(turn solve off). Replace
“e” with the extra data
number in the code.
Extra Data Value: Pickup. | EP_e Surface # | Ratio Offset Column #
Replace “e” with the extra
data number in the code.
Extra Data Value: ZPL EZ e Macro
Macro. Replace “e” with name
the extra data number in
the code.
Non-Sequential NSC PX o,
Component Pickup X, Y, | NSC_PY o,
Z, Tilt-X, Tilt-Y, Tilt-Z, NSC_PZ_o,
Material. Replace “0” NSC _PTX o,
with the object number in | NSC_PTY _o,
the code. NSC PTZ o,
NSC_PMAT o
Non-Sequential NSC_MATF o,
Component Material is NSC_MATM o,
fixed, model glass, NSC _MATP o,
. NSC_MOFF_o
pick up, or offset. Replace - -
“0” with the object
number in the code.
Non-Sequential NSC _ZX o,
Component ZPL Macro NSC_ZY o,
solve on X, Y, Z, Tilt-X, NSC ZZ o,
Tilt-Y, Tilt-Z. Replace NSC_ZTX o,
“0” with the object NSC_ZTY _o,
number in the code. NSC_ZTZ o
Non-Sequential NSC PP o p

osphotonics.wordpress.com

90

Application of Zemax Programming Language Open Source Photonics

Component Parameter
Pickup. Replace “0” with
the object number and “p”
with the parameter
number in the code.

Non-Sequential NSC ZP o p
Component ZPL Macro
solve. Replace “0” with
the object number and “p”
with the parameter
number in the code.

* |In this table, column # is defined below:
0: current column;
1~4: radius, thickness, conic constant, semi-diameter;
5~17: parameters 1~12;

18~259: extra data 1~242.

Among the solve types listed above, ZPL macro is used in many places. This allows user to call self-
defined macros in solve. The only difference between this macro to other ZPL macros is that it requires
keyword SOLVERETURN to return the result to the editor that calls the macro. The syntax is:

SOLVERETURN value

where value is the return value.

When more than one keyword SOLVERETURN is used in the program, only the last SOLVERETURN
command will be executed, and all the other SOLVERETURN commands will be ignored. If there is error
in the program, the SOLVERETURN command will not be executed, that means there are issues in the
optical system.

We need to keep in mind that although solve with ZPL program is very flexible, it is also very easy to
cause infinite loops or abnormal interruptions. Therefore, we need to be cautious when using solve in
ZPL.

osphotonics.wordpress.com 91

Application of Zemax Programming Language Open Source Photonics

Besides using keyword to set and modify solve parameters, ZPL also provides a function SOLV() to read
solve parameters. The syntax is:

returnValue = SOLV(surf, code, param)

In this function, surf is the surface number. Code is O for curvature, 1 for thickness, 2 for glass, 3 for
conic, 4 for semi-diameter, and 5 for thermal expansion coefficient TCE. For parameter data, the code is
100 plus the parameter number. For extra data, the code is 300 plus the extra data number. Param is an
integer between 0 and 4, inclusive. The return value is data about the solve type for the specified
surface and data. If param is zero, then an integer corresponding to the solve type is returned. For
param between 1 and 3, the data is the solve parameters. For param 4, the data is the pickup column
number. String values may be extracted using the Sbuffer() function after calling this function with a
code that returns string data.

We will give some examples below.

Example 3.6-1: set solve parameters. Assume we have constructed the doublet as discussed in example
3.4-1. In that system, the radius of surface 4 is -243, and the paraxial F/# is not quite equal to design
target 8. We can change the curvature of surface 4 using solve, and force the paraxial F/#
approximating 8 quickly. The program is shown below:

1 ! ex30601

2 ! This program shows how to set solve parameters
2 ! Assume the lens system is defined in ex30401

4

5 surf = 4

& CODE§ = "CG" # solwve type is "Curvature: F/g"
7argl = 8 § F/fg = &

g

9

SOLVETYPE surf, CODE$, argl # only 1 argument is needed
10 UPDATE # UFDATE is needed to get the solve result

In this program, we set surface 4 as solve type “curvature: F/#”, and let F/# = 8. After running the
program, we can see that the radius of surface 4 in the lens data editor has been changed, and letter F
appears at right side of the radius value, as shown in figure 3.6-1:

osphotonics.wordpress.com 92

Application of Zemax Programming Language Open Source Photonics

u Lens Data Editor

Surf:Type Comment Radius Thickness Glass Sewi-Diameter Conic
oEJ Standard Infinity Infinity Infinity 0. ooooon
STO Standard Infinity Z75._ 000000 25000000 0. ooooon

2 Standard front f1 &00_ 000000 1g. 000000 EE7 49 Z364E5 0. 000000

2 Standard| back fl/front fZ =115_000000 1g. 000000 FZ 43 378739 0. 000000

4 Standard back fZ —-24Z_910173| F 335._000000 EO.76Z539 0. ooooon

IHA Standard Infinity - 34.9E5387 0. ooooon
<

Fig. 3.6-1 Result of program ex30601.ZPL

Example 3.6-2: read solve parameters. Assume we need to read solve parameters from last example.
We can use function SOLV() to do so, as shown below:

1 ! ex30602

2 ! This program shows how to read solve parameters
32 ! Assume the solve type is defined in ex30601

4

5 surf = 4

écode = 0 # solve type i3z "Curvature"

7 param = 1 # want to know the first argument, i.e. F/#
8

9 returnValue = SO0LV (surf, code, param)

10

11 PRINT

12 PRINT "The solve parameter i= ", returnValue

Please note that code here is a numerical variable, whereas CODES in last example is a string variable.
The result is shown below:

#) 1: Text Viewer

Update Settings Print Window
Executing D: WMy Macros"CHIWEXIOE0Z . ZPL.

The =solve parameter is 5_0000

Fig. 3.6-2 Result of program ex30602.ZPL

osphotonics.wordpress.com 93

Application of Zemax Programming Language Open Source Photonics

It showed that the solve parameter we obtained in last example is F/# = 8.

Example 3.6-3: Application of ZPL solve. In example 3.6-1, we assumed the refractive index of air is 1,
and got radius of surface 4 as -242.910179. Now we want to use actual refractive index of air n = 1.0008
and relation n;C; = n2C; (n is refractive index, C is curvature) to fine tune the radius value to get a more
realistic result. We can use ZPL solve to realize this. The parameter setting program and solve program
is shown in ex30603.ZPL and ex30603M.ZPL, respectively:

1! ex30803

2 ! This program shows how to set ZPL macro solwve

2 ! Assume the optical system is defined in ex30601

4

E surf = 4

é CODE§ = "CZI" §# solwve type is "Curwature: ZPL macro™
7 argld = "\chi\ex30603M.zpl" # macro name

2

b}

SOLVETYPE surf, CODE$, argli # only 1 argument 1is needed
UPDATE # UPDATE is needed to get the solve resulc

=
(=]

1! ex30603M

2 ! This program shows an example of ZPL macro

2! It will be called by program "ex3I0603.zpl™

4

E nWVacuum = 1

6 niir = 1.0008

7

g surf = 4

9 culvatureVacuum = CURV(surf) # get the curvature of surface 4

10

11 culvatureldir = culvatureVacuwn*nVacuum/niir # modify the culvature
1z

13 temp = 1/123.456 # creace a nunber

14 SOLVERETURN temp # try to add more than one SOLVERETURN
15

16 SOLVERETURN culvaturelir # return the culvature, not the radius!!

Please note that in line 7 of program ex30603, we added a path name “\ch3\” in front of macro name
“ex30603M.zpl”. It is because when running program ex30603.zpl, Zemax only searches solve macro
under the macro folder. Any further directory structure in the macro folder needs to be specifically
called out.

We also need to note that the calculated value in program ex30603M is curvature. After returning this
curvature, Zemax will automatically calculate radius value.

osphotonics.wordpress.com 94

Application of Zemax Programming Language

Open Source Photonics

Also, line 13 and 14 don’t have any real meaning, and can be deleted from the program. We add them
in the program to demonstrate that if there are more than one keyword SOLVERETURN in the program,

only the last SOLVERETURN is valid.

The result of program ex30603 is shown below:

Surf:Type Comment Badius Thickness Glass |Semi-Diameter Conic
[1)=R) Standard Infinity Infinity Infinity 0. 0ooooo
STO Standard Infinity Z7E. 000000 ZE.000000 0. 000000
z Standard front £l &00._ 000000 lg.000000 EE7 49, Z364E5 0. 000000
3 Standard| back fl1/front fZ —1l15. 000000 12000000 Fe 49.378739 0. 000000
4 Standard back fZ -243.104507 395000000 EO.TEETOL 0. 000000
Ima Standard Infinity - F4.0698E6 0. 000000

Fig. 3.6-3 Result of ex30603.ZPL

We can see that the new radius value of surface 4 is -243.104507, and letter Z appeared at the right side
of this value, indicating that the solve type is ZPL macro.

Similar to automatic solve, ZPL also provides a keyword QUICKFOCUS to quickly adjust the focus of the

optical system. The syntax is:

where mode is 0, 1, 2 or 3 for root mean square (RMS) beam radius, beam x value, beam y value and
wave front light path difference, centroid is 0 or 1 for RMS relative to chief ray or image center.

QUICKFOCUS mode, centroid

osphotonics.wordpress.com

95

Application of Zemax Programming Language Open Source Photonics

3.7 Optimization

Optimization gives Zemax its great power in optical design. In this section we will discuss how to use
optimization commands in ZPL. For general optimization in Zemax, please refer to Zemax User’s Manual.

We all know that optimizing an optical system in Zemax is essentially setting certain lens parameters as
variables and allowing Zemax to automatically change the value of the variables to minimize the merit
function. To do this in ZPL, a keyword SETVAR is provided to set and change variables for optimization.
The syntax is:

SETVAR surf, code, status, objectNum
or
SETVAR config, M, status, operand

where surf is the lens surface order number, config is the configuration order number in the multi-
configuration editor, code is one of the strings listed in table 3.7-1. If the value of status is 0, then the
variable status is removed, otherwise the value associated with code is made variable. If the code is Nn
or On, the object number must be provided, otherwise it should be omitted. If the code is M, then the
syntax for this command is as shown above as the multi-configuration one, and the operand needs to be
provided.

Table 3.7-1: Code associated to keyword SETVAR

Code Description
R radius of curvature
T thickness
C conic
G glass
I glass index
J glass Abbe
K glass dpgf
Pn parameter n
D thermal coefficient of expansion
En extra data value n
M multi-configuration data
Nn non-sequential component position data, 1-6 for x, v, z, tx, ty, tz
On non-sequential component parameter data, where n is the parameter number

osphotonics.wordpress.com 96

Application of Zemax Programming Language Open Source Photonics

If we want to remove all the variables, we can use keyword REMOVEVARIABLES to change all the
variables as fixed value.

If we want to read a variable we set, we can use keyword GETVARDATA. The syntax is:
GETVARDATA vector

where vector = 1~4 is one of the 4 vector array variables provided by ZPL (either VEC1, VEC2, VEC3 or
VEC4). The data is stored in the specified VECn array variable in the format described in table 3.7-2.

Table 3.7-2: Storage format of data obtained with keyword GETVARDATA

Array Position Description
0 n, the number of variables
1 The type code for the first variable
2 Surface number for the first variable
3 Parameter number for the first variable
4 Object number for the first variable

The value of the first variable

5*q-4 The type code for the gth variable
5*q-3 Surface number for the gth variable
5*q-2 Parameter number for the gth variable
5*q-1 Object number for the gth variable
5*q The value of the gth variable

The type code for variables is as described in the following table. The surface number, parameter
number, and object number may or may not have meaning depending upon the type of variable.

osphotonics.wordpress.com 97

Application of Zemax Programming Language Open Source Photonics

Table 3.7-3: GETVARDATA type and ID codes

Variable type Type Code Surface Parameter Object
Curvature 1 surface # - -
Thickness 2 surface # - -
Conic 3 surface # - -
Index Nd 4 surface # - -
Abbe Vd 5 surface # - -
Partial Dispersion APg | /F 6 surface # - -
TCE 7 surface # - -
Parameter Values 8 surface # parameter # | -
Extra Data Values 9 surface # extra data # -
Multi-configuration Operand Values 10 oper # config # -
Non-Sequential Object Position X 11 surface # - object #
Non-Sequential Object Position Y 12 surface # - object #
Non-Sequential Object Position Z 13 surface # - object #
Non-Sequential Object Tilt X 14 surface # - object #
Non-Sequential Object Tilt Y 15 surface # - object #
Non-Sequential Object Tilt Z 16 surface # - object #
Non-Sequential Object Parameters 17 surface # parameter # | object #

Example 3.7-1 gives an example of setting and reading variables in ZPL. In this example, we assume the
optical system is the doublet defined in ex30401.ZPL. We will set the curvature radius and thickness of
surface 4 as variables, and read back the value of the variables. The program is shown below:

osphotonics.wordpress.com 98

Application of Zemax Programming Language

Open Source Photonics

! ex30701

CODE1$
CODEZ§
status

1
2
3
4
£ surf = 4
[
2
8
3

16 PRINT

20 PRINT

21 PRINT "Variable ",
22 PRINT "Variable ",
23 PRINT "Variable ",
24 NEXT

10 SETVAR surf, CODE1lj§,
11 SETVAR surf, CODEZ§,

17 PRINT "Total wariable

! This program shows how to
I Assume the lens system is defined in ex30401

"R # Radius
"T" # Thickness
1 # =et variable

status § wvarisble 1, only 3 arguments
status §# wariable 2, only 3 arguments

rurko

19 for g = 1, totalVarNum, 1

13 GETVARDATA 1 # read wvarisble data and put in VEC1
14 totalVarNum = VEC1 (D)

er 1s3: ", totalVarNum

", VEC1(S5%q-4)
", VECL(S5*%g-3)
", VECL(5%q)

set and read variasbles for optimization

After running the program, we can see that, in the lens data editor, letter “V” appears after the values of

radius and thickness of surface 4. It means that the two parameters are set as variables. Also, we can

see the read out values of the variables in the text window, as shown in figure 3.7-1.

#) 1: Text Viewer

Update Settings

Print iindow

Executing D: "My Macros'CHIWEXIOYO1. ZPL.

Total wariable nuwber is: Z_0000

Wariable
Variable
Variable

Wariable
Wariabhle
Variable

=

]

_Qooo
_Qooo
_Qooo

.ooan,
.0ooo
.0ooo

-

-

-

-

-

code nuwber : 1.0000
sur face rawber @ 40000
current walwae @ -0_0041

code nuwber : Z.0000
sur face mawber : 40000
current walue @ 3350000

=1Es

Fig.

3.7-1 Result of program ex30701.ZPL

osphotonics.wordpress.com

99

Application of Zemax Programming Language Open Source Photonics

We notice that the value of variable 1 is the curvature of surface 4, which is a reciprocal of the radius
value shown in the lens data editor.

After we set the variable and merit function, it’s straightforward to do the optimization using keywords
OPTIMIZE and HAMMER provided by ZPL. The syntax is:

OPTIMIZE

OPTIMIZE number_of cycles

OPTIMIZE number_of cycles, algorithm
and

HAMMER

HAMMER number_of cycles

HAMMER number_of_cycles, algorithm

The argument number_of cycles is an integer between 1 and 99 for the number of cycles the
optimization algorithm will run. For the Optimize command, if number_of_cycles evaluates to zero, or
there is no argument, then the optimization runs in “Automatic” mode, stopping when the algorithm
detects the process has converged. For the Hammer command, if there is no argument provided, then
the Hammer optimization runs 1 cycle using Damped Least Squares. For the algorithm argument, use 0
for Damped Least Squares (the default) and 1 for Orthogonal Descent.

Sometimes if we want to directly calculate the values of certain operand variables without putting them
in the merit function, we can use functions OPEV or OPEW provided by ZPL. The two functions are
similar, but have different arguments. The syntax is:

OPEV(code, intl, int2, datal, data2, data3, data4)
and
OPEW/(code, int1, int2, datal, data2, data3, data4, data5s, data6)

where code is the optimization operand code, int1~int2 and datal-data4 are the defining values for the
operand. In general, the operand code is returned by function OCOD(AS), where AS is the string
associated to the optimization operand, such as “EFFL”, etc.

Example 3.7-2 gives an example of optimization in ZPL. In this example, we assume the optical system is
the doublet defined in program ex30401.ZPL, the variables are set as in program ex30701.ZPL, and the

osphotonics.wordpress.com 100

Application of Zemax Programming Language

Open Source Photonics

merit function is set as in program ex30501.ZPL. Our target is to optimize this optical system, and
calculate the effective focal length of the system. The program is shown below:

", efflValue

1 ! ex30702

2 ' This program =shows how to do optimization and calculate operand

3 ! Assume the lens system is defined in ex30401

4 ! Azszume the variables are defined in ex30701

£ ' Assume the merit function is defined in ex30501

[

7 code = QCOD("EFFL") # get the code of operand "EFFL"

g wavelengthiNum = 2

9 efflValue = OPEV (code, 0, wavelengthMNum, 0, 0, 0, 0) # only intZ i= needed
10

11 PRINT

12 PRINT "The effective focal length before optimization is

13

14 OPTIMIZE # use automatic optimization, default algorithm

15

16 efflValue = OPEVicode, 0, wavelengthMNum, 0, 0, 0, 0) # only intZ iz needed
17

18 PRINT

19 PRINT "The effectiwve focal length after optimization 1is

20

", efflValus

In the program, we use function OCOD() to read out the code of the operand for effective focal length
“EFFL”, and directly calculate the effective focal length. We also use keyword OPTIMIZE to optimize the
system, and compare the values of effective focal length before and after optimization. The result is

shown below:

#) 1: Text Viewer

pdate Settings Print Window
Executing D:\My Macros'CH3WEXIO070Z_ZPL.

The effectiwve focal length before optimization is

The effective focal length after optimimation is

B=1e3

400.1435

3991267

Fig. 3.7-2 Result of program ex30702.ZPL

osphotonics.wordpress.com

101

Application of Zemax Programming Language Open Source Photonics

ZPL also provided a keyword similar to automatic optimization: TESTPLATEFIT. This keyword can be
used in optical design to call the test plate fitting routine to fit the test plate library provided by lens
vendors. The syntax is:

TESTPLATEFIT tpd_file, log_file, method, number_cycles

where tpd_file is the test plate data file, log_file is the name of a file for the output log, method is an
integer between 0 and 4, inclusive, for try all methods, best to worst, worst to best, long to short, and
short to long, respectively. The integer number_cycles is 0 for automatic or the maximum number of
optimization cycles to execute. Note the tpd_file name should NOT include the path, since all test plate
files are in a fixed folder, while the path should be included for the log file.

osphotonics.wordpress.com 102

Application of Zemax Programming Language Open Source Photonics

3.8 Ray Tracing

Most of Zemax calculations are based on ray tracing. Therefore, ray tracing is a key function in Zemax.
ZPL provided two keywords RAYTRACE and RAYTRACEX to support ray tracing in sequential systems. As
for ray tracing in non-sequential systems, we will discuss in section 10.

Keyword RAYTRACE calls the Zemax ray tracing routines to trace a particular ray through the current
system. The syntax is:

RAYTRACE hx, hy, px, py, wavelength

where hx and hy are normalized field coordinates with values between -1 and +1; px and py are
normalized pupil coordinates with values between -1 and +1; wavelength is optional working
wavelength, defaulting to the primary wavelength.

Keyword RAYTRACEX calls the Zemax ray tracing routines to trace a particular ray from any starting
surface through the current system. The syntax is:

RAYTRACEX x, y, z, I, m, n, surf, wavelength

where x, y, z are the input ray position in the local coordinates of the starting surface, |, m, n are
direction cosines in the local coordinates of the starting surface, surf is an integer between 0 and the
number of surfaces minus one, inclusive, and wavelength is optional working wavelength, defaulting to
the primary wavelength.

After ray tracing using keyword RAYTRACE or RAYTRACEX, the result can be read by various functions, as
shown in table 3.8-1:

Table 3.8-1: functions used to read back ray tracing result

Functions Description

RAYX(n), RAYY(n), RAYZ(n) The x-coordinate, y-coordinate, and z-coordinate of the ray
intercept. n is the surface number.

RAGX(n), RAGY(n), RAGZ(n) The global x, y and z coordinate of the ray intercept. n is the surface
number.

RAYL(n), RAYM(n), RAYN(n) The x-direction cosine, y-direction cosine, and z-direction cosine of
the ray following the surface. n is the surface number.

RANX(n), RANY(n), RANZ(n) The x-direction cosine, y-direction cosine, and z-direction cosine of
the surface normal. n is the surface number.

RAYT(n) The ray path length from the previous surface to the specified

osphotonics.wordpress.com 103

Application of Zemax Programming Language Open Source Photonics

surface. The path length may be negative. n is the surface number.

RAYO(n) The ray optical path length from the previous surface to the
specified surface. The optical path length is the path length times
the index of refraction, either or both of which may be negative. For
rays inside a non-sequential surface, RAYO returns the sum of the
path length times the index of refraction of all objects the ray
passed through. n is the surface number.

RAYV() 0 if ray was not vignetted, else vignetted surface number.

RAYE() The ray-trace error flag, 0 if no error.

Additionally, ZPL provided the following keywords related to ray tracing: SCATTER, SETAIM, and
SETAIMDATA.

SCATTER is used to control whether sequential surface scattering is done while tracing rays. The syntax
is:

SCATTER ON
or

SCATTER OFF

The default condition at the start of a ZPL program is SCATTER OFF, and all rays will be traced
deterministically. If SCATTER ON is executed, sequential surface scattering will be enabled for all
subsequent RAYTRACE commands.

SETAIM is used to set the state of the ray aiming function. The syntax is:
SETAIM state

where state is 0 for ray aiming off and 1 for ray aiming on.

SETAIMDATA is used to set various data for the ray aiming function. The syntax is:

SETAIMDATA code, value

where code and value are used according to table 3.8-2.

osphotonics.wordpress.com 104

Application of Zemax Programming Language Open Source Photonics

Table 3.8-2: code and value for keyword SETAIMDATA

Code Property
1 Sets "Use Ray Aiming Cache" to true if value is 1, or false if value is 0.
2 Sets "Robust Ray Aiming" to true if value is 1, or false if value is 0.
3 Sets "Scale Pupil Shift Factors by Field" to true if value is 1, or false if value is 0.
4,5, 6 Sets the value of the x, y, and z pupil shift, respectively.
7,8 Sets the value of the x and y pupil compress, respectively.

We will give an example of ray tracing in ZPL program. In this example, we assume the optical system is
the doublet defined in program ex30401.ZPL. We will trace a marginal ray, a chief ray and an arbitrary
ray, and read back the interception information of the rays and different surfaces. The program is
shown below:

osphotonics.wordpress.com 105

Application of Zemax Programming Language

Open Source Photonics

WM = hofn o W N

W oW W WwWwWw e NN RNNRNENRNEBNNRNGNGEEEREERERERRE
oen o WM DWW)M R W N O WD M R W NS

I ex30801
! This program shows how to do ray tracing
I Assuwe the lens system is defined in ex30401

! define the marginal ray
hx o

hy 1]

px = 0

Py 1

wavelength = 2

BAYTRACE hx, hv, px, pvy, wavelength

PRINT

FOR n =
FRINT
FRINT
FRINT
FRINT

NEXT n

3, NSUR(),
"HMar gin& 1

1
ray,
Cross position: ",
direction:
surface

go through the last 3 surfaces
n

RAYX(n),",
RAYL (m),". ",

"

RANZ(n), ", ",

Surface ",

e r

« RRYY(n), ",
RAYM(n), ", ",
RRNYtn] . voom

r ’r

ray

" normal: ",

! define the chief ray
hx o

hy
px
Py

=1
=0
]

RAYTRACE hx, hy, px, py

PRINT

FOR n =
FRINT
FRINT
FRINT

NEXT n

4, NSUR({),
"Chief ray,

P

1 # go through the last 2 surfaces
Surface ", n

RAGE(n),", ",
RAYL (m) ,", ",

"

cross position: rs

" ray direction: ",

"

RAGY(n), ",
RAYM(n}, ", ",

trace the marginal ray

’

£

trace the chief ray, use primary wavelength

.

RLYZ (n)
RAYN (n)
RANZ (n)

RAGZ (n)
RAYN (n)

27
38
33
40
41
42
43
44
45
46
47
48
49
50
51
¥4
53
£4

! define an arbitrary ray on surface 2
0.2
0.3
=0

= 5

[T~ o - -

LUn N S S

0.

0.
= 0.
surf = 2
wavelength = 3

RAYTRACEX ¥,
PRINT
FOR n =
PRINT
PRINT
PRINT
PRINT
NEXT n

z, 1, m, n, surf, wavelength

V'l
3, 5, 1 # go through surfaces 3, 4 and S
"User ray, Surface ", n

" position: ", RAGE(n),"., ",

ray direction: ",

CEOSS

RAYLIn), ", ¥

(1]

surface normal: ", RANX(n),", ’

" "

RAYTH(n), ", ",

RAGY (n), ", ",

RANY (n), ", ",

RATN (n)

RAGZ (n)

RANZ (n)

osphotonics.wordpress.com

106

Application of Zemax Programming Language Open Source Photonics

In this program, we defined a marginal ray, a chief ray, and an arbitrary ray, traced the rays, and read
back ray tracing result with various functions. Please note that when we read the interception position
of rays and surfaces, for marginal ray, the coordinates we read are local ones relative to the surface
apex (line 17 in the program), and for chief ray, the coordinates are global ones (line 33 in the program).

The result of the program is shown below:

#) 1: Text Viewer

Update Settings Print Window
Executing D:3WMy Macros CHIWEXIO201.ZPL.

Marginal ray, Surface 30000
cross positieon: O0.0000, 24_ 7201, -z2.7037
ray direction: 0.0000, O.000%, 1.0000
sur face normal: -0.0000, -0.Z15&, -0.97&5
Marginal ray, Surface 40000
cross positieon: 0.0000, 24_ 80854, -1_E694
ray direction: 0.0000, -0_0&8E5, 0O.32330
sur face normal: -0.0000, -0.10z1, -0.994%8
Marginal ray, Surface 50000
cross positieon: O0.0000, -0_02%1, O.0000
ray direction: 0.0000, -0_0&8E5, 0O.32330
sur face normal: O0.0000, O_.0000, -1.0000

Chief ray, Surface 4_0000
cross position: 0.0000, E5_2105%, 309.&EE3
ray direction: 0.0000, 0.0zz8, 0.9937
Chief ray, Surface L_0000
cross positieon: O0.0000, 34 8576, FOs.0000
ray direction: 0.0000, O.0ZE&, 0.9337

User ray, Surface 3_.0000

cross position: O0.4849, 02533, E22_ 29257

ray direction: 0.07432, 0.15EL5, 0.9334

sur face normal: -0.004Z, -0_00%Y&, —-1.0000
User ray, Surface 4_0000

cross position: 1.8&214, F.61E53, 3210.92663

ray direction: 0.1153, 0.237E&, 0.93E57

sur face normal: -0.007&, -0_0l45, -0.9939
User ray, Surface L&_0000

cross positieon: 47.5513, 277011, 7FO&_ 0000

ray direction: 0.1153, 0.237E&, 0.93E57

sur face normal: O0.0000, O_.0000, -1.0000

Fig. 3.8-1 Result of program ex30801.ZPL

Besides the ray tracing commands mentioned above, ZPL also provided two keywords POLDEFINE and
POLTRACE specifically for polarized light ray tracing. POLDEFINE is used to set initial polarization state,

and POLTRACE is used to do polarization ray tracing. The syntax for POLDEFINE is:

osphotonics.wordpress.com

Application of Zemax Programming Language Open Source Photonics

POLDEFINE Jx, Jy, PhaX, PhaY

where Jx and Jy are Jones electric field magnitudes, PhaX and PhaY are phases in degrees. The input
values are automatically normalized to have unity magnitude. The default values are 0, 1, 0, and O,
respectively. Once the polarization state is defined, it remains the same until changed.

The syntax for POLTRACE is:
POLTRACE Hx, Hy, Px, Py, wavelength, vec, surf

where Hx and Hy are normalized object coordinates with values between -1 and 1; Px and Py are pupil
coordinates with values also between -1 and 1; wavelength is the wavelength order number between 1
and the the maximum number of defined wavelengths; vec is an integer number between 1 and 4 for
the 4 default ZPL vector arrays; surf is the surface number between 1 and the number of total surfaces,
inclusive. The input polarization state of the ray is defined by the POLDEFINE keyword.

Once the ray is traced, the polarization data for the ray is placed in the vector variable specified by the
vec expression. The data storage format is shown in table 3.8-3:

Table 3.8-3: format of polarization ray tracing result storage

Array Position Description
0 n, the number of data entries in the vector. 0 means there is an error.
The ray intensity after the surface
2 E-Field X component, real
3 E-Field Y component, real
4 E-Field Z component, real
5 E-Field X component, imaginary
6 E-Field Y component, imaginary
7 E-Field Z component, imaginary
8 S-Polarization field amplitude reflection, real
9 S-Polarization field amplitude reflection, imaginary
10 S-Polarization field amplitude transmission, real
11 S-Polarization field amplitude transmission, imaginary
12 P-Polarization field amplitude reflection, real
13 P-Polarization field amplitude reflection, imaginary
14 P-Polarization field amplitude transmission, real

osphotonics.wordpress.com 108

Application of Zemax Programming Language Open Source Photonics

15 P-Polarization field amplitude transmission, imaginary
16 E-Field X direction phase Px

17 E-Field Y direction phase Py

18 E-Field Z direction phase Pz

19 Major axis length of polarization ellipse

20 Minor axis length of polarization ellipse

21 Angle of polarization ellipse in radians

22 The surface number at which the ray was vignetted or zero if not vignetted
23 S-Polarization ray amplitude reflection, real

24 S-Polarization ray amplitude reflection, imaginary

25 S-Polarization ray amplitude transmission, real

26 S-Polarization ray amplitude transmission, imaginary
27 P-Polarization ray amplitude reflection, real

28 P-Polarization ray amplitude reflection, imaginary

29 P-Polarization ray amplitude transmission, real

30 P-Polarization ray amplitude transmission, imaginary

We now give an example to discuss the usage of POLDEFINE and POLTRACE in ZPL.

osphotonics.wordpress.com 109

Application of Zemax Programming Language Open Source Photonics

Example 3.8-2: Polarization ray tracing

1! ex30802

2 ! This program shows how to do polarization ray tracing
3 ! Assume the lens system is defined in ex30401
4

& ! define the initial polarizatcion

& Jx = 1

7Jdy = 1

€ PhaiX = 0

9 Phai¥ = 0

10 POLDEFINE Jx, Jv, PhaiX, Phai¥

1l

12 ' define the chief ray

12 hx = 0

14 hy = 1

15 px = 0O

16 py = 0

17

18 ! choose the wvector nuber

19 wvec = 1

zo

2l ! ray tracihg

22 POLTRACE hx, hy, px, pyv, pwav()l, wec, nsur()

23

24 PRINT

25 PRINT "Transmission of imary wavelength is ", wecl(l)
zé PRINT "Aingle of polari ", vecl(21l), " radians"

In this example, we assume the optical is the doublet defined in ex30401.ZPL. We first set the initial
polarization state (lines 6~10) and defined a chief ray (lines 13~16), selected default vector vecl for data
storage, and then started polarization ray tracing. The result is shown below:

#) 1: Text Viewer

pdate Setkings Print Window
Executing D: "My Macros'CH3IWEXIOE0Z. ZPL.

Tran=smission of chief ray at primary wawelength i=s 0.8997
Angle of polarizgation ellipse is 07260 radians

Fig. 3.8-2 Result of program ex30802.ZPL

osphotonics.wordpress.com 110

Application of Zemax Programming Language Open Source Photonics

3.9 System Analysis

Zemax provided a lot of analysis tools to evaluate the performance of an optical system, with many of
them providing text output. For example, the menu option Wavefront Map in figure 3.9-1(a) can display
the wavefront map at a given surface, as shown in figure 3.9-1(b), as well as text information of the
wavefront map shown in figure 3.9-1(c). In this example we assume the optical system is the doublet
defined in example ex30401.ZPL.

81 ZEMAX-EE
File Editors

Systermn BNEGEWEEN Tools Repaorks Macros Extensions Window Help

Mew| Ope| Sav | Sas Layout
Fans
] Lens Data Edi [t
MTF
Edit Solves Wiew psF
Surf:Type Wavefront Map Thickness
0BT Bta1 Surface r Interferogram Chrl+1 Infinity
=70 Stz RM3 » Foucault Analysis Z7E5._ 000000
z grag Encircled Energy r £00. 000000 12.000000
3 Sra Llumination ’ -11&5.000000 12000000
4 St Image Analysis ¢ z -243.000000 29E.000000
Biocular Analysis [—
Sta Miscellaneous » Infinicy ~
Aberration Coefficients »
Calculations »
Glass and Gradient Index #
Universal Plat »
Polarization »
Coatings 4
3

Pheysical Optics

(a) ZEMAX analysis tool menu option

osphotonics.wordpress.com 111

Application of Zemax Programming Language Open Source Photonics

#1 1: Wavefront Map 1
Update Settings Print indow Text Zoom

¥YZ, IMC,
B.E27L pe AT @.Q3800 DEC l&@Ed AECS STEEET
FEF. Td WALLET = L.3&%1 WAVES. FAS = B.334d NAVES. OPTICE CITY
SURFACE | THAGE
EXIT PUPIL COIANETER: 1.390SE+INE HILLIMETERS LENS . IMx
COMFISURATION 1 DF 1

(b) graphical output of the analysis result

osphotonics.wordpress.com 112

Application of Zemax Programming Language Open Source Photonics

$) 2: Wavefront Map 2
Update Settings Print Window

Listing of Wavefront Map Data L

File :© C:A\Program Files'ZEM2XNSAMPLESYLENS. ZMH
Title:

WAVEFRONT FUMCTION

0.5876 pw at 0.0000 deg

Peak to walley = 1.36%91 wawes, BME = 0.3260 wawves.
tur face: Image

Exit Pupil Diameter: 1.8305E+4+00E Millimeters

Pupil grid size: &4 by &d
Center point is: Col 33, Row 3E

0.000000E+000 0O_000000E+4+000 O_000000E+000 0.000000E+4000
0.000000E+000 0O_000000E+4+000 O_000000E+000 0.000000E+000
0.000000E+000 Q_000000E+000 0. 000000E+000 0. 000000E+000
0.000000E+000 0O_000000E+4+000 O_000000E+000 0.000000E+4000
0.000000E+000 0O_000000E+4+000 O_000000E+000 0.000000E+4+000
0.000000E+000 0O_000000E+4+000 O_000000E+000 0.000000E+000
0.000000E+000 0O_.000000E+000 0O.000000E+000 0.000000E+4000
4 *

(c) text output of the analysis result

Fig. 3.9-1: ZEMAX analysis options and different output of the result

For the text output, ZPL provided a keyword GETTEXTFILE to read related information and store the
result in a text file. The syntax is:

GETTEXTFILE textfilename$, type, settingsfilenames, flag

The textfilename argument is a string for the target file name, including the full path and extension of
the file name. The string function STEMPFILENAME can be used to define a suitable temporary file
name. The type argument is a 3 character string code that indicates the type of analysis to be
performed, as shown in table 3.9-1. The string codes are identical to those used for the button bar in
Zemakx. A list of string codes may be found on the “Buttons” tab of the File, Preferences dialog box. If no
type is provided or recognized, a standard ray trace will be generated.

The settingsfilename$ argument is a string for using or saving the settings, depending on the value of

the flag parameter. If the flag value is 0, then the default settings will be used. If the lens file has its own

default settings, then those will be used; these are the settings stored in the “lensfilename.cfg” file. If no
osphotonics.wordpress.com 113

Application of Zemax Programming Language Open Source Photonics

lens specific default settings exist, then the default settings for all Zemax files, stored in the file
“Zemax.CFG” will be used, if any. If no previous settings have been saved for this or any other lens, then
the default settings used are the “factory” defaults used by Zemax. If the flag value is 1, then the
settings provided in the settings file, if valid, will be used to generate the file. If the data in the settings
file is in anyway invalid, then the default settings will be used to generate the file. The only valid settings
files are those generated by Zemax, then renamed and saved to a new user defined file name. If the flag
value is 2, then the settings provided in the settings file, if valid, will be used and the settings box for the
requested feature will be displayed. After the user makes any changes to the settings the file will then
be generated using the new settings. The dialog boxes used to change the analysis settings use the data
from the lens currently in the Lens Data Editor.

No matter what the flag value is, if a valid file name is provided for the settingsfilename, the settings
used will be written to the settings file, overwriting any data in the file. To modify the settings defined
within an existing settings file, use keyword MODIFYSETTINGS.

Please note that only text, and not graphic files, are supported by GETTEXTFILE.

Table 3.9-1: type code used in keyword GETTEXTFILE

Code Description
Bfv Beam File Viewer
Caa Coating Abs. vs Angle
Car Cardinal Points
Caw Coating Abs. vs Wavelength
Cda Coating Diattenuation vs Angle
Cdw Coating Diatten. vs Wavelength
Cfs Chromatic Focal Shift
Chk System Check
Cls Coating List
Cna Coating Retardation vs Angle
Cnw Coating Retardation vs Waveleng
Con Conugate Surface Analysis
Cpa Coating Phase vs Angle
Cpw Coating Phase vs Wavelength

osphotonics.wordpress.com 114

Application of Zemax Programming Language

Open Source Photonics

Cra Coating Refl. vs Angle
Crw Coating Refl. vs Wavelength
Cta Coating Tran. vs Angle
Ctw Coating Tran. vs Wavelength
Dim Diffraction Image Analysis
Dip Dipvergence/Convergence Data
Dis Dispersion Diagram
Enc Diff Encircled Energy
Fcd Field Curvature/ Distortion
Fcl Fiber Coupling
Fmm FFT MTF Map
Foa Foucault Analysis
Foo Footprint Analysis
Fps FFT PSF
Gbp Paraxial Gaussion Beam
Gbs Skew Gaussian Beam
Gee Geom Encircled Energy
Gip Grin Profile
Gmm Geometric MTF map
Gmp Glass Map
Gpr Gradium Profile
Grd Grid Distortion
Gtf Geometric MTF
Gvf Geometric MTF vs Field
Hcs Huygens PSF Cross Section
Hmf Huygens MTF
Hps Huygens PSF
Hsm Huygens Surface MTF

osphotonics.wordpress.com

115

Application of Zemax Programming Language

Open Source Photonics

Htf Huygens Through Focus MTF
Ibm Geomatric Bitmap Ima. Analysis
IIf Illumination Surface

Ils [llumination XY Scan
Ima Geometric Energy Analysis
Imv IMA/BIM File Viewer

Int Interferogram

Lat Lateral Color

Lin Geom Line/Edge Spread
Lon Longitudinal Aberration
Lsf FFT Line/Edge Spread
Mfl Merit Function List

Mtf FFT MTF

Mth FFT MTF vs field
Opd Opd Fan

Pab Pupil Aberration Fan

Pal Power Field Map

Pcs FFT PSF cross section
Pha Polarization Phase Abberation
Pmp Polarization Pupil Map
Pol Polarization Ray Trace
Pop Physical Optics Propagation
Ppm Power Pupil Map

Pre Prescription Data

Ptf Polarization Transmission Fan
Ray Ray Fan

Rel Relative Illumination
Rfm RMS Field Map

osphotonics.wordpress.com

116

Application of Zemax Programming Language

Open Source Photonics

Rmf RMS vs. Focus

Rms RMS vs. Field
Rmw RMS vs. Wavelength

Rtr Ray Trace

Sag Sag Table

Sei Seidel Coefficients

Smf Surface MTF

Spt Spot Diagram

Srp Surface Phase

Srs Surface Sag

Sur Surface Data

Sys System Data

Tfg Geometric through focus MTF
Tfm FFT Through Focus MTF
Tls Tolerance List

Tpl Test Plate List

Tra Polarization Transmission Data
Trw Internal Transmission vs Lambda
Tsm Tolerance Data Summary
Uni Universal Plot — 1D

Un2 Universal Plot — 2D

Vig Vignetting Plot

Wifm Wavefront Map

Xdi Extended Diffra Image Analysis
Xse Extended source encircled energ
Yni YNI Contribution

Yyb Y-Ybar

Zat Zernike Annular Coefficients

osphotonics.wordpress.com

117

Application of Zemax Programming Language Open Source Photonics

Zfr Zernike Fringe Coefficients

Zst Zernike Standard Coefficients

In example 3.9-1, we will show how to get the analysis result as in figure 3.9-1(c).

1 ! ex30901

2 ! Thi=s program shows how to get analyvsis informwation
3 ! Assume the lens systéem is defined in ex30401
4

5 ! Gert a vemporary file name

6 A§ = STEMPFILENAME ()

7

g ! Compuce the data and place in the temp Lfile
9 GETTEXTFILE A%, Wfm

10

11 ! Open the temp file and print it out

12 OPEN A%

13 LABEL 1

14 READSTRING B%

15 IF ('EQFF())

16 PRINT E$

17 GOTO 1

18 ENDIF

19 CLOSE

In this program, we created a temporary file through function STEMPFILENAME(), then used keyword
GETTEXTFILE to read out the analysis result of wavefront and save it to the temporary file. After that,
we only need to open the temporary file, read the content line by line and display it on the screen, and
we can get the text information of the wavefront as shown in figure 3.9-2:

osphotonics.wordpress.com 118

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Settings Print Window

Executing D:3WMy Macros CHIWEXIOZ01.ZPL.
Lizting of Wawvefront Map Data

File
Title:

CiwProgram Files' 2EMAX0, SAMPLESWLENS. ZMK

WAVEFRONT FUNCTION
0_5876 pm at 00000 deg
Peak to walley = 1.36%1 wawes,
tur face: Imadge
Exit Pupil Diameter:

PM3 = 0.38560 wawes.

1.2305E+00Z Millimeters

Pupil grid sizme: &4 by &d

Center point is: Col 33, Row 3E
0.000000E+000 0O_000000E+4+000 O.000000E+000 0. 000000E+000
0.000000E+000 0O_000000E+4+000 O.000000E+000 0. 000000E+000
0.000000E+000 0O_000000E+000 O.000000E+000 0O.000000E+000
0.000000E4000 0O_000000E+4000 0O.000000E+000 0. 000000E+000
0.000000E+000 0O_000000E+4+000 O.000000E+000 0. 000000E+000
0.000000E+000 0O_000000E+4+000 0O.000000E+000 O.000000E+000 4

£ >

Fig. 3.9-2: The analysis result of wavefront read by ZPL program.

If we compare figure 3.9-1 and 3.9-2, we can find that they are actually the same.

When we use keyword GETTEXTFILE to analyze and read information, if we want to modify the setting
file, we can use keyword MODIFYSETTINGS. The syntax is:

MODIFYSETTINGS settingsfilenames, type, value

In this command, the settingsfilename must be in quotes, or be a string variable name, and include the
full path, name, and extension for the file to be modified. The type argument is a text mnemonic that
indicates which setting within the file is to be modified. The supported values for the type argument are
listed in the table below. Because there are many different types of analysis windows, and each has
many different settings available, the list of types does not include all possible settings. After the
command is executed, the old setting file will be updated.

osphotonics.wordpress.com 119

Application of Zemax Programming Language Open Source Photonics

Table 3.9-2: type codes supported by MODIFYSETTINGS

Feature Available type codes
2D Layout LAY _RAYS: The number of rays.
Detector Viewer DVW_SURFACE: The surface number. Use 1 for Non-Sequential mode.

DVW_DETECTOR: The detector number.

DVW_SHOW: The “show as” setting. The meaning depends upon the type of
window displayed: For Graphics Windows: Use 0 for grey scale, 1 for inverted
grey scale, 2 for false color, 3 for inverted false color, 4 for cross section row,
and 5 for cross section column. For Text Windows: Use 0 for full pixel data, 1
for cross section row, and 2 for cross section column.

DVW_ROWCOL.: The row or column number for cross section plots.
DVW_ZPLANE: The Z-Plane number for detector volumes.

DVW_SCALE: The scale mode. Use 0 for linear, 1 for Log -5, 2 for Log -10,
and 3 for Log - 15.

DVW_SMOOTHING: The integer smoothing value.

DVW_DATA: Use 0 for incoherent irradiance, 1 for coherent irradiance, 2 for
coherent phase, 3 for radiant intensity, 4 for radiance (position space), and 5 for
radiance (angle space).

DVW_ZRD: The ray data base name, or null for none.

DVW_FILTER: The filter string.

DVW_MAXPLOT: The maximum plot scale.

DVW_MINPLOT: The minimum plot scale.

DVW_OUTPUTFILE: The output file name.

Extended Diffraction EXD_DISPLAYSIZE: The display size.
Image Analysis EXD_FIELD: The field number.
EXD_FILESIZE: The file size.
EXD_WAVE: The wavelength number.

FFT Line/Edge Spread | LSF_COHERENT: Use 0 for incoherent, 1 for coherent

LSF_TYPE: Use 0-9 for X-Linear, Y-Linear, X-Log, Y-Log, X-Phase, Y-
Phase, XReal, Y-Real, X-Imaginary, or Y-Imaginary, respectively.
LSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.
LSF_SPREAD: Use 0 for line, 1 for edge.

LSF_WAVE: The wavelength number, use 0 for polychromatic (incoherent
only)

LSF _FIELD: The field number.

LSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.

LSF PLOTSCALE: The plot scale.

FFT PSF PSF_TYPE: Use 0-4 for Linear, Log, Phase, Real, or Imaginary, respectively.
PSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.
PSF_WAVE: The wavelength number, use O for polychromatic.
PSF_FIELD: The field number.

PSF_SURFACE: The surface number, use 0 for image.
PSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.
PSF_NORMALIZE: Use 0 for unnormalized, 1 for unity normalization.
PSF_IMAGEDELTA: The image point spacing in micrometers.

FFT PSF Cross PSF_TYPE: Use 0-9 for X-Linear, Y-Linear, X-Log, Y-Log, X-Phase, Y-Phase,

osphotonics.wordpress.com 120

Application of Zemax Programming Language Open Source Photonics

Section

XReal, Y-Real, X-Imaginary, or Y-Imaginary, respectively.

PSF_ROW: The row number (if doing an X scan) or column number (if doing a
Y scan). Use O for center.

PSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.

PSF_WAVE: The wavelength number, use 0 for polychromatic.

PSF_FIELD: The field number.

PSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.
PSF_NORMALIZE: Use 0 for unnormalized, 1 for unity normalization.

PSF PLOTSCALE: The plot scale.

Footprint Diagram

FOO_RAYDENSITY: The ray density. Use 0 for ring, 1 for 10, 2 for 15, 3 for
20 etc.

FOO_SURFACE: The surface number.

FOO_FIELD: The field number.

FOO_WAVELENGTH: The wavelength number.
FOO_DELETEVIGNETTED: Delete vignetted, use 0 for no, 1 for yes.

Geometric Bitmap
Image Analysis

GBM_FIELDSIZE: The field Y size.
GBM_RAYS: The number of rays per source pixel.
GBM_XPIX: The number of X pixels.
GBM_YPIX: The number of Y pixels.
GBM_XSIZ: The X pixel size.

GBM_YSIZ: The Y pixel size.

GBM_INPUT: The input file name
GBM_OUTPUT: The output file name
GBM_SURFACE: The surface number
GBM_ROTATION: The rotation setting

Geometric Image
Analysis

IMA_FIELD: The field size.
IMA_IMAGESIZE: The image size.
IMA_IMANAME: The image file name.
IMA_KRAYS: The number of rays x 1000.
IMA_NA: The numerical aperture.
IMA_OUTNAME: The output file name.
IMA_SURFACE: The surface number.
IMA_PIXELS: The number of pixels.

FFT Through Focus
MTF

TFM_SAMP: The sampling. Use 1 for 32x32, 2 for 64x64, etc.
TFM_DELTAFOC: The delta focus.

TFM_FREQ: The spatial frequency for which the data is plotted.
TFM_STEPS: The number of focal plane steps.

TFM_WAVE: The wavelength number. Use 0 for all.

TFM_FIELD: The field number. Use 0 for all.

TFM_TYPE: The data type. Use 0 for modulation, 1 for real, 2 for imaginary, 3
for phase, or 4 for square wave.

TFM_POLAR: Use polarization. Use 0 for no, 1 for yes.

TFM_DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens MTF

HMF_PUPILSAMP: The pupil sampling. Use 1 for 32x32, 2 for 64x64, etc.
HMF_IMAGESAMP: The image sampling. Use 1 for 32x32, 2 for 64x64, etc.
HMF_IMAGEDELTA: The image point spacing in micrometers.
HMF_CONFIG: The configuration number. Use 0 for all, 1 for current, etc.
HMF_WAVE: The wavelength number. Use 0 for polychromatic.
HMF_FIELD: The field number. Use O for all.

HMF_TYPE: The data type. Currently only modulation (0) is supported.

osphotonics.wordpress.com 121

Application of Zemax Programming Language Open Source Photonics

HMF_MAXF: The maximum spatial frequency.
HMF_POLAR: Use polarization. Use 0 for no, 1 for yes.
HMF_DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens Through
Focus MTF

HTF_PUPILSAMP: The pupil sampling. Use 1 for 32x32, 2 for 64x64, etc.
HTF_IMAGESAMP: The image sampling. Use 1 for 32x32, 2 for 64x64, etc.
HTF_IMAGEDELTA: The image point spacing in micrometers.
HTF_CONFIG: The configuration number. Use O for all, 1 for current, etc.
HTF_FREQ: The spatial frequency for which data is plotted.

HTF_WAVE: The wavelength number. Use 0 for all.

HTF_FIELD: The field number. Use 0 for all.

HTF_TYPE: The data type. Currently only modulation (0) is supported.
HTF_DELTAFOC: The delta focus.

HTF_STEPS: The number of focal plane steps.

HTF_POLAR: Use polarization. Use 0 for no, 1 for yes.

HTF _DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens MTF vs.
Field

HMH_SAMP: The sampling. Use 1 for 32x32, 2 for 64x64, etc.
HMH_SCANTYPE: The field scan type. Use 0 for +Y, 1 for +X, etc.
HMH_WAVE: The wavelength. Use 0 for all.
HMH_FIELDDENSITY: The field density.

HMH_FREQL.: Spatial frequency 1.

HMH_FREQ2: Spatial frequency 2.

HMH_FREQ3: Spatial frequency 3.

HMH_FREQ4: Spatial frequency 4.

HMH_FREQ5: Spatial frequency 5.

HMH_FREQ®6: Spatial frequency 6.

HMH_POLAR: Use polarization. Use 0 for no, 1 for yes.
HMH_DASH: Use dashes. Use 0 for no, 1 for yes.
HMH_REMOVEVIGNETTING: Remove vignetting factors. Use 0 for no, 1 for
yes.

Huygens PSF

HPS_PUPILSAMP: The pupil sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.
HPS_IMAGESAMP: The image sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.
HPS_WAVE: The wavelength number, use 0 for polychromatic.

HPS_FIELD: The field number.

HPS_IMAGEDELTA: The image point spacing in micrometers.

HPS_TYPE: The data type. Use 0-8 for Linear, Log -1, Log -2, Log -3, Log -4,
Log -5, Real, Imaginary, or Phase, respectively.

Huygens PSF Cross
Section

HPC_PUPILSAMP: The pupil sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.
HPC_IMAGESAMP: The image sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.
HPC_WAVE: The wavelength number, use 0 for polychromatic.

HPC_FIELD: The field number.

HPC_IMAGEDELTA: The image point spacing in micrometers.

HPC_TYPE: The data type. Use 0-9 for X-Linear, X-Log, Y-Linear, Y-Log,
XReal, Y-Real, X-Imaginary, Y-Imaginary, X-Phase, or Y-Phase, respectively.

IHlumination XY Scan

ILL_SOURCE: The source size.
ILL_SMOOQOTH: The smoothing value to use.
ILL_DETSIZE: The detector size.
ILL_SURFACE: The surface number.

Image Simulation

ISM_INPUTFILE: The input file name. This should be specified without a path.
ISM_FIELDHEIGHT: The Y field height.
ISM_OVERSAMPLING: Oversample value. Use 0 for none, 1 for 2X, 2 for 4x,

osphotonics.wordpress.com 122

Application of Zemax Programming Language Open Source Photonics

etc.

ISM_GUARDBAND: Guard band value. Use 0 for none, 1 for 2X, 2 for 4x, etc.
ISM_FLIP: Flip Source. Use 0 for none, 1 for TB, 2 for LR, 3 for TB&LR.
ISM_ROTATE: Rotate Source: Use 0 for none, 1 for 90, 2 for 180, 3 for 270.
ISM_WAVE: Wavelength. Use 0 for RGB, 1 for 1+2+3, 2 for wave #1, 3 for
wave #2, etc.

ISM_FIELD: Field number.

ISM_PSAMP: Pupil Sampling. Use 1 for 32x32, 2 for 64x64, etc.
ISM_ISAMP: Image Sampling. Use 1 for 32x32, 2 for 64x64, etc.
ISM_PSFX, ISM_PSFY: The number of PSF grid points.
ISM_ABERRATIONS: Use 0 for none, 1 for geometric, 2 for diffraction.
ISM_POLARIZATION: Use 0 for no, 1 for yes.

ISM_FIXEDAPERTURES: Use 0 for no, 1 for yes.

ISM_USERI: Use 0 for no, 1 for yes.

ISM_SHOWAS: Use 0 for Simulated Image, 1 for Source Bitmap, and 2 for
PSF Grid.

ISM_REFERENCE: Use 0 for chief ray, 1 for vertex, 2 for primary chief ray.
ISM_SUPPRESS: Use 0 for no, 1 for yes.

ISM_PIXELSIZE: Use 0 for default or the size in lens units.

ISM_XSIZE, ISM_YSIZE: Use 0 for default or the number of pixels.
ISM_FLIPIMAGE: Use 0 for none, 1 for top-bottom, etc.
ISM_OUTPUTFILE: The output file name or empty string for no output file.

MTF - FFT

MTF_SAMP: The pupil sampling, use 1 for 32, 2 for 64, etc.

MTF_WAVE: The wavelength number, use 0 for all.

MTF_FIELD: The field number, use 0 for all.

MTF_TYPE: Use 0 for modulation, 1 for real, 2 for imaginary, 3 for phase, 4
for square wave.

MTF_SURF: The surface number, use 0 for image.

MTF_MAXEF: The maximum frequency, use 0 for default.

MTF_SDLI: Show diffraction limit, O for no, 1 for yes.

MTF_POLAR: Polarization, 0 for no, 1 for yes.

MTF_DASH: Use dashes, 0 for no, 1 for yes.

NSC Object Viewer

SHA _ROTX: The x rotation in degrees.
SHA_ROTY: The y rotation in degrees.
SHA ROTZ: The z rotation in degrees.

NSC Shaded Model

SHA _ROTX: The x rotation in degrees.
SHA_ROTY: The y rotation in degrees.
SHA ROTZ: The z rotation in degrees.

Partially Coherent
Image Analysis

PCI_FIELD: The field number.

PCI_FILESIZE: The file size.

PCI_WAVE: The wavelength number.

PCI_RESAMPLE: The resample image setting, 0 for no 1 for yes.
PCI_RSNX: The resample number x

PCI_RSNY: The resample number y

PCI_RSDCX: The resample decenter x

PCI_RSDCY: The resample decenter y

PCI_RSDLX: The resample delta x

PCI_RSDLY: The resample delta y

Polarization Pupil Map

PPM_SAMP: The sampling, use 0 for 3x3, 1 for 5x5, 2 for 7x7, etc.
PPM_FIELD: The field number.

osphotonics.wordpress.com 123

Application of Zemax Programming Language Open Source Photonics

PPM_WAVE: The wavelength number.
PPM_SURFACE: The surface number.

PPM_JX: The Jx amplitude.

PPM_JY: The Jy amplitude.

PPM_PX: The Px phase.

PPM_PY': The Py phase.

PPM_ADDCONFIG: The add configs string.
PPM_SUBCONFIGS: The subtract configs string.

Physical Optics
Propagation - General
Tab

POP_END: The end surface.
POP_FIELD: The field number.
POP_START: The starting surface.
POP_WAVE: The wavelength number.

Physical Optics
Propagation - Beam
Definition Tab

POP_AUTO: Simulates the pressing of the “auto” button which chooses
appropriate X and Y beam widths based upon the sampling and other settings.
POP_BEAMTYPE: Selects the beam type. Use 0 for Gaussian Waist, 1 for
Gaussian Angle, 2 for Gaussian Size + Angle, 3 for Top Hat, 4 for File, 5 for
DLL and 6 for Multimode.

POP_PARAMN: Sets beam parameter n, for example, use POP_PARAM3 to set
parameter3.

POP_PEAKIRRAD: Sets the normalization by peak irradiance.
POP_POWER: Sets the normalization by total beam power.

POP_SAMPX: The X direction sampling, use 1 for 32, 2 for 64, etc.
POP_SAMPY: The Y direction sampling, use 1 for 32, 2 for 64, etc.
POP_SOURCEFILE: The file name if the starting beam is defined by a ZBF
file, DLL, or multimode file.

POP_WIDEX: The X direction width.

POP_WIDEY: The Y direction width.

Physical Optics
Propagation - Fiber
Data Tab

POP_COMPUTE: Use 1 to check the fiber coupling integral on, 0 to check it
off.

POP_FIBERFILE: The file name if the fiber mode is defined by a ZBF or DLL.
POP_FIBERTYPE: Use the same values as POP_BEAMTYPE above, except
for multimode which is not yet supported.

POP_FPARAMN: Sets fiber parameter n, for example, use POP_FPARAMS3 to
set fiber parameter3.

POP_IGNOREPOL.: Use 1 to ignore polarization, 0 to consider polarization.
POP_POSITION: Fiber position setting. Use 0 for chief ray, 1 for surface
vertex.

POP_TILTX: The X-Tilt.

POP_TILTY: The Y-Tilt.

Relative Illumination

REL_RAYDENSITY: The number of rays.

REL_FIELDDENSITY: The number of field points.

REL_WAVE: The wavelength number, use O for all.

REL_POLAR: Use 1 to use polarization, O to ignore polarization

REL_LOG: Use 1 for a log scale, O for linear.
REL_REMOVEVIGNETTING: Use 1 to remove vignetting factors, otherwise
0.

REL_SCANTYPE: Use 0 for +y, 1 for +x, 2 for -y, or 3 for -x scan direction.

Shaded Model

SHA_ROTX: The x rotation in degrees.
SHA_ROTY: The y rotation in degrees.
SHA ROTZ: The z rotation in degrees.

osphotonics.wordpress.com 124

Application of Zemax Programming Language

Open Source Photonics

Spot Diagram

SPT_RAYS:

The ray density.

Surface Sag

SRS_SAMP: The sampling. Use 1 for 33x33, 2 for 65x65, etc.

SRS_SURF:

The surface number.

Universal Plot 1D

UN1_CATEGORY: Use 0 for surface, 1 for system, 2 for config.
UN1 PARAMETER: Use 0 for first option, 1 for second option, etc.

UN1_SURFACE: The surface or configuration number.

UN1_STARTVAL: The start value for the independent variable.
UN1 STOPVAL.: The stop value for the independent variable.
UN1_STEPS: The number of steps between start and stop.

UN1_OPERAND: The optimization operand name.

UN1_MFLINE: The optimization operand line number. Use 0 for MF value.

UNI1_PARI:
UN1_PAR2:
UN1_PARS:
UN1_PAR4:
UN1_PARS:
UN1_PARG:
UN1_PARY:
UN1_PARS:

Operand parameter 1.
Operand parameter 2.
Operand parameter 3.
Operand parameter 4.
Operand parameter 5.
Operand parameter 6.
Operand parameter 7.
Operand parameter 8.

UN1_PLOTMIN: The minimum plot value for the dependent variable.
UN1_PLOTMAX: The maximum plot value for the dependent variable.
UN1 TITLE: The plot title.

Universal Plot 2D

UN2_CATEGORYX: Use 0 for surface, 1 for system, 2 for config.
UN2_PARAMETERX: Use 0 for first option, 1 for second option, etc.
UN2_SURFACEX: The surface or configuration number.
UN2_STARTVALX: The start value for the independent variable.
UN2_STOPVALX: The stop value for the independent variable.
UN2_STEPSX: The number of steps between start and stop.
UN2_CATEGORYY: Use 0 for surface, 1 for system, 2 for config.
UN2_PARAMETERY: Use 0 for first option, 1 for second option, etc.
UN2_SURFACEY: The surface or configuration number.
UN2_STARTVALY: The start value for the independent variable.
UN2_STOPVALY: The stop value for the independent variable.
UN2_STEPSY: The number of steps between start and stop.

UN2_OPERAND: The optimization operand name.

UN2_MFLINE: The optimization operand line number. Use 0 for MF value.

UN2_PARL:
UN2_PAR2:
UN2_PARS:
UN2_PAR4:
UN2_PARS5:
UN2_PARS:
UN2_PART:
UN2_PARS:

Operand parameter 1.
Operand parameter 2.
Operand parameter 3.
Operand parameter 4.
Operand parameter 5.
Operand parameter 6.
Operand parameter 7.
Operand parameter 8.

UN2_SHOWAS: Data display. Use 0 for surface, 1 for contour, etc.

UN2_CONTOURFORMAT: Contour format string.

UN2_PLOTMIN: The minimum plot value for the dependent variable.
UN2_PLOTMAX: The maximum plot value for the dependent variable.
UN2_TITLE: The plot title.

osphotonics.wordpress.com

125

Application of Zemax Programming Language

Open Source Photonics

Wavefront Map WFM_SAMP: The sampling, use 1 for 32, 2 for 64, etc.
WFM_FIELD: The field number.

WFM_WAVE: The wavelength number.
WFM_SUBSR: The sub aperture radius.
WFM_SUBSX: The sub aperture X decenter.
WFM_SUBSY: The sub aperture Y decenter.

Example 3.9-2 shows how to modify settings using keyword MODIFYSETTINGS in the program. This
program is almost the same as example 3.9-1, with only lines to modify settings added at the very

beginning (lines 5 and 6), as shown below:

1 ! ex30902

2 ! This program shows how to modify setting file for analysis
2 ! Assume the lens syatem is defined in ex30401

4

& settingFile§ = "C:'\Program Files) ZEMLX) Jampl

6 MODIFYSETTINGS settingFile$, WFH_SAMP, 3

7

g ! Get a temporary file name

9 A§ = STEMPFILENAME ()

10

11 ! Compute the data and place in the temp file
1z GETTEXTFILE A§, Wfm

13

14 ! Open the temp file and print it out
15 OFPEN A}

16 LABEL 1

17 READSTRING E$

18 IF ('EOFF ()1}

19 FRINT E§

20 GOTO 1

21 ENDIF

22 CLOSE

Please note that the parameter setting file is placed in the same folder as the lens file. In this program,
we set the wavefront sampling value as 3, i.e. 128x128. The result of the program is shown in figure 3.9-

3:

osphotonics.wordpress.com

126

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Settings Print Window

Executing D:3WMy Macros CHIWEXIO20Z . ZPL. Y
Lizting of Wawvefront Map Data

File : C:Z\Program File='ZEMAX SAMPLESYLENS. ZITK
Title:

WAYEFRONT FUMCTION

0.E5876 pw at 0.0000 deg

Peak to walley = 1.3691 wawes, PM3 = 0.3835Z wawes.
tuar face: Inage

Exit Pupil Diameter: 1.8305E+4+00Z Millimeters

Pupil grid size: 128 by 128
Center point is: Col &5, Row &4

0.000000E4000 0O_000000E+4000 0O.000000E+000 0. 000000E+4+000
0.000000E+000 0O_000000E+4+000 O.000000E+000 0. 000000E+000
0.000000E+000 Q_000000E+000 0O, 000000E+000 Q. 000000E+000
0.000000E+000 0O_000000E+4+000 O.000000E+000 0. 000000E+000
0.000000E4000 0O_000000E+4000 0O.000000E+000 0. 000000E+4+000
0.000000E+000 0O_000000E+4+000 0O.000000E+000 O.000000E+000
£ >

Fig. 3.9-3: Analysis result of the wavefront read by ZPL program after changing setting.

If we compare this result to that shown in figure 3.9-2, we can see that the sampling value has been
changed to “Pupil grid size: 128 by 128”.

Besides the method discussed above, ZPL also provided many functions and keywords to read some
commonly used analysis information directly, such as IMAE(), OPDC(), OPTH(), GETLSF, GETMTF, GETPSF,
GETZERNIKE, POP, XDIFFIA, GETT(), etc.

Function IMAE(seed) is used to read the geometric image analysis efficiency. If seed is 0, each time
when the function is called, the same random number will be used, otherwise, a different random
number will be used.

Function OPDC() is used to calculate The optical path difference, and is only valid after executing
RAYTRACE command. OPDC will not return valid data if the chief ray cannot be traced. Please note that
no matter what the lens unit is, the returned unit from this function is always mm. An example is given
below for the application of this function.

osphotonics.wordpress.com 127

Application of Zemax Programming Language

Open Source Photonics

S W =] hoin b W N

-
Mo

13
14
L
16
17
18
19
zZ0

! ex30904
! This program shows how to use function OPDC ()
! Assume the lens system isg defined in ex30401

' first define the marginal ray
hx = 0

hy = 0

px = 0

py = 1

wavelength = 2

RAYTRACE hx, hy, p%, by, wavelength # trace cthe marginal ray

! then calculate the optical path difference
! hetyeen the marginal ray and the chief ray

opticalPathDiff = OPDC()

PRINT
PRINT "The optical path difference is ", opticalPathDiff,

We assume the optical system is the doublet defined in program ex30401.ZPL. In this program, we first
defined an arbitrary ray. For the sake of discussion, we use marginal ray here. Then, we did ray tracing
using RAYTRACE command, and finally we called function OPDC() to compare the optical path difference
between the marginal ray and the chief ray. The result is shown below:

#) 1: Text Viewer

Idpdate Settings Print Window
Executing D:WHMy MacroshCH3WEXKI0Z04_ ZPL.

The optical path difference is -1.1408 mm

Fig. 3.9-5: Result of program ex30904.ZPL

Function OPTH(n) is used to calculate the total optical path length along the ray to the specified surface.
It considers the phase added by diffractive surfaces such as gratings, holograms, and binary optics. Itis

valid only after a RAYTRACE call. OPTH will not return valid data if the chief ray cannot be traced. Please
note that different from function OPDC(), the unit of the return value of function OPTH(n) is current lens
unit. Example 3.9-5 shows how to use this function in ZPL program.

osphotonics.wordpress.com

128

Application of Zemax Programming Language Open Source Photonics

! ex30905
! This program shows how to use function OPTH()
I Assume the lens system is defined in ex30401

! first define the ray (we use marginal ray here)
hx = 0

hy = 0

px = 0

py = 1

wavelengrth = 2

oo =3 oda e W R

b e
M= 8

BAYTRACE hx, hy, px, py, wavelength # trace the ray

(=
(4]

' find out the lens unit
u = UNITI()

IF == 0 THEN lensUnit§ =
IF 1 THEN lensUnit$
IF 2 THEN lensUnitc$
IF 3 THEN lensUnit$

| el o
L B

=
=]

(=
o

(S
= oW
E=1 =N =l =]
n
]

! then calculate the optical path length (OPL) to a given surface

[]
[T]

PRINT
FOR =n, 1, 5, 1

opticalPath = OFTH(=n)

FRINT "The OFL to surface ", sn, " i= ", opticalPath, " ", lensUnit}
NEXT

L T T T]
=3 T oin &

We assume the optical system is the doublet defined in program ex30401.ZPL. In this program, we first

defined an arbitrary ray (the marginal ray), then, we did ray tracing using RAYTRACE command, and

finally we called function OPTH() to calculate the total light path of the defined ray. In the program we

also used function UNIT() to read current lens unit. The result is shown below:

$) 1: Text Viewer

Update Settings Print Window
Executing D: WMy Macros'CH3IWEXIO905 . ZPL.

0000 is -0_.0000 mm
0000 is 275 LE1] mm
0000 is 297 _3344 mm
0000 is 3294133 mm
0000 is 726 4656 mm

The OPL to surface
The OPL to surface
The OPL to surface
The OPL to surface
The OPL to surface

Ly TR O YV I SN

Fig. 3.9-6: result of program ex30905.ZPL.

osphotonics.wordpress.com

129

Application of Zemax Programming Language Open Source Photonics

Keyword GETLSF is used to calculate the geometric edge and line response functions. The syntax is:

GETLSF wave, field, sampling, vector, maxradius, use_polarization

Wave is an integer corresponding to the wavelength number to use for the calculation. A value of zero
indicates a polychromatic calculation. Field must be an integer between 1 and the maximum number of
fields. The value indicates which field position to use. Sampling may be 1 (32 x 32), 2 (64 x 64), 3 (128 x
128), etc... up to 2048 x 2048. The vector argument must be an integer value between 1 and 4, and
specifies which vector array the data should be placed in. The maxradius argument is the maximum
radial coordinate of the edge and line spread functions; this is the half-width of the data range. Use 0 for
a default width. If any of the arguments fall outside the valid ranges, then the nearest acceptable value
is used instead. The data is returned as an array of values in the specified vector. Vector position 0-3 will
hold the number of points "N", the starting x coordinate (this is the negative of the half width of the
data range), the delta coordinate, and the offset (defined below), respectively. The offset is the first
position in the vector that holds the edge or line spread data. Starting at the offset, the first N value are
the tangential LSF response. The next N values are the sagittal LSF response. The tangential and sagittal
ERF values are in the next two groups of N data values. If the current vector size is not large enough,
Zemax will automatically increase the size of the vectors to hold the LSF data in the manner described in
SETVECSIZE.

Example 3.9-6 shows how to use this keyword in ZPL program:

vector = 1
maxradius = 10
10 use polarization = 0

1 ! ex309086

2 ! This program shows how to use key word GETLSF
32 ! Assume the lens system is defined in ex30401
4

5 wave = 2

6 field = 1

7 sanwpling = 2

b=

2

12 GETLSF wave, field, sampling, wvector, maxradius, use_polarization
13

14 FOR n, 0, 1000, 1

15 PRINT "VEC1(",n,"™ ", VEC1(n)

16 NEXT

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the geometric
edge and line response functions of the system using keyword GETLSF, and displayed the result stored in
vector VEC1. The result is shown below:

osphotonics.wordpress.com 130

Application of Zemax Programming Language Open Source Photonics

$1 1: Text Viewer g@]g| #) 1: Text Viewer QE]E|

Update Settings Print window Update Settings Print Window
Executing D: WMy Macros'CH3IWEXKIO0O06 . ZPL. A TEC1{40l_0000) = 0_.7ZE3 Y
VECL{O.0Q000y = 10l.0000 VEC1i40z_0000) = 0_.7Zz63
WEC1{1.0000) = -10.0000 VECL (403 0000) = 0_730&
WEC1i{Z.0000) = O.z000 WEC1i404_0000) = 0_.7354
VEC1i{3.0000) = 10.0000 VWEC1i{40E5_0000) = 0_.7403
VEC1li4.0000) = 0.0000 VEC1i405_0000) = 074465
VECLi{E.0000) = 0.0000 VECL{407.0000) = 0_74%1
WEC1lie.0000) = O.0000 WEC1i402_0000) = 0_7538
VEC1i{7.0000) = o.0000 VEC1i{40%_0000) = 0_7573
VEC1lig.0000) = o.0000 VEC1li4l0_0Q000) = 0_7E53&
WEC1i{S.0000) = a.0000 WEC1i4ll_ 0000) = 0_.7&32
WEC1i{lO._0o0oo0) = 0.3421 WEC1li4lz_ 0000) = 0O_7&78
VEC1i{ll_00o00) = 0.4ZF10 VEC1li4l3_ 0000) = 0_7735
VWECL1{lEZ.0000) = 0.3&84 VEC1li4l4_ 0000) = 0_0000
WEC1{1lZ%_0000) = 0.4473 WEC1i4lE5_0000) = 0_0000
WEC1il4._0000) = 0.2631 WEC1li4ls_0000) = 0_0000
VEC1i{l&L._ 0000} = 0.4737 VEC1i4l7_0000) = 0_0000
VEC1li{l&._ 00Qo0) = 02394 VEC1li4ls._0Qo0a) = 0_000a
WEC1{17._0000) = 0.2854 WEC1i{415_0000) = 0_0004a
WEC1i{l2._0000) = 0.4473 WEC1i{4Z0_0000) = 0_0000
VEC1i{1l2._0000) = 0.2368 VEC1i{4Z1_0000) = 0O_0000
VEC1li{Z0Q._.0000) = 02395 VEC1li4Ez._ 0000y = 0_000a
WEC1i{2l_0000) = 0.3158 W WEC1i4Z3_0000) = 0_0000 o
< > < >

Fig. 3.9-7: result of program ex30906.ZPL

From the result we can see that the index of array VEC1 starts from 0, which is different from user
defined vector array that starts from 1. We have mentioned this before when we discuss array in last
chapter. VEC1(0) ~ VEC1(3) store number of data points N = 101, coordinate x = -10 of starting point,
step size 0.2 and offset 10. The actual data is determined by the offset. Starting from VEC1(10), the first
group of N = 101 data is the tangential LSF response, the next N values are the sagittal LSF response. The
tangential and sagittal ERF values are in the next two groups of N data values. The data ends at
VEC1(413), as shown in figure 3.9-7.

Keyword GETMTF is used to calculate tangential and sagittal MTF, real part, imaginary part, phase, or
square wave response data for the currently loaded lens file, and places the data in one of the vector
arrays (either VEC1, VEC2, VEC3, or VEC4). The syntax is:

GETMTF freq, wave, field, sampling, vector, type

osphotonics.wordpress.com 131

Application of Zemax Programming Language Open Source Photonics

The freq argument is the desired spatial frequency in MTF Units. If the frequency is less than zero, or
greater than the cutoff frequency, GETMTF returns zero. Wave is an integer corresponding to the
wavelength number to use for the calculation. A value of zero indicates a polychromatic calculation.
Field must be an integer between 1 and the maximum number of fields. The value indicates which field
position to use. Sampling may be 1 (32 x 32), 2 (64 x 64), 3 (128 x 128), etc... up to 2048 x 2048. The
vector argument must be an integer value between 1 and 4, and specifies which vector array the data
should be placed in. The type argument refers to the data type: 1 for MTF, 2 for real part, 3 for
imaginary part, 4 for phase in radians, 5 for square wave MTF. If any of the arguments fall outside the
valid ranges, then the nearest acceptable value is used instead. This calculation uses the FFT MTF
method. The data is returned in one of the vector arrays with the following format: Vector position 0:
tangential response; Vector position 1: sagittal response.

Example 3.9-7 shows how to use this keyword in ZPL program:

! ex30207

! This program shows how to use key word GETHTF
' Assume the lens system 15 defined in ex30401

freq = 30
wave = Z
field = 1
sampling =
vector = 1
type = 1

2

W - o & WM

[e
= o

12 GETHNTF freq, wave, field, sampling, wvector, type
13

14 PRINT

15 PRINT "Tangential response: ", wecl(D)

1€ PRINT "Sagitt sponse: ", veecl(l)

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the tangential
and sagittal MTF of the system using keyword GETMTF, and displayed the result stored in vector VEC1.
The result is shown below:

osphotonics.wordpress.com 132

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Setkings Print tindow
Executing D:WMy Macros'CHIMWEXIO0O207 . ZPL.

Tanhgential response: 0.0723
Sagittal response: 0.07z23

Fig. 3.9-8: result of program ex30907.ZPL

Keyword GETPSF is used to calculate the diffraction point spread function (PSF) using the FFT algorithm
and places the data in one of the vector arrays (either VEC1, VEC2, VEC3, or VEC4). The syntax is:

GETPSF wave, field, sampling, vector, unnormalized, phaseflag, imagedelta

In this command, wave is an integer corresponding to the wavelength number to use for the calculation.
A value of zero indicates a polychromatic calculation. Field must be an integer between 1 and the
maximum number of fields. The value indicates which field position to use. Sampling may be 1 (32 x 32),
2 (64 x64), 3 (128 x 128), etc... up to 2048 x 2048. The vector argument must be an integer value
between 1 and 4, and specifies which vector array the data should be placed in. The unnormalized flag is
zero if the data should be normalized to a peak of 1.0, if the unnormalized value is 1, then the data is
returned unnormalized. If phase flag is zero, the data returned is intensity, if 1, then the phase in
degrees is returned. The imagedelta value is the spacing between PSF points in micrometers; use zero
for the default spacing. The wavelength must be monochromatic to compute phase data. If any of the
arguments fall outside the valid ranges, then the nearest acceptable value is used instead. The data is
returned in one of the vector arrays with the following format:

Vector position 0: the total number of PSF data points in the vector array. Usually, this number will be
4*n*n where n is the sampling size (32, 64, etc.). For example, if the sampling density is 2, the pupil
sampling will be 64 x 64, and there will be 128 x 128 or 16,384 values in the array. This will require 8
bytes per number, or a total of 131 kb. A sampling density of 1024 will require at least 8 Mb just for the
array; another 64 Mb or more to compute the PSF. Position 0 also returns other values as error codes. If
position 0 is zero, then the computation was aborted. If -1, then the vector array is not large enough to
hold all the data. Use SETVECSIZE to make the array bigger. If -2, then there is not enough system RAM
to compute the PSF data. If -3, a general error occurred while computing the PSF.

Vector position 1 through 4*n*n holds the PSF data intensity. The first 2n values are the first row, going
left to right from -x to +x, then each subsequent block of 2n values is another row, going from -y to +y.
Vector position 4*n*n+1 holds the spacing between data values in micrometers.

osphotonics.wordpress.com 133

Application of Zemax Programming Language

Example 3.9-8 shows how to use this keyword in ZPL program.

Open Source Photonics

1! ex30908

2 ! This program shows how to use key word GETPSF
32 ! Assume the lens svstem is defined in ex30401
4

Ewave = 0 # use polychromatic light

6 field = 1

7 sampling = 2

g vector = 3 # result saved in VEC3

9 unnormalized = 1

no phase data
default image delta

10 phaseflag = 0

1l imagedelta = 0
1z

13 vecsSize =

14

15 PRINT

le FORMAT 5.0
17 PRINT "The original wector size is
18

19 label RESIZE

20 vec3ize = wec3ize+100

2l SETVECSIZE vecSize
22

23 GETPSF wave, field,
24 pointNuwm = VEC3 (0)

1000 # this is the default vector size

", wecSize

sawpling, wector,

2% IF pointNwa == -1 THEN GOTO RESIZE
26
27 PRINT "The final wect

", wecSize
=3 =] e r" pDintNu:m, " Aata point

28 PRINT "Thex
29 FORMAT 3.4
20 PRINT "They spaced ", VEC3 (pointNwm+l), " micrometers apart.

unnormalized, phaseflag,

imagedelta

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the

diffraction point spread function of the system using keyword GETPSF, and displayed the result stored in
vector VEC3. Please note that the default length of vector VEC3 is 1000, too small for the result, so the
return value of VEC3(0) is -1. We added a conditional statement in line 25. If result of -1 is detected,
then go to line 19 to increase the vector length, and redo the calculation, until positive result is obtained.

The result is shown below:

osphotonics.wordpress.com

134

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

pdate Settings Print Window
Executing D:WHMy MacroshCHIMWEXIO0O202_ ZPL.

The original wector size is 1000
The final wector size is 16400

There are 1&384 data points.

They spaced 1.3310 micrometers apart.

Fig. 3.9-9: result of program ex30908.ZPL

Keyword GETZERNIKE is used to calculate Zernike Fringe, Standard, or Annular coefficients for the
currently loaded lens file, and places them in one of the vector arrays (either VEC1, VEC2, VEC3, or
VEC4). The syntax is:

GETZERNIKE maxorder, wave, field, sampling, vector, zerntype, epsilon, reference

The maxorder argument is any number between 1 and 37 for Fringe or between 1 and 231 for Standard
or Annular coefficients, and corresponds to the highest Zernike term desired. Wave and field are the
integer values for the wavelength and field number respectively. The value for sampling determines the
size of the grid used to fit the coefficients. Sampling may be 1 (32 x 32), 2 (64 x 64), etc.... up to 2048 x
2048. The vector argument must be an integer value between 1 and 4, and specifies which vector array
the data should be placed in. The zerntype is 0 for “fringe” Zernike terms, 1 for “Standard” Zernike terms,
and 2 for “Annular” Zernike terms. For Annular Zernike Coefficients epsilon is the annular ratio; this
value is ignored for other Zernike types. To reference the OPD to the chief ray, the reference value
should be zero or omitted; use 1 to reference to the surface vertex. If any of the arguments fall outside
the valid ranges, then the nearest acceptable value is used instead.

The data is returned in one of the vector arrays with the following format: Vector position 1: Peak to
valley in waves; Vector position 2: RMS to the zero OPD line in waves (this value is not physically
meaningful but is provided for reference); Vector position 3: RMS to the chief ray in waves; Vector
position 4: RMS to the image centroid in waves (this is the most physically meaningful number related to
image quality); Vector position 5: Variance in waves; Vector position 6: Strehl ratio; Vector position 7:
RMS fit error in waves; Vector position 8: Maximum fit error (at any one point) in waves. The remaining
vector positions contain the actual Zernike coefficient data. For example, Zernike term number 1 is in
vector position 9, Zernike term 2 is in position 10, and so on.

osphotonics.wordpress.com 135

Application of Zemax Programming Language Open Source Photonics

Keyword POP is used to compute the Physical Optics Propagation (POP) of a beam through the optical
system and saves the surface by surface results to ZBF files. The syntax is:

POP outfilename$, lastsurface

This keyword requires the name of the output ZBF file, an expression that evaluates to the last surface
to propagate to, and optionally the name of a settings file. The filename must be enclosed in quotes if
any blank or other special characters are used. The created ZBF files will be placed in the <pop> folder.
No paths should be provided with the file names. The settings for the POP feature will be those settings
previously saved for the current lens, unless a settings file name is provided. The settings file name must
include the full path, name, and extension. To make adjustments to the settings, open a POP window,
choose the appropriate settings, then press “Save”. By default, all subsequent calls to POP within ZPL
will use the saved settings. The exceptions are the output file name, which is specified as the first
argument after the POP keyword, and the last surface number, which is optionally specified as the
second argument after the POP keyword.

We will discuss more on ZBF file related commands in section 14. Here we just give an example to show
how to use keyword POP in ZPL program. First we assume the optical system is the doublet defined in
program ex30401.ZPL, and also we assume the POP settings are as shown in figure 3.9-10:

osphotonics.wordpress.com 136

Application of Zemax Programming Language

Open Source Photonics

€1 POP Settings

General Beam Definition l Displa_l,l] Fiber Data]
-5 ampling: 128 - itk 20
Auta
Y-S ampling: 128 - Wfidth; 25
Beam Type: |Gaussian W it ﬂ
File: | =]
" Total Power: ¢ Peak Imadiance: |4
Wl aizt 10 W aist v 10
Decenter x 1] Decenter v 1]
Aperture # 0 Aperture 1]
Order 1] Order 1]
Save | Load | Reset |
k. | Cancel | | Help

(a)

osphotonics.wordpress.com

137

Application of Zemax Programming Language Open Source Photonics

£1 POP Settings

General l Beam Definitiu:un] Displa_l,l] Fiber Data

Start Surface: | 1 - Wavelength: 2 -

End Surface: ||mage - Field:] -
Surf To Beam: 0

Iv Usze Palarization
[Separate &,
| Use Disk Storage To Save Memany [SLOW)

(b)

Fig. 3.9-10(a)(b): POP settings for program ex30910.ZPL

The program is shown below:

12

! ex30910

! This program shows how to use key word FPOP
! Assume the lens system is defined in ex30401

outfilencmels "ex30910a. ZBF"

outfilename?z§

lastsurface

= 4

POP outfilenamel$, lastsurface

lastsurface

= 5

POFP outfilenamez$, lastsurface

osphotonics.wordpress.com

138

Application of Zemax Programming Language Open Source Photonics

In this program, we defined two different file names, and saved POP calculation results of surface 4 and
5 in those two files, respectively. Please note that there is no path name in the program, because all the
ZBF files will be stored in the folder “"...\POP\Beamfiles”. We will use those two files in section 14.

Keyword XDIFFIA is used to compute the Extended Diffraction Image Analysis feature and saves the
result to a ZBF file. The syntax is:

XDIFFIA outfilenames, infilename$S

This keyword requires the name of the output ZBF file, and optionally, the name of the input IMA or BIM
file. If the extension to the outfilename is not provided, the extension ZBF will be appended. The
extension must be provided on the infilename. The filenames must be enclosed in quotes if any blank or
other special characters are used. The outfilename will be placed in the <pop> folder. The infilename
must be placed in the <data>\<images> folder. No paths should be provided with the file names.

The settings for the Extended Diffraction Image Analysis feature will be those settings previously saved
for the current lens. To make adjustments to the settings, open an Extended Diffraction Image Analysis
window, choose the appropriate settings, then press "Save". All subsequent calls to XDIFFIA will use the
saved settings. The exceptions are the output file name, which is specified as the first argument after
the XDIFFIA keyword, and the input source file, which is optionally specified as the second argument
after the XDIFFIA keyword.

Function GETT(window_num, line, column) is used to read the value defined by given line and colume of
any open text window defined by window_num. Each columns are delimited by spaces.

Please refer to Zemax User’s Manual for further discussion on system analysis related keywords and
functions.

osphotonics.wordpress.com 139

Application of Zemax Programming Language Open Source Photonics

3.10 Non-Sequential Components

As we mentioned in Chapter 1, in many cases, the analysis of an optical system can only be done
through non-sequential model, such as illumination system analysis and stray light analysis. For this
reason, ZEMAX developed powerful non-sequential analysis tools, and ZPL also provided many related
keywords and functions to utilize those tools.

Non-Sequential Component Editor is an important place to define and modify non-sequential optical
system. We can add and delete various optical components and modify their parameters here.

If we want to add a component in the Non-Sequential Component Editor, we can use keyword
INSERTOBJECT. The syntax is:

INSERTOBIJECT surf, object

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object
is the location of the new null object to be placed with value between 1 and current total number of
objects + 1, inclusive. If there are other objects after the new object, their object number will be re-
ordered.

If we want to delete a component from the Non-Sequential Component Editor, we can use keyword
DELETEOBIJECT. The syntax is:

DELETEOBJECT surf, object

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object
is the location of the object to be deleted. If there are other objects after it, their object number will be
re-ordered.

Usually, after a new component is added, we need to define its space position and other properties. We
can use keyword SETNSCPOSITION, SETNSCPROPERTY and SETNSCPARAMETER to do so.

SETNSCPOSITION is used to define space position and tilt of a non-sequential object. The syntax is:
SETNSCPOSITION surface, object, code, value

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object
is the location of the object; code is 1 ~ 6 for x, y, z, tilt-x, tilt-y, and tilt-z, respectively; value is the new
value for the specified position.

osphotonics.wordpress.com 140

Application of Zemax Programming Language Open Source Photonics

SETNSCPROPERTY is used to define properties of NSC objects. The syntax is:

SETNSCPROPERTY surface, object, code, face, value

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object
is the location of the object; code, as defined in the table below, is used to specify what property of the
object is being modified; face is the face number, 0 if not applicable; value is the new value of the

property.
Table 3.10-1 Code for keyword SETNSCPROPERTY
Code Property
The following codes set values on the NSC Editor.

1 Sets the object comment.

2 Sets the reference object number.

3 Sets the “inside of” object number.

4 Sets the object material.

The following codes set values on the Type tab of the Object Properties dialog.

0 Sets the object type. The value should be the name of the object, such as
“NSC_SLEN” for the standard lens. The names for each object type are listed in
the Prescription Report for each object type in the NSC editor. All NSC object
names start with “NSC_”.

13 Sets User Defined Aperture, use 1 for checked, 0 for unchecked.

14 Sets the User Defined Aperture file name.

15 Sets the “Use Global XYZ Rotation Order” checkbox, use 1 for checked, 0 for
unchecked.

16 Sets the “Rays Ignore This Object” combo box, use 0 for Never, 1 for Always,
and 2 for On Launch.

17 Sets the “Object Is A Detector” checkbox, use 1 for checked, 0 for unchecked.

18 Sets the “Consider Objects” list. The argument should be a string listing the object
numbers to consider delimited by spaces, such as “2 5 14”.

19 Sets the “Ignore Objects” list. The argument should be a string listing the object
numbers to ignore delimited by spaces, such as “1 3 7”.

20 Sets the “Use Pixel Interpolation” checkbox, use 1 for checked, 0 for unchecked.

30 Sets the “Use Consider/Ignore Objects When Splitting” checkbox, use 1 for

checked, 0 for unchecked.

The following codes

set values on the Coat/Scatter tab of the Object Properties dialog.

5 Sets the coating name for the specified face.

6 Sets the profile name for the specified face.

7 Sets the scatter mode for the specified face: 0 = none, 1 = Lambertian, 2 =
Gaussian, 3 = ABg, 4 = User Defined, 5 = BSDF, 6 = ABg File, 7 = IS Scatter
Catalog.

8 Sets the scatter fraction for the specified face.

osphotonics.wordpress.com 141

Application of Zemax Programming Language Open Source Photonics

9 Sets the number of scatter rays for the specified face.

10 Sets the Gaussian sigma (Gaussian scatter model) or the sample orientation angle
(BSDF or IS Scatter Catalog scatter models) for the specified face.

11 Sets the reflect ABg data name for the specified face.

12 Sets the transmit ABg data name for the specified face.

27 Sets the name of the user defined scattering DLL.

21-26 Sets parameter values on the user defined scattering DLL.

28 Sets the name of the user defined scattering data file.

29 Sets the “Face Is” property for the specified face. Use 0 for “Object Default”, 1
for “Reflective”, and 2 for “Absorbing”.

31 Sets the reflect BSDF data file for the specified face. The value should be the
name of the BSDF file with no path (i.e. BrownVinyl.bsdf).

32 Sets the transmit BSDF data file for the specified face. The value should be the
name of the BSDF file with no path (i.e. BrownVinyl.bsdf).

33 Sets the reflect ABg File data file for the specified face. The value should be the
name of the ABGF file with no path (e.g. SampleABGF.abgf).

34 Sets the transmit ABg File data file for the specified face. The value should be the
name of the ABGF file with no path (e.g. SampleABGF.abgf).

35 Sets the reflect IS Scatter Catalog data file for the specified face. The value should
be the name of the I1SX file with no path (e.g. BrownVinyl.I1SX).

36 Sets the transmit IS Scatter Catalog data file for the specified face. The value
should be the name of the ISX file with no path (e.g. BrownVinyl.ISX).

37 Sets the Thin Window Scattering option for the specified face. Use 0 to turn the
option off (i.e. unchecked option in checkbox) and 1 to turn the option on (i.e.
checked option in checkbox).

38 Sets the sample side R for IS Scatter Catalog scattering. Use O for front and 1 for
back.

39 Sets the sample side T for IS Scatter Catalog scattering. Use 0 for front and 1 for
back.

40 Sets the sampling R for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2
degrees, and 2 for 1 degree.

41 Sets the sampling T for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2

degrees, and 2 for 1 degree.

The following codes

set values on the Bulk Scattering tab of the Object Properties dialog.

81 Sets the "Model" value on the bulk scattering tab. Use 0 for "No Bulk Scattering",
1 for "Angle Scattering”, and 2 for "DLL Defined Scattering".

82 Sets the mean free path to use for bulk scattering.

83 Sets the angle to use for bulk scattering.

84 Sets the name of the DLL to use for bulk scattering.

85 Sets the parameter value to pass to the DLL, where the face value is used to
specify which parameter is being defined. The first parameter is 1, the second is 2,
etc.

86 Sets the wavelength shift string.

osphotonics.wordpress.com 142

Application of Zemax Programming Language Open Source Photonics

The following codes set values on the Diffraction tab of the Object Properties dialog.

91 Sets the "Split" value on the diffraction tab. Use 0 for "Don’t Split By Order", 1
for "Split By Table Below", and 2 for "Split By DLL Function".
92 Sets the name of the DLL to use for diffraction splitting.
93 Sets the Start Order value.
94 Sets the Stop Order value.
95, 96 Sets the parameter values on the diffraction tab. These are the parameters passed

to the diffraction splitting DLL as well as the order efficiency values used by the
“split by table below” option. The face value is used to specify which parameter is
being defined. The first parameter is 1, the second is 2, etc. The code 95 is used
for reflection properties, and 96 for transmission.

The following codes

set values on the Sources tab of the Object Properties dialog.

101 Sets the source object random polarization. Use 1 for checked, 0 for unchecked.
102 Sets the source object reverse rays option. Use 1 for checked, 0 for unchecked.
103 Sets the source object Jones X value.

104 Sets the source object Jones Y value.

105 Sets the source object Phase X value.

106 Sets the source object Phase Y value.

107 Sets the source object initial phase in degrees value.

108 Sets the source object coherence length value.

109 Sets the source object pre-propagation value.

110 Sets the source object sampling method; O for random, 1 for Sobol sampling.

111 Sets the source object bulk scatter method; 0 for many, 1 for once, 2 for never.

112 Sets the array mode; 0 for none, 1 for rectangular, 2 for circular, 3 for hexapolar,
and 4 for hexagonal.

113 Sets the source color mode. For a complete list of the available modes, see
“Defining the color and spectral content of sources” on page 403. The source
color modes are numbered starting with 0 for the System Wavelengths, and then
from 1 through the last model listed in the dialog box control.

114-116 Sets the number of spectrum steps, start wavelength, and end wavelength,
respectively.

117 Sets the name of the spectrum file.

161-162 Sets the array mode integer arguments 1 and 2.
165-166 Sets the array mode double precision arguments 1 and 2.
181-183 Sets the source color mode arguments, for example, the XYZ values of the

Tristimulus.

The following codes

set values on the Grin tab of the Object Properties dialog.

121 The following codes set values on the Grin tab of the Object Properties dialog.
122 Sets the Maximum Step Size value.

123 Sets the DLL name.

124 Sets the Grin DLL parameters. These are the parameters passed to the DLL. The

face value is used to specify which parameter is being defined. The first parameter

osphotonics.wordpress.com 143

Application of Zemax Programming Language Open Source Photonics

is 1, the second is 2, etc.

The following codes

set values on the Draw tab of the Object Properties dialog.

141 Sets the do not draw object checkbox. Use 1 for checked, 0 for unchecked.
142 Sets the object opacity. Use 0 for 100%, 1 for 90%, 2 for 80%, etc.
The following codes set values on the Scatter To tab of the Object Properties dialog.

151 Sets the scatter to method. Use O for scatter to list, and 1 for importance sampling.

152 Sets the Importance Sampling target data. The argument should be a string listing
the ray number, the object number, the size, and the limit value, all separated by
spaces.

153 Sets the “Scatter To List” values. The argument should be a string listing the

object numbers to scatter to delimited by spaces, such as “4 6 19".

The following codes

set values on the Birefringence tab of the Object Properties dialog.

171 Sets the Birefringent Media checkbox. Use 0 for unchecked, and 1 for checked.

172 Sets the Birefringent Media Mode. Use 0 for Trace ordinary and extraordinary
rays, 1 for Trace only ordinary rays, 2 for Trace only extraordinary rays, and 3 for
Waveplate mode.

173 Sets the Birefringent Media Reflections status. Use O for Trace reflected and
refracted rays, 1 for Trace only refracted rays, and 2 for Trace only reflected rays.

174-176 Sets the Ax, Ay, and Az values.
177 Sets the Axis Length.

The following codes
NPRO.

do not set values, but are included here to return values for the function

200 Used by function NPRO to determine the index of refraction of an object. The
syntax is NPRO(surface, object, 200, wavenumber)
201-203 Used by function NPRO to determine the nd (201), vd (202), and dpgf (203)

parameters of an object using a model glass. The syntax is
NPRO(surface, object, 201, 0)

SETNSCPARAMETER is used to set the parameter values of any object in the NSC editor. The syntax is:

SETNSCPARAMETER surface, object, parameter, value

This keyword requires 3 numeric expressions that evaluate to integers specifying the non-sequential
component’s surface number (1 for total non-sequential system), the object number, and the parameter
number. The fourth argument is the new value for the specified parameter.

ZPL also defined a series of functions to read various parameters of NSC components.

osphotonics.wordpress.com 144

Application of Zemax Programming Language Open Source Photonics

If we want to know the total number of non-sequential components in a certain surface, we can use
function NOBJ(surface), where surface is the surface number. The return value is the total number of
NSC components in the given surface.

If we want to read the positon and tilt of a certain object in a surface, we can use function NPOS(surf,
object, code), where surface is the surface number, object is the object number, and code is 1~6 for x, y,
z, tilt x, tilt y, tilt z, respectively. The return value is the value responsible for the code.

Function NPRO(surf, object, code, face) is used to read the properties of a given NSC component, where
surf is the surface number, object is the object number, code is as described in table 3.10-1, face is the
face number on a component. The return value is the property associated to the code, and can be
either numerical value or string. If the return value is string, we can use function Sbuffer() to read the
string from the return value.

Function NPAR(surf, object, param) is used to read the parameter column value in the NSC editor, where
surf is the surface number, object is the object number, and param is the parameter number.

We will give some examples to show the applications of some keywords and functions discussed above.

osphotonics.wordpress.com 145

Application of Zemax Programming Language Open Source Photonics

Example 3.10-1 shows how to add, delete object and set parameters in the NSC editor.

1! ex31001

z ' This program shows how to Set N3C parameters

3 ! Assume the mode is total Non-Sequential Mode

4

5 ! this part i3 used to clean the N3C edicor

& cotaldhiNwn = NOBJ (1)

7 for i, totaldbijNum, 1, -1

8 DELETEOBJECT 1, i i delete all the objects
9 next # there iz =till a null obiject in the editor at last
10 # because the editor cannot be empty
11

12 ! add two more objects in the editor, sSo the total is 3
13 INSERTOBJECT 1, 1

14 INSERTOBJECT 1, 1

15

1lé ! define the type of the first object

17 surface = 1

18 object = 1

19 code = 0

20 face = 0

2l value$ = "NSC_SLEN"

2z SETNSCPROPERTY surface, object, code, face, wvaluej§
23

24 ! define the position of the first object

25 SETNSCPOSITION 1, 1, 1, O # x

26 SETHNSCPOSITION 1, 1, 2, O #v

27 SETNSCPOSITION 1, 1, 3, O # oz

2g SETHNSCPOSITION 1, 1, 4, O # x tilc

29 SETNSCPOSITION 1, 1, 5, O # v tilc

30 SETHNSCPOSITION 1, 1, 6, O # z tile

21

32 ! define the comment of the first object

33 SETNSCPROPERTY 1, 1, 1, 0, "first lens"

34

35 ! define the material of the first object

26 SETNSCPROPERTY 1, 1, 4, O, "BET"

37

38 ! define curvature, clear aperture, edge and thickness of the first object
39 SETNSCPARAMETER 1, 1, 1, 10 # radius 1

40 SETNSCPARAMETER 1, 1, 3, 1.8 # clear 1

41 SETNSCPARAMETER 1, 1, 4, 2 # edge 1

42z SETNSCPARAMETER 1, 1, 5, 1 # thickness

43 SETNSCPARAMETER 1, 1, 6, -10 # radius 2

44 SETHNSCPARAMETER 1, 1, 8, 1.8 # clear 2

45 SETHNSCPARAMETER 1, 1, 9, 2 # edge 2

46

osphotonics.wordpress.com

146

Application of Zemax Programming Language Open Source Photonics

46

47 ! define the type of the second object

48 SETNSCPRCPERTY 1, 2, 0, 0, "N3C_SLEN"

43

50 ! define the comment of the second obhject
£1 SETNSCPROPERTY 1, 2, 1, 0, "second lens"

52

53 ! define the position of the second object

54 SETNSCPOSITION 1, 2, 3, 10 # z position

58 SETNSCPOSITION 1, 2, 5, 20 # rotate 90 degrees around v
56

57 ! define the material of the sSecond object

58 SETNSCPROPERTY 1, 2, 4, 0, "BE?"

53

60 ! define curvature, clear aperture, edge and thickness of the second object

61 SETNSCPARAMETER 1, 2, 1, 10 ¥ radius 1
62 SETNSCPARAMETER 1, 2, 3, 1.8 g clear 1
63 SETNSCPARAMETER 1, 2, 4, 2 # edge 1
64 SETNSCPARAMETER 1, 2, 5, 1 # thickness
65 SETNSCPARAMETER 1, 2, 6, =10 # radius 2
66 SETNSCPARAMETER 1, 2, 8, 1.8 g clear 2
67 SETNSCPARAMETER 1, 2, 9, 2 # edge 2

&8

In this example, we first cleared the NSC editor by deleting objects (lines 6~9). Please note that after
clearance, there is still a null object in the editor. Then we inserted two null objects in the editor (lines
13~14), so the total number of objects in the editor is 3. We then defined the first object as standard
lens (lines 17~22), set its position and tilt (lines 17~22), give the comment (line 33), and set the material
(line 36). We then set the parameters of the lens (lines 39~45), i.e. first surface curvature radius, first
surface effective half diameter, first surface edge half diameter, thickness, second surface curvature
radius, second surface effective half diameter, and second surface edge half diameter. Similarly, we
defined the second object (lines 47~67). In fact, after defining the object type, ZEMAX will automatically
generate some default properties, so we only need to modify those different from the default values.
For example, we only defined z position and y tilt of the second object, and omitted x position, y
position, x tilt, and z tilt. After we run program ex31001.ZPL, the content in the NSC editor will be
updated, as shown in figure 3.10-1:

#1 Non-Sequential Component Editor

Edit Solves Errors Detectors Database Tools Wiew Help

Okject Type Commert Pef Obj..|Inside 0f | Position| ¥ Position |E Position | Tilt About X | Tilt About T
1| Standard Lens| first lens a a o.oo0o 0. oooo0 0. oooo 0. oo0o0ooo0 0. 000000
2| EStandard Lens|second lens a a o.oo0o 0. oooo0 10,000 0. oo0o0ooo0 Q0. 00000
2 Null Object u} u} o.oo0o o.oooo0 0. oooo 0.oooooo0 0. ooooo0

Fig. 3.10-1: content of NSC editor after running program ex31001.ZPL

osphotonics.wordpress.com 147

Application of Zemax Programming Language Open Source Photonics

If we open 3D Layout window, we can see the two lenses we defined. Their tilt is different, as shown in
figure 3.10-2:

#1) 1: N5C 3D Layout
Update Settings Print Window Zoom

30 LAYoUT

®YL, TINC,
LeP@ ASC STREET
DPTICE CITY
LENS, ZMx
COMFICURATION 1 DF 31

Fig. 3.10-2: content of 3D Layout window after running program ex31001.ZPL

osphotonics.wordpress.com 148

Application of Zemax Programming Language

Example 3.10-2 shows how to read parameters of NSC objects.

Open Source Photonics

1 ! ex31002

2 ! This program shows how to Read N3C parameters

2 ! Assume the objects are defined in ex31001

4

5 ! read the position

€ x = NPOS(1, 2, 1)

7 PRINT

8 PRINT "= is ", %

9 PRINT "v i ", NPO3(1, 2, 2)

10 PRINT "=z ", NPOS({1, 2, 3)

11 PRINT ™"x ", NPOS(1, 2, 4), "

12 PRINT "y tilt of ", NPOS(1, 2, 5), "

13 PRINT "v tilt of object 2 is ", NPOS(1, 2, 6), " degrees"™

14

15 ! read the comment

le duwremy = NPRO(1, 2, 1, 0]

17 a§ = f{butfer()

18 FRINT

1% PRINT "The comment of object 2 1s: v, af, "

Z0

2l ! read the material

zz durmmy = NPRO(1, 2, 4, 0]

232 af = Shuffer/()

z4 FRINT

25 PRINT "The material of objec 1 is: ", a%

26 PRINT "The refractive index of acbject 1 at ",

27 PRINT WAVL({1), ™ wicron is: ", NPRO{1,1,200,1)

zg

29 ! read the parameters

30 PRINT

31 PRINT "The st radius of object 2 is: *, NPAR(1,2,1)

32 PRINT "The first *lea: perture s ", NPAR[1,2,3)
33 PRINT = first edoe half di ", MPAR(1,2Z,4)
34 PRINT

35 PRINT +B)

36 PRINT ln is: ", NPAR(1,2,8)
27 PRINT ohiject Z 1=s: ", NPAR(1,2,9)

In this program, we assume the optical system is the two lens system defined in example 3.10-1. The
position and tilt of an object can be read through function NPOS(), as shown in lines 6~13 in the program.
Please note that we can either assign the return value to a middle variable, and use the variable when
needed, as shown in lines 6 and 8, or directly obtain the return value by calling the function, as shown in
lines 9~13. In the program, the object properties were also read through function NPRO(), and object
parameters were read through function NPAR(). Please note that when using function NPRO(), if the
return value is string, the result can be saved in a temporary variable (line 16), and then read out
through function Sbuffer() (line 17). The result of the program is shown in figure 3.10-3:

osphotonics.wordpress.com

149

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Settings Print Window
Executing D:3WMy Macros CHIWEX3I100Z . ZPL.

position of object & i=s 0.0000
position of object & is 00000
position of object £ is 10.0000
tilt of object Z i=s 0_.0000 degree
tilt of object £ i=s 20.0000 degree
tilt of object & is 0.0000 degree

R A

The comment of obhject 2 is: 'second lens'

The material of object 1 is: BEY
The refractiwe index of object 1 at O0.5500 micron is: 1.E518E5

The first radius of object & is: 10.0000

The first clear aperture of obhject £ is: 1.82000

The first edge half diameter of obhject 2 is: Z._0000
The thickness of okject z is: 1.0000

The second radius of object £ is: -10.0000

The second clear aperture of object £ is: 1_.2000

The second edge half diaweter of object £ i=s: Z.0000

Fig. 3.10-3: result of program ex31002.ZPL

In non-sequential system, light source and detector are two very important objects. Example 3.10-3
shows how to set source and detector in ZPL program.

osphotonics.wordpress.com 150

Application of Zemax Programming Language

Open Source Photonics

WMo =) M odn s W P

10
11l
12
13
14
15
16
17
18
19
Z0
Zl
22
23
24
25
26

! ex31003
! This program shows how to set N3C sources and detectors

' this part i=s used to clean the NSC editor
for i, WOBJ{1), 1, -1
DELETEOQBJECT 1, 1 # delete all the objects

next # there i=s =still a null ohject in the sditor at last

' qdd two more objects in the editor, 30 the total is 3
INSERTOBJECT 1, 1
INSERTOBJECT 1, 1

! define the type of the first object as source ellipse (circular)
SETNSCPROPERTY 1, 1, 0, 0, "NSC_SRCEY
I define the position
thi= part iz omitted. Use the default setcting.
! define parameters of the source

SETNSCPARLMETER 1, 1, 1, 100
SETNSCPARLMETER 1, 1, 2, 10000
SETNSCPARAMETER 1, 1, 3, 1
SETNSCPARLMETER 1, 1, 6, 1
SETHSCPARLMETER 1, 1, 7, 1
SETNSCPARAMETER 1, 1, &, O

number of layout rays
nunber of analyze rays
power in Watts

¥ half width

v half width

source distance, 0 for

oW W H: W

collimated

osphotonics.wordpress.com

151

Application of Zemax Programming Language Open Source Photonics

Z6
27
bt
Z9
30
31
3z
33
34
35
36
37
38
39
40
41
4z
43
44
45
46
47
48
49
50
51
52
53
54
13
56
57
58

' define the type of the second object as a standard lens
SETNSCPROPERTY 1, 2, 0, O, "NSC_SLEN"

' define the position
SETNSCPOSITION 1, 2, 3, 10 # z position

! define the material
SETNSCPROPERTY 1, 2, 4, 0, "BE?"

! define curvature, clear aperture, edge and thickness of the lens

SETNSCPARAMETER 1, 2, 1, 10 # radius 1
SETNSCPARLMETER 1, 2, 3, 1.8 # clear 1
SETNSCPARAMETER 1, 2, 4, 2 # edge 1
SETNSCPARAMETER 1, 2, 5, 1 # thickness
SETNSCPARAMETER 1, 2, 6, -10 # radius 2
SETNSCPARAMETER 1, 2, 8, 1.8 # clear 2
SETNSCPARAMETER 1, 2, 9, 2 # edge 2

! define the type of the third object as a detector rect
SETNSCPROPERTY 1, 3, 0, 0, "NSC_DETE"

' define the position

SETNSCPOSITION 1, 3, 3, Z0 # z position

! define the material

SETNSCPROPERTY 1, 3, 4, 0, "ABSORE"™ # assuming the detector is absorbing
! define parameters of the detector

SETNSCPARAMETER 1, 3, 1, 1 # % half width

SETNSCPARAMETER 1, 3, 2, 1 # v half width

SETNSCPARAMETER 1, 3, 3, 100 # nurber of ®x pixels

SETNSCPARAMETER 1, 3, 4, 100 # number of ¥ pixels

In this program, we first cleared the NSC editor (lines 5~7), and inserted two null objects (lines 10~11),

so the total objects in the editor is 3. We set the first object as source ellipse (line 14). Its position is

default (0, 0, 0). We then defined its parameters (lines 20~25). After that, we set the second object as
standard lens (line 28), and defined its z position (line 31), material (line 34), and other parameters (lines
37~43). Similarly, we set the third object as detector and defined its properties and parameters (lines
46~58).

osphotonics.wordpress.com

152

Application of Zemax Programming Language Open Source Photonics

After running program ex31003.ZPL, if we open 3D Layout window, we can see the three objects defined
in the program, and can also see the display rays, as shown in figure 3.10-4:

#) 1: N5C 3D Layout

Update Settings Print Window Zooim
L.
A0 LAYoUT
XYZ, INC,
le@@ ABC STREET
OPTICE CITY
LENS , TMX
COMFICURATION 1 OF 1

Fig. 3.10-4: content of 3D Layout window after running program ex31003.ZPL

Sometimes after modifying and analyzing old NSC objects, we need to recover old objects. This can be
done with keyword RELOADOBJECTS. The syntax is:

RELOADOBJECTS surf, object

where surf is surface number, 1 for NSC mode; object is object number, O for reloading all objects.

Similar to sequential system, in non-sequential system, ray tracing is a very important function. ZPL
provided keyword NSTR and function NSDC() and NSDD() to perform ray tracing and read out detector
result.

osphotonics.wordpress.com 153

Application of Zemax Programming Language Open Source Photonics

The syntax of keyword NSTR is:
NSTR surf, source, split, scatter, usepol, ignore_err, rand_seed, save, filenameS, filter

where surf is surface number, 1 for NSC mode; source is the object number for the source used in ray
tracing, O for all the sources in the current system; split is non-zero for splitting on, 0 for off; scatter is
non-zero for scattering on, 0 for off; usepol is non-zero for polarization on, 0 for off; ignore_err is non-
zero for ignoring error, 0 for terminating ray-tracing and reporting error; rand_seed is non-zero integer
for seeding the random generator with the given integer each time, 0 for seeding the random generator
with a random number; save is zero for not saving the result, in which case the arguments after it can be
omitted, otherwise if save is non-zero, the ray-tracing result will be saved in a ZRD file in the same folder
as lens file, with name defined by filename$ (not including path) and extension name as ZRD; filter$ is
optional with different ray filters defined in table 3.10-2. In newer versions of ZEMAX, another
argument zrd_format is required after filter. Please refer to ZEMAX User Manual for details.

NSTR always calls UPDATE before tracing rays to make certain all objects are correctly loaded and
updated.

Table 3.10-2: Filter String Flags

Flag Description
n Filters that start with an underscore “_” followed by an integer code are
defined and used by the Path Analysis feature;
~nnnmmm...[#] Ray path filter. This filter selects ray branches whose segments follow an

explicit path. The first object number defined is the source object, followed by
each object the rays interact with, in order. Each object number must be
defined by a three digit integer, with leading zeros added if required. A ray that
leaves source object 7, then hits objects 18 and then 9 and is then terminated or
hits no other object can be selected using the filter “~007018009”. Multiple
consecutive object numbers are not redundantly defined; for example, if a ray
hits the front

face of lens 9 and then hits the back face of the same object 9 need only be
listed as a single 009 in the filter definition. Optionally, the filter may be
terminated with the # symbol, which indicates any segment that initially
follows this path is selected. This allows rays which hit different objects, or no
objects at all, after the last object listed are still selected. The maximum
number of objects in any one filter is 50.

$nnmm...[#] Ray path filter alternate form. This is identical to the “~” filter above, except
two digit codes are used instead of three digit codes for the object numbers.
This is a more convenient form if the number of objects is less than 100.

osphotonics.wordpress.com 154

Application of Zemax Programming Language Open Source Photonics

Bn

Ray bulk scattered inside of object n. If the n value is 0, then bulk scattered
segments from any object will return true for this test.

Dn

Ray diffracted after striking object n. See En.

En

Diffracted from parent segment’s object n. This flag only gets set for ray
segments split from diffractive elements, for order numbers other than zero,
when ray splitting is on.

Fn

Scattered from parent segment’s object n. This flag only gets set for ray
segments split from scattering surfaces when ray splitting is on. The specular
segment does not get this flag, only scattered segments. If the n value is 0, then
scattered segments from any object will return true for this test.

Gn

Ghost reflected from parent segment’s object n. This flag only gets set for ray
segments reflected from refractive objects when ray splitting is on. If the n
value is 0, then ghost segments from any object will return true for this test.

Hn

Ray hit object n. To test whether a ray hit an object, the flag is of the form Hn.
For example, to test if a ray hit object 5, the flag would be H5. See Ln.

Jn

Similar to Gn, except that all segments prior to the ghost reflection point are
set to have zero intensity. This allows Detector Viewers to look only at ghost
energy, not direct incident energy, even if the ray later ghosted off another
object. The zero intensity values will only affect the Detector Viewer, not the
ray database viewer or layouts.

Ln

Ray hit object n last. To test whether the last segment of a ray branch hit an
object, the flag is of the form Ln. For example, to test if the last segment of a
ray branch hit object 5, the flag would be L5. See Hn.

Mn

Ray missed object n. To test whether a ray missed an object, the flag is of the
form Mn. For example, to test if a ray missed object 15, the flag would be
M15.

On

Ray originated at source number n. OO0 (that is "O" as in Origin and "0" as
number zero) will select all sources.

Rn

Ray reflected after striking object n. The flag R7 would test if the ray reflected
after striking object 7. See Gn.

Sn

Ray scattered after striking object n. This tests the “S” flag as listed in the ZRD
file, which refers to scattering at the point a ray strikes an object. See also Fn
and X_SCATTER.

Tn

Ray transmitted (refracted) in to or out of object n. The flag T4 would test if
the ray refracted in or out of object 4 after striking the object.

Ray uses wavelength n. If the n value is 0, then rays with any wavelength will
return true for this test. Note this filter only tests the initial wavelength for the
ray as it leaves the source. If wavelength shifting is used, the wavelength may
change during propagation.

X_AXYG(n,v)

Ray has incident angle (in degrees) on object n in the local x-y plane greater
than v. The angle is measured with respect to the +y direction without regard to
the direction of propagation. If the ray never strikes object n, this flag is false.

X_AXYL(n,V)

Ray has incident angle (in degrees) on object n in the local x-y plane less than
v. The angle is measured with respect to the +y direction without regard to the
direction of propagation. If the ray never strikes object n, this flag is false.

osphotonics.wordpress.com 155

Application of Zemax Programming Language Open Source Photonics

X_AXZG(n,V)

Ray has incident angle (in degrees) on object n in the local x-z plane greater
than v. The angle is measured with respect to the +z direction without regard to
the direction of propagation. If the ray never strikes object n, this flag is false.

X_AXZL(n,v)

Ray has incident angle (in degrees) on object n in the local x-z plane less than
v. The angle is measured with respect to the +z direction without regard to the
direction of propagation. If the ray never strikes object n, this flag is false.

X_AYZG(n,v)

Ray has incident angle (in degrees) on object n in the local y-z plane greater
than v. The angle is measured with respect to the +z direction without regard to
the direction of propagation. If the ray never strikes object n, this flag is false.

X_AYZL(n,v)

Ray has incident angle (in degrees) on object n in the local y-z plane less than
v. The angle is measured with respect to the +z direction without regard to the
direction of propagation. If the ray never strikes object n, this flag is false.

X_EXT(n,b)

Ray segment is an extraordinary ray generated from a birefringent interface
after the parent ray has hit object n exactly b times. To apply this filter, a
search is made for the parent segment that hit object n exactly b times, and
only the children of that particular parent segment are considered. If no parent
segment hit object n exactly b times, the filter returns false. See also X_ORD.

X_GHOST(n,b)

Ray segment has ghosted exactly b times, and has hit object n at least once. If n
IS zero, any ray segment that has ghosted b times will pass the test. For
example, to consider only all second generation ghosts (ghost rays from ghost
parents), use X_GHOST(0, 2). X_GHOST does not consider ghost ray
segments that end in a TIR condition; although rays that TIR are considered
ghosts. For example, if a third generation

ghost ray leaves one surface, strikes another surface, and then TIR’s from this
second surface, X_GHOST(0, 3) will not include this segment because the
segment ended in a TIR and not a ray termination (the ray reflected and
continued). This same segment will however be included in the filter
X_GHOST(0, 4) because the ray ghosted a fourth time (at the TIR point). This
is an artifact of how Zemax defines segments and counts ghost rays. In all
cases, all ghost rays can be found if sufficiently high values of b are tested.
Note rays which TIR from refractive surfaces are considered ghosts, but rays
reflected from

mirror surfaces are not. See also Gn.

X_HIT(n,b)

Ray segment has hit object n exactly b times. See also Hn, X_HITS,
X_HITFACE, and X_HITFACE2.

X_HITS(n1,n2)

If n2 is zero: Ray has n1 or more hits on any object(s). If n2 is not zero, then
Ray has between nl and n2 hits, inclusive.

X_HITFACE(n,f)

Ray segment has hit object n on face f. See also Hn, X_HIT, and
X _HITFACEZ2.

X_HITFACE(n,f)

Ray segment has hit object n on face f. See also Hn, X_HIT, and
X_HITFACE?2.

X_HITFACE2(n,f,b)

Ray segment has hit object n on face f exactly b times. See also Hn and
X_HIT.

X_IAGT(n,v) Ray has absolute intensity greater than value v on object n. If the ray never
strikes object n, this flag is false.
X_IALT(n,v) Ray has absolute intensity less than value v on object n. If the ray never strikes

osphotonics.wordpress.com 156

Application of Zemax Programming Language Open Source Photonics

object n, this flag is false.

X_IRGT(n,v) Ray has intensity relative to initial intensity greater than value v on object n. If
the ray never strikes object n, this flag is false.

X_IRLT(n,v) Ray has intensity relative to initial intensity less than value v on object n. If the
ray never strikes object n, this flag is false.

X_LGT(n,v) Ray has local incident x ray direction cosine greater than value v at point on
object n. If the ray never strikes object n, this flag is false.

X_LLT(n,v) Ray has local incident x ray direction cosine less than value v at point on
object n. If the ray never strikes object n, this flag is false.

X_MGT(n,v) Ray has local incident y ray direction cosine greater than value v at point on
object n. If the ray never strikes object n, this flag is false.

X_MLT(n,v) Ray has local incident y ray direction cosine less than value v at point on
object n. If the ray never strikes object n, this flag is false.

X_NGT(n,v) Ray has local incident z ray direction cosine greater than value v at point on
object n. If the ray never strikes object n, this flag is false.

X_NLT(n,v) Ray has local incident z ray direction cosine less than value v at point on object
n. If the ray never strikes object n, this flag is false.

X_ORD(n,b) Ray segment is an ordinary ray generated from a birefringent interface after the

parent ray has hit object n exactly b times. To apply this filter, a search is made
for the parent segment that hit object n exactly b times, and only the children of
that particular parent segment are considered. If no parent segment hit object n

exactly b times, the filter returns false. See also X_EXT.

X_SCATTER(n,b)

Ray segment has scattered from parent exactly b times, and has hit object n at
least once. If n is zero, any child ray segment split off from the parent ray that
has scattered b times will pass the test. For example, to consider only first
generation scatter rays, use X_SCATTER(O, 1). This filter tests only the scatter
from parent or “F” flag as listed in the ZRD. See also Sn and X SCATTERF.

X_SCATTERF(n,b)

Ray segment has scattered from object n after the parent of the segment hit
object n exactly b times. To apply this filter, a search is made for the parent
segment that hit object n exactly b times, and only that particular parent
segment is considered. If no parent segment hit object n exactly b times, the
filter returns false. For example, to consider only scattered rays that branch off
from the parent ray after the third hit on object 5 (that is, the ray leaving the
source has twice before hit this same object), use X_SCATTERF(5, 3). See
also Fn and X_SCATTER.

X_SEGMENTS(n1,n2)

If n2 is zero: Ray has n1 or more segments. If n2 is not zero, then Ray has
between nl and n2 segments, inclusive.

X_WAVERANGE(n, a,
b)

Ray has hit object n and has a wavelength between a and b micrometers,
inclusive.

X_WAVESHIFT(i,j)

Ray has wave shifted during a bulk scatter event from wavelength i to
wavelength j.

X_XGT(n,v) Ray has local x coordinate greater than value v at point on object n. If the ray
never strikes object n, this flag is false.
X_XLT(n,v) Ray has local x coordinate less than value v at point on object n. If the ray

never strikes object n, this flag is false.

osphotonics.wordpress.com 157

Application of Zemax Programming Language Open Source Photonics

X_YGT(nVv) Ray has local y coordinate greater than value v at point on object n. If the ray
never strikes object n, this flag is false.

X_YLT(n,v) Ray has local y coordinate less than value v at point on object n. If the ray
never strikes object n, this flag is false.

X_ZGT(n,Vv) Ray has local z coordinate greater than value v at point on object n. If the ray
never strikes object n, this flag is false

X_ZLT(n,v) Ray has local z coordinate less than value v at point on object n. If the ray
never strikes object n, this flag is false.

Z Ray has fatal error.

The syntax of function NSDC() is:
returnValue = NSDC(surf, object, pixel, data)

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the detector;
pixel is the pixel number on the detector, 0 for the summation of all the pixels; data is O for real, 1 for
imaginary, 2 for the amplitude, and 3 for the coherent intensity. The returned result is saved in variable
returnValue.

The syntax of function NSDD () is:
returnValue = NSDD(surf, object, pixel, data)

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the detector;
pixel is the pixel number on the detector, 0 for the summation of all the pixels; data is 0 for flux, 1 for
flux/area, 2 for flux/solid angle pixel, and 3 for normalized flux. If the object number is zero, then all
detectors are cleared and the function returns zero. If the object number is less than zero, then the
detector defined by the absolute value of the object number is cleared and the function returns zero. If
the object number corresponds to a detector rectangle, surface, or volume object, then the incoherent
intensity data from the specified pixel is returned. For a full discussion of the pixel and data arguments,
please refer to Zemax User’s Manual.

Sometimes if we want to set or modify the coherent or incoherent intensity data of a pixel on a
rectangle detector, we can use keyword SETDETECTOR to realize. The syntax is:

SETDETECTOR surf, object, pixel, datatype, value

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the rectangle
detector; pixel is the pixel number on the detector, between 1 and the maximum number of pixels;
Datatype is O for incoherent intensity, 1 for incoherent intensity in angle space, 2 for coherent real part,
3 for coherent imaginary part, and 4 for coherent amplitude 0; value is the value to be set.

Now let’s give some examples to show how to do non-sequential ray tracing in ZPL programs.

osphotonics.wordpress.com 158

Application of Zemax Programming Language

Example 3.10-4: Ray tracing in non-sequential system

Open Source Photonics

' ex31004
' Thiszs prograw shows how to do ray tracing in NSC mode
' Assume the lens system 15 defined in ex31003

surf = 1
Jource =
splic = 1
gcact = 1
pol = 1
ignore err = 1

11 random seed = 1

12 save = 0

12 object = 0

14 obj = 3

18 pix = 0

1€ data = 0

17

18 temp = N3DD(surf, object, pix, data)

1

W s oA b W M

[
(=]

Z0
21 PRINT

23
z6
27 temp = NSDD(1, 0, O, O]

29 PRINT "Reading ", NSDD(surf, obj,

clear the detector
19 NSTR surf, source, split, scatt, pol, ignore_err, random seed, save

2z PRINT "Reading on detector is:", N3DD(surf, obj, pix, data)

24 N3TR surf, source, split, scatt, pol, ignore err, random seed, save
25 PRINT "Reading on detector without clearing: ", NSDD(surf,

clear the detector
2g NSTR surf, source, split, scatt, pol, ignore_err, random seed, save
N — data)

pix, data)

In this example, detector is cleaned in line 18, ray tracing is done in line 19, and light intensity on the
detector is read and printed out in line 22. The whole ray tracing process is this simple. However, it
needs to be noticed that if the previous values on the detector are not cleared, the new values on the
detector after ray tracing will include previous value. Lines 24~29 in the program compared the light
intensity value on the detector after ray tracing, without and with clearing the detector. The result of

the program is shown in figure 3.10-5:

osphotonics.wordpress.com

159

Application of Zemax Programming Language Open Source Photonics

$) 1: Text Viewer

Update Settings Print window
Executing D: "My Macros ' CH3IWEXI1004_ ZPL.

Beading on detector is:0.2170
Peading on detector without clearing: 1.8339
Peading on detector should be: 0_.3170

Fig. 3.10-5: Result of program ex31004.ZPL

If we open the detector viewer, we can see the light distribution on the detector, as shown in figure
3.10-6:

$) 2: Detector Viewer

Update Setkings Print Window Text Zoom
17357
16151
14358
12578
177
&97E
FLE3
5397
2631
1794

B
OETECTOE IMAGE: IWCOHEREMT IEEAOTAMNCE

DETECTAOR 2, MSCE EURFACE 3t

SL'E Z.8BB W ¥ 2.ARB H HILLIHETERS, FIXH S 100 W X 188 H, TOTAL HITS = LBGL9

Rl R

Fig. 3.10-6: Light intensity distribution seen on the detector after ray tracing.

osphotonics.wordpress.com 160

Application of Zemax Programming Language Open Source Photonics

Example 3.10-5: Modify the values on the detector in a non-sequential system.

' ex31005
' This programm shows how to use SJETDETECTOR kev word
' Assume the lens svystem 15 defined in ex31003

object = 3

1

2

3

4

Ssurf = 1
&

7 datatype = [
g
a

temp = NSDD(1, O, O, 0O) # clear the detector
10 MsTR 1, 1, 1, 1, 1, 1, 1, 0O # ray tracing, as in ex31004
11
12 PRINT
13 PRINT "Reading on detector: ", NSDD(surf, ocbject, 0, datatype)
14

15 radius = 25
16 widcth = 2
17 value = 0.05

1s FOR i, 1, 100, 1
zo0 FOR j, 1, 100, 1

21 r2 = (1i-50) *(1i-50)+4(3-50) *({3-50)

2z ra = (radius+width/2)

z3 rh = (radius-width/2}

24 IF (r2<ra*ra) £ (rZ:>rb*rh)

25 pix = i*100+j3

26 SETDETECTOR surf, object, pix, datatype, wvalue
27 ENDIF

28 NEXT

29 NEXT

20

31l PRINT "Modified reading on dececcor: ", NSDD(surf, object, 0, datcatype)

In this example, we assume the system is the same as previous two examples. The detector is cleared in
line 9, ray tracing is done in line 10. The reading on the detector is the same as that in example 3.10-4.
Then, we added a circular ring around the center of the detector by comparing the distance of each pixel
to the center. If a pixel is on the circumference of the ring, then its value is modified. The result of the
program is shown in figure 3.10-7:

osphotonics.wordpress.com 161

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

pdate Settings Print Window
Executing D:WHMy MacroshCHIZWEXI100E5 ZPL.

Beading on detector: 0.9170
Modified reading on detector: 1&.7170

Figure 3.10-7: result of program ex31005.ZPL

The result shows that the values on the detector have been modified. If we open the detector viewer,
we can see the circle we added, as shown in figure 3.10-8:

#1) 2: Detector Viewer
Update Settings Print Window Text Zoom

OETECTOR TMAGE: THWCOHEREWT THEAOTHMCE

DETECTAOR 2, MSCL ZURFACE 1@

ELZE 2,600 W £ 2.BPR H HILLIMETERS, FIXH S 180 W ¥ 180 H, TOTAL HITE = LBSL9
FERF, IRRAOIAMCE | L.75vESBEY WATTS/CHZ

TOTAL POMEE : L. &FITE+RBL WATTI

Fig. 3.10-8: : Light intensity distribution seen on the detector after modification.

osphotonics.wordpress.com 162

Application of Zemax Programming Language Open Source Photonics

3.11 Multi-Configuration

In optical design, often times we will need to add, delete or modify some components or parameters
based on different working environment, such as designing focal length adjustable lenses, optimizing
optical system at different wavelengths, etc. Multi-configuration supported by ZEMAX can be widely
used in those cases. In this section, we will discuss multi-configuration related commands in ZPL. For
details on multi-configuration, please refer to Zemax User’s Manual.

We know that multi-configuration editor is the place to set and modify multi-configuration in Zemax. If
we want to add, delete or modify configurations or operands in multi-configuration editor, we can use
ZPL keywords INSERTCONFIG, INSERTMCO, DELETECONFIG, and DELETEMCO.

INSERTCONFIG is used to add a configuration in the multi-configuration editor. The syntax is:
INSERTCONFIG config

where config is an integer greater than 0 and smaller than or equal to the current number of
configurations plus 1.

INSERTMCO is used to insert a new multi-configuration operand in the multi-configuration editor. The
syntax is:

INSERTMCO row

where row is an integer greater than 0 and smaller than or equal to the current number of operands
plus 1.

DELETECONFIG is used to delete a configuration from current multi-configuration editor. The syntax is:
DELETECONFIG config

where config is an integer greater than 0 and smaller than or equal to the number of current
configurations.

DELETEMCO is used to delete an existing operand in the multi-configuration editor. The syntax is:
DELETEMCO row

where row is an integer greater than 0 and smaller than or equal to current number of operands.

osphotonics.wordpress.com 163

Application of Zemax Programming Language Open Source Photonics

If we want to set or modify the parameters in the multi-configuration editor, we can use keyword
SETCONFIG and SETMCOPERAND.

SETCONFIG is used to set the current configuration for multi-configuration (zoom) systems. The syntax
is:

SETCONFIG config

where config is an integer greater than 0 and smaller than or equal to current number of configurations.

SETMCOPERAND is used to set any row or configuration of the Multi-Configuration Editor to any
numeric value. The syntax is:

SETMCOPERAND row, config, value, datatype

where row and config are used to specify the row and configuration of the Multi-Configuration Editor.

If the config number is 0, then the value is interpreted as follows:
datatype = 0, value is a string literal or variable that specifies the name of the operand.

datatype = 1, 2, or 3, value is the number 1, 2, or 3 value used as part of the multi-configuration
operand

definition.
If the config number corresponds to a defined configuration then the value is interpreted as follows:
datatype = 0, value is the value of the operand.
datatype = 1, value is the pickup offset of the operand.
datatype = 2, value is the pickup scale of the operand.

datatype = 3, value is the status of the operand, O for fixed, 1 for variable, 2 for pickup, 3 for
thermal pickup.

datatype = 4, value is the pickup configuration number.

datatype = 5, value is the pickup row number.

osphotonics.wordpress.com 164

Application of Zemax Programming Language Open Source Photonics

The table below listed codes and arguments for various operands:

Table 3.11-1 SUMMARY OF MULTI-CONFIGURATION OPERANDS

Type Numbers 1,2,3 Description

AFOC Ignored Afocal Image Space mode.

AICN Surface, Object iPartFactory Number for the Autodesk Inventor part.

APDF Ignored System apodization factor. See also APDT.

APDT Ignored System apodization type. Use 0 for none, 1 for Gaussian, 2 for
cosine cubed. See also APDF.

APDX Surface # Surface aperture X- decenter. The surface must have a defined
aperture (NOT semi-diameter).

APDY Surface # Surface aperture Y- decenter. The surface must have a defined
aperture (NOT semi-diameter).

APER Ignored System aperture value. If the system aperture type is float by stop
size, this is the semi-diameter of the stop surface. See also SATP.

APMN Surface # Surface aperture minimum value. The surface must have a
defined aperture (NOT semi-diameter). This same operand also
works to control the first parameter of all surface aperture types,
such as the X-Half Width on rectangular and elliptical apertures.

APMX Surface # Surface aperture maximum value. The surface must have a
defined aperture (NOT semi-diameter). This same operand also
works to control the second parameter of all surface aperture
types, such as the Y-Half Width on rectangular and elliptical
apertures.

APTP Surface # Surface aperture type. The integer values indicating the aperture
type are 0-10 for none, circular aperture, circular obscuration,
spider, rectangular aperture, rectangular obscuration, elliptical
aperture, elliptical obscuration, user aperture, user obscuration,
and floating aperture; respectively.

CADX Surface # Surface Tilt/Decenter after surface decenter x.

CADY Surface # Surface Tilt/Decenter after surface decenter y.

CATX Surface # Surface Tilt/Decenter after surface tilt x.

CATY Surface # Surface Tilt/Decenter after surface tilt y.

CATZ Surface # Surface Tilt/Decenter after surface tilt z.

CAOR Surface # Surface Tilt/Decenter after surface order. Use 0 for Decenter then
Tilt, or 1 for Tilt then Decenter.

CBDX Surface # Surface Tilt/Decenter before surface decenter x.

CBDY Surface # Surface Tilt/Decenter before surface decenter y.

CBTX Surface # Surface Tilt/Decenter before surface tilt x.

CBTY Surface # Surface Tilt/Decenter before surface tilt y.

osphotonics.wordpress.com 165

Application of Zemax Programming Language Open Source Photonics

CBTzZ Surface # Surface Tilt/Decenter before surface tilt z.

CBOR Surface # Surface Tilt/Decenter before surface order. Use 0 for Decenter
then Tilt, or 1 for Tilt then Decenter.

CONN Surface # Conic constant.

COTN Surface # The name of the coating, if any, to be applied to the surface.

CPCN Surface, Object Family Table Instance Number for the Creo Parametric part.

CROR Surface # Coordinate Return Orientation. Use 0 for none, 1 for Orientation
only, 2 for Orientation XY, and 3 for Orientation XYZ.

CRSR Surface # Coordinate Return Surface.

CRVT Surface # Curvature of surface.

CSP1 Surface # Curvature solve parameter 1.

CSP2 Surface # Curvature solve parameter 2.

CWGT Ignored The overall weight for the configuration. This number only has
meaning relative to the weights in other configurations.

EDVA Surface, Extra The EDVA operand is used to assign multiple values to the extra

Data Number data values. This operand requires 2 numerical arguments: the
surface number and the extra data value number.

FLTP Ignored Field type. Use 0 for angle in degrees, 1 for object height, 2 for
paraxial image height, 3 for real image height.

FLWT Field # Field weight.

FVAN Field # Vignetting factor VAN.

FVCX Field # Vignetting factor VCX.

FVCY Field # Vignetting factor VCY.

FVDX Field # Vignetting factor VDX.

FVDY Field # Vignetting factor VDY.

GCRS Ignored The global coordinate reference surface.

GLSS Surface # Glass.

GPEX, obsolete obsolete

GPEY

GPJX Ignored Global Jones polarization vector component Jx.

GPJY Ignored Global Jones polarization vector component Jy.

GPIU Ignored Global polarization state "is unpolarized", 1 if polarization state is
unpolarized, otherwise state is polarized.

GPPX Ignored Global polarization state phase x.

GPPY Ignored Global polarization state phase y.

G Ignored Obscuration value used for Gaussian Quadrature pupil sampling
QPO in the default merit function.

HOLD Ignored Holds data in the multi-configuration buffer, but has no other
effect. Useful for temporarily turning off one operand without
losing the associated data.

IGNR Surface # Ignore This Surface status. Use 0 to consider the surface, and 1 to

ignore the surface. If IGNR

osphotonics.wordpress.com 166

Application of Zemax Programming Language Open Source Photonics

and IGNM operands are defined for the same surface, the one
listed second will take precedence.

IGNM First Surface, Sets Ignore This Surface status on a range of surfaces. Use 0 to
Last Surface consider the surfaces, and 1 to ignore the surfaces. If IGNR and
IGNM operands are defined for the same surface, the one listed
second will take precedence.
LTTL Ignored Lens title. The string length is limited to 32 characters.
MABB Surface # Model glass Abbe.
MCOM Surface # Surface comment.
MDPG Surface # Model glass dPgF.
MIND Surface # Model glass index.
MOFF Ignored An unused operand, may be used for entering comments.
MTFU Ignored MTF units. Use 0 for cycles/millimeter or 1 for
cycles/milliradian.
NCOM Surface, Object Modifies the comment for non-sequential objects in the NSC
Editor. The string value is limited to 32 characters.
NCOT Surface, Object, Modifies the coating on each face for non-sequential objects in
NGLS Surface, Object The material type for non-sequential objects in the NSC Editor.
NPAR Surface, Object, Modifies the parameter columns for non-sequential objects in the
Parameter NSC EdItOI’
NPOS Surface, Object, Modifies the x, vy, z, tilt X, tilt y, and tilt z position values for
Position nonsequential objects in the NSC Editor. The position flag is an
integer between 1 and 6 for X, y, z, tilt x, tilt y, and tilt z,
respectively.
NPRO Surface, Object, Modifies various properties of NSC objects. Property is an integer

Property

value indicating what data is controlled:

1 - Inside of object number

2 - Reference object number

3 - Do Not Draw Obiject (0 = no, 1 = yes)

4 - Rays Ignore Object (0 = never, 1 = always, 2 = on launch)
5 - Use Pixel Interpolation (0 = no, 1 = yes)

201-212 - User defined gradient index parameters

301-312 - User defined diffraction parameters for reflection
351-362 - User defined diffraction parameters for transmission
401-416 - User defined bulk scatter parameters

481, 482 - Bulk scatter mean free path and angle arguments.
500 - Media is birefringent. Use O for false and 1 for true,

501 - Birefringent mode. use 0-3 for ordinary and extraordinary
rays, ordinary rays only, extraordinary rays only, and waveplate
mode, respectively.

502 - Birefringent Reflections. Use O for refracted and reflected

osphotonics.wordpress.com 167

Application of Zemax Programming Language Open Source Photonics

rays, 1 for refracted rays only, and 2 for reflected rays only.
503-505 - Birefringent crystal axis orientation x, y, and z.

PAR1 Surface # Parameter 1. Obsolete, use PRAM instead.

PAR2 Surface # Parameter 2. Obsolete, use PRAM instead.

PAR3 Surface # Parameter 3. Obsolete, use PRAM instead.

PAR4 Surface # Parameter 4. Obsolete, use PRAM instead.

PAR5 Surface # Parameter 5. Obsolete, use PRAM instead.

PAR6 Surface # Parameter 6. Obsolete, use PRAM instead.

PAR7 Surface # Parameter 7. Obsolete, use PRAM instead.

PARS Surface # Parameter 8. Obsolete, use PRAM instead.

PRAM Surface, Parameter value. This operand controls any of the parameters.

Parameter

PRES Ignored Air pressure in atmospheres. Zero means vacuum, 1 means
normal air pressure.

PRWV Ignored Primary wavelength number.

PSCX Ignored X Pupil Compress. Used for ray aiming.

PSCY Ignored Y Pupil Compress. Used for ray aiming.

PSHX Ignored X Pupil Shift. Used for ray aiming.

PSHY Ignored Y Pupil Shift. Used for ray aiming.

PSHZ Ignored Z Pupil Shift. Used for ray aiming.

PSP1 Surface # Parameter solve parameter 1 (the pickup surface). This operand
requires 2 numerical arguments: the surface number and the
parameter number.

PSP2 Surface # Parameter solve parameter 2 (the scale factor).This operand
requires 2 numerical arguments: the surface number and the
parameter number.

PSP3 Surface # Parameter solve parameter 3 (the offset).This operand requires 2
numerical arguments: the surface number and the parameter
number.

PUCN Ignored Used for picking up a range of values from a previous
configuration. If a positive integer configuration number is
provided, then all values below the PUCN operand will be picked
up from the configuration number specified. If the configuration
value is negative, then a negative pickup while be used. If the
configuration number is zero,
then the values below the PUCN operand will not have pickup
solves applied. Note two PUCN operands can be used to define
the beginning and end of a range of values to be picked up. All
specified configuration numbers must be less than the
configuration the PUCN
data is provided for.

PXAR Surface # Physical optics setting "Use X-axis Reference". Use 0 for no, 1

for yes.

osphotonics.wordpress.com 168

Application of Zemax Programming Language Open Source Photonics

RAAM Ignored Ray aiming. Use 0 for off, 1 for paraxial, and 2 for real.

SATP Ignored System aperture type. Use 0 for Entrance Pupil Diameter, 1 for
Image Space F/#, 2 for Object Space NA, 3 for Float By Stop
Size, 4 for Paraxial Working F/#, 5 Object Cone Angle. See also
APER.

SDIA Surface # Semi-diameter.

SDRW Surface # Modifies the do not draw this surface flag. Use 0 to draw and 1 to
not draw.

STPS Ignored Stop surface number. The stop can be moved to any valid surface
number (excluding the object and image surfaces) by specifying
an integer argument for each configuration.

SWCN Surface, Object Configuration number for the SolidWorks part.

TCEX Surface # Thermal coefficient of expansion.

TELE Ignored Telecentric in object space, 0 for no, 1 for yes.

TEMP Ignored Temperature in degrees Celsius.

THIC Surface # Thickness of surface.

TSP1 Surface # Thickness solve parameter 1.

TSP2 Surface # Thickness solve parameter 2.

TSP3 Surface # Thickness solve parameter 3.

UDAF Surface # User defined aperture file. Surface must use either a user defined
aperture or user defined obscuration aperture type.

WAVE Wave # Wavelength.
WLWT Wave # Wavelength weight.
XFIE Field # X-field value.
YFIE Field # Y-field value.

Now we will give some examples to show how to define and modify multi-configurations in ZPL program.

osphotonics.wordpress.com 169

Application of Zemax Programming Language

Example 3.11-1: Define and modify multi-configuration system.

Open Source Photonics

1z

! ex31101

' This program shows how to create a multiconfiguration system from scratch
! Before start this program, make sure a new lens f£ile is created

' add 5 more surfaces

FOR 1. 1,
INSERT
NEXT

=F
1

1

! set system parameters
SYSP 30, 0 # set lens unit as mm
0 # =er system aperture as Entrance Pupil Diamerter

SY3P 10,
SYSP 11,

SY3P 201,
STSP 202,

SYSP 100,
SYSP 101,
SYSP 102z,
SYSP 103,
SYSP 104,
3Y3P 102,
SYSP 103,
SYSP 104,
SYSP 102,
SY3P 103,
SYSP 104,

15

set

set

0.55

set
set

a

HEe O OO O

n

L - =

B =

system aperture wvalue as lonem

total wavelength number as 1
set the wavelength as 0.55 micron

the field type as Angle

the total field nuwber as 3
set field 1 as x = 0 degree
set field 1 as vy = 0 degree
set field 1 a5 welight = 1
set field 2 as x = 0 degree
set field 2 as y = 0.5 degree
set field 2 a3 weight = 1
set field 3 as x = 0 degree
set field 3 as y = 1 degree
set field 3 as weight = 1

osphotonics.wordpress.com

170

Application of Zemax Programming Language Open Source Photonics

z9

30 ! set surface parameters

31 SURP 1, THIC, -37 # set surface 1 thickness as -37

3z SURP 2, THIC, 50 # set surface 2 thickness as 50

33

34 SURP 3, CURV, -1/65.8 # =et surface 3 curvature as -1/65.8
35 SURP 3, THIC, -12.34 # set surface 3 thickness as -12.34

36 SURP 3, GLAS, "MIRROR"™ # set surface 3 glass type as HIRROR
37

38 SURP 4, CURV, -1/124.6 # set surface 4 curvature as -1/124.6
39 3URP 4, THIC, 60.62Z # set surface 4 thickness as 60.62

40 SURP 4, GLAS, "MIRROR"™ # set surface 4 glass type as HIRROR
41

42 3URP 5, CURVW, -1/21.8 # set surface 5 curvature as -1/21.8
43 SURP 5, THIC, -7.01 # set surface S5 thickness as -7.01

44 SURP 5, GLAS, "MIRROR"™ # set surface 5 glass type as MIRROR
45

46 SURP 6, CURV, -1/25.7 # set surface 6 curvature as -1/25.7
47 SURP 6, THIC, 48.02 # set surface 6 thickness as 48.02

48 SURP 6, GLAS, "MIRROR"™ # set surface 6 glass type as HIRROR
49

50 ! set surface 3 as stop

51 STOPSURF 3

52

52

£3 ! insert 4 mwore configurations

&4 FOR 1, 1, 4, 1

&5 INSERTCONFIG 1

56 NEXT

57

58 ! insert 4 mwore oprand rows in the multi-configuration editor
5% FOR i, 1, 4, 1

&0 INSERTHMCO 1

61 NEXT

62

62 ! set the oprand types in different rows

64 row = 1

65 config = 0O

66 datatype a

67 value$ = "THIC"

68 valuel = 1

69 datatypel = 1

70 SETMCOPERAND row, config, wvaluef, datatype # set operand type

71 SETMCOPERAND row, config, valuesl, datatypel # set operand surface #
72 SETMCOPERAND 2, 0, "APMN", O # set operand type

?3 SETMCOPERAND 2, 0, 1, 1 # set operand surface #
74 SETMCOPERAND 3, 0, "THIC", O # =et operand type

75 SETMCOPERAND 3, 0, 3, 1 # set operand surface #
76 SETMCOPERAND 4, 0, "THIC", O # zet operand type

77 SETMCOPERAND 4, 0, 4, 1 # set operand surface #
78 JETMCOFPERAND 5, 0, "THIC", O # set operand type

79 SETMCOPERAND 5, 0O, 5, 1 # set operand surface #
80

osphotonics.wordpress.com 171

Application of Zemax Programming Language Open Source Photonics

&0

8l ! set the oprand values in different configurations

g2 SETMCOPERAND 1, 1, =37, 0O # set the first operand in each configuration
83 SETHCOPERAND 1, 2, -35, 0

84 SETHCOPERAND 1, 3, -32, 0

g5 SETMCOPERAND 1, 4, -29, 0O

g6 SETMCOPERAND 1, 5, -23.5, 0O

87 SETHMCOPERMND 2, 1, 5, 0O # set the second operand in each configuration
g8 SETHCOPERAND 2, 2, 4.45, 0

g% SETMCOPERAND 2, 3, 3.9, 0
90 SETHCOPERAND 2, 4, 3.2, 0
91 SETHMCOPERAND 2, 5, 2, 0O
92 SETHCOPERAND 3, 1, -12.3,
93 SETHCOPERANWND 3, 2, -14.7,
94 SETHMCOPERAND 3, 3, -17.5,
95 SETHMCOPERAND 3, 4, -20.8,
96 SETHCOPERAND 3, 5, -26.3,
97 SETHCOPERAND 4, 1, 60.6,
98 SETMCOPERAND 4, 2, 56.1,
99 SETHCOPERAND 4, 3, S51.4,
100 SETHMCOPERAND 4, 4, 44.6,
1ol SETMCOPERAND 4, 5, 36.8,
loz SETMCOPERAND S5, 1, =7, 0O # =set the fifth operand in each configuration
103 SETHCOPERAND 5, 2, -7, 0

104 SETMCOPERAND 5, 3, -7, O

los SETHCOPERAND 5, 4, -8, O

106 SETHCOPERAND 5, 5, -6.6, O

107

log UPDATE

=et the third operand in each configuration

ooooo

zet the fourth operand in each configuration

ooooo

In this example, we want to build a multi-configuration system from scratch, so we need first create a
new lens system from Zemax main window file menu. In the new system, we can see three surfaces in
the lens editor. 5 more surfaces are inserted in lines 6 ~ 8 of the program, so there are total 8 surfaces,
including object and image surfaces. Lines 11 ~ 28 set some basic system parameters, including lens unit
(line 11), entrance pupil type and size (lines 12 and 13), wavelength number and value (lines 15 and 16),
and object field (lines 18 ~ 28). Lines 31 ~ 48 define parameters of each surface, line 51 defines the stop
surface. After basic optical system is set up, lines 54 ~ 56 insert 4 configurations in the multi-
configuration editor, so there are total 5 configurations. Lines 59 ~ 61 insert 4 operand rows in the
multi-configuration editor, so there are total 5 rows. Lines 64 ~ 79 define the type of each operand in
the multi-configuration editor, and lines 82 ~ 106 set the value of each operand in different
configurations. The last line in the program updates the optical system using keyword UPDATE to assure
each parameter of the system is the newest value.

After running program ex31101.ZPL, if we open multi-configuration editor, the content can be seen as
shown in figure 3.11-1:

osphotonics.wordpress.com 172

Application of Zemax Programming Language

Actiwe : 1/5 Config 1+ Config &£ Config 3 Config 4 Config 5

1: THIC 1 =37.000000 =3E5_000000 =3Z_000000 =Z5_000000 -Z3_E00000

Z: APMN a1 L.o0oooo 4450000 2200000 2. 200000 Z.000000

3: THIC 3 —1lz.300000 =14_700000 =17_500000 —Z0_800000 —Z6_300000

4: THIC 4 &0_&00000 S&_100000 51.400000 44 _ 3800000 36. 800000

E: THIC 5 =7.000000 =7.000000 =7. 000000 =8_ 000000 =&8_&00000
<3|

£

Fig. 3.11-1: Content in the multi-configuration editor after running program ex31101.ZPL

If we open 3D Layout window, we can see each configuration as shown in figure 3.11-2:

#1) 1: 3D Layout 1

Update Settings Prink

iindiow

— =

a0 LevouT

A1Z, INC.

le@Ea ABC STREEET
DFTICE CITY

LEMS, TMX
COMFICURATION:! RLL B

Fig. 3.11-2: Content of the 3D Layout window after running program ex31101.ZPL

osphotonics.wordpress.com

Open Source Photonics

173

Application of Zemax Programming Language Open Source Photonics

Of course, this multi-configuration system is not optimized yet. If needed, we can choose proper
variables and merit function to further optimize this system, depending on the design target.

Besides setting parameters of multi-configuration system, we can also read various parameters through
ZPL functions such as NCON(), CONF(), MCOP(), MCON(), etc.

Function NCON() is used to read the number of configurations. The syntax is:

returnValue = NCON()

Function CONF() is used to read the current configuration number. The syntax is:

returnValue = CONF ()

Function MCOP() is used to read the data of given row (operand) in the given configuration. The syntax
is:

returnValue = MCOP(row, config)

where row is the row number of the operand, config is the configuration number. If configis 0, then the
current configuration is chosen.

Function MCON () is used to extract data from any row and configuration of the Multi-Configuration
Editor. This function is similar to MCOP with extended capabilities for extracting data. The syntax is:

MCON(row, config, data)

where row is the row number (operand number), config is the configuration number, and data is the
data value to extract from the Multi-Configuration Editor. If the row and config number are both zero,
MCON returns either the number of operands, the number of configurations, or the active configuration
number for data =0, 1, and 2, respectively. If the row number is between 1 and the number of multi-
config operands, and the config number is zero, MCON returns the operand type, integer 1, integer 2,
integer 3, and string flag for that specified row, for data = 0 through 4, respectively. The 3 integer values
are used for various purposes for different operands, such as surface and wavelength numbers. The
string flag is 1 if the operand data is a string value, such as a glass name, or 0 for numerical data. If the
row number is between 1 and the number of multi-config operands, and the config number is valid,
MCON returns either the numerical value or the string data for that operand.

Note that all string data returned by MCON must be extracted with the Sbuffer command after the call
to MCON. For example, the following code will place the name of the operand on row 1 in aS:

osphotonics.wordpress.com 174

Application of Zemax Programming Language

dummy = MCON(1, 0, 0)

as = Sbuffer()

Example 3.11-2: Extract data from multi-configuration system.

Open Source Photonics

LY I TS I T T o T]

10
11
1z
1z
14
18
16
17
lg
139
Z0
Z1
ZZ
23
24
25
ZE
27
z8
29
30
31
3z
33
34
35
36
37

! This program shows how to read data from malticonfiguration editor

! ex31102

! Assume the mul
PRINT

FORMAT 2.0

PRINT "Total configur
PRINT "The acti
FORMAT 6.4

PRINT

PRINT "The data
PRINT "The dats
FORMAT 2.0

PRINT

PRINT "Total ope
PRINT "Total cont
PRINT "The actiw

ti-configuration syvstem i=s defined in ex31101

R I]
L ARii{lal=p '
I

NCON ()
iz ", COMNF{)

MCOP(2,3)
HCOP(2,0)

o

configuration

'l

rand nu i= ", MCON(0,0,0)
, MCON(D,0,1)

MCON(0,0,2)

LGUrAaT 10N muane

el i=s

e configuration huwnber 1s :

duresy = MCON{2,0,0)

a%$ = Sfbhuffer ()
PRINT
PRINT "The type of I T ', af
PRINT "The first pa nf this operand is ", MCON(2,0,1)
PRINT " econd | f this operand ", MCCN(Z,0,2)
PRINT "The third parameter of this operand is ", MCON(2,0,3)
IF MCON(2,0,4) == 1 # if data in this operand is string
FPRINT "The type of data is ing, ",
durmny = MCON(2,3,0)
ai = fhutfer()
PRINT "and the string in configuration 3 is ", a$
ELSE # if data in this operand is number
FORMAT 6.4
FRINT "TI ita 1
PRINT " n i iz ", MCON({Z,3,0)
ENDIF

In this example, we assume the multi-configuration system is the one defined in example 3.11-1. Line 7
reads the total number of configurations with function NCON(); line 8 read the current configuration
number through function CONF(); lines 12 and 13 read data of row 2 in configuration 3 and row 2 of
current configuration, respectively, through function MCOP; lines 17 ~ 37 read various data through
function MCOP, such as total number of operands (line 17), total number of configurations (line 18),
current configuration number (line 19), type of operand in row 2 of multi-configuration editor (lines 21 ~

osphotonics.wordpress.com

175

Application of Zemax Programming Language

Open Source Photonics

24) and its corresponding 1%, 2" and 3" parameters (lines 25 ~ 27). In line 28, the type of the operand
data is first determined to be string or value. If it is string, then the buffer string function is used to
extract the data (lines 29 ~ 32), otherwise the value is directly read (line 36). The result of the program

is shown in figure 3.11-3.

#) 1: Text Viewer

Update Settings Print window
Executing D: WMy MacroshCH3WEXK3I110Z2_ ZPL.

Total configquration number is &
The actiwve configuration mawmber is 1

The data in row I of configuration 3 is 2.32000
The data in row Z of current configuration is &.0000

Total operand nuamber iz &
Total configuration rmumber iz &
The actiwe configuration muamber is 1

The type of operand in row £ is APMN

The first parameter of this operand iz 1
The second parameter of this operand i=s 0
The third parameter of this operand is 0O

The type of data is number, and the number in configuration 3 is 22000

Fig. 3.11-3: result of program ex31102.ZPL

From the result we can see that both function MCOP() and function MCON() can be used to read the
same data, such as total number of configurations (line 7 and line 18), current configuration number
(line 8 and line 19), or data of the given row in the given configuration (line 12 and line 36), and the
results are the same. However, function MCON() can be used to extract more data, such as operand
type (lines 21 ~ 24) and parameters (lines 25 ~ 27), etc. In this example, since the operand only has one
parameter, the return values of the second and third parameters are 0. Please also note that when
using function MCON() to read the operand value, if the type of the return value is unknown, we can
read the string flag to determine the type, and then read the data properly, as shown in lines 28 ~ 37.

osphotonics.wordpress.com

176

Application of Zemax Programming Language Open Source Photonics

3.12 Display

Screen is the most common terminal device in a computer system. ZPL provided a lot of keywords and
functions to control and read/write screen information. Actually, we have already introduced some
keywords and functions related to screen and other terminals, such as INPUT for allowing user to input
numerical or string information through keyboard, OUTPUT for allowing user to output result to
windows or files, FORMAT for controlling the format of numerical values, PRINT for allowing user to
display result to text windows on the screen or output to a file, etc. In this section, we will continue to
introduce some other commands, focusing on graphic display on the screen. Please remember that
Zemax continuously adds new commands, so we suggest users to refer to Zemax User’s Manual for the
update.

In chapter 1 we mentioned that graphic window is a very important tool for Zemax to output data. ZPL
provided a keyword GRAPHICS to open a standard graphic window to allow designers to draw their own
graphs. The syntax of GRAPHICS is:

GRAPHICS
GRAPHICS NOFRAME

GRAPHICS OFF

If GRAPHICS is specified alone, then a standard Zemax graphics window will be created. If the optional
argument NOFRAME is supplied, then the standard frame for the graph title will be suppressed. All
subsequent graphics commands will be sent to this newly created window. GRAPHICS OFF will close any
existing open graphics windows, and then display the closed window.

If we want to add a title in the graphics window, we can use keyword GTITLE. The syntax is:
GTITLE user_titleS

where user_titleS is the title string user defined, and the text will appear centered in the title bar on the
graphics display.

osphotonics.wordpress.com 177

Application of Zemax Programming Language Open Source Photonics

If we want to display string at given location and orientation in the graphics window, we can use
keyword GTEXT. The syntax is:

GTEXT x, y, angle, user_textS

where x, y are the coordinates refer to the left edge of where the text string user_text will appear.
"user_text" may be either a constant string in quotes or a string variable name. Angle specifies how the
text is rotated with respect to the graphics frame, and defaults to 0 degrees (horizontal).

If we want to display centered string in the graphics windows, we can use keyword GTEXTCENT. The
syntax is:

GTEXTCENT y, user_textS

where the coordinate y refers to the vertical position of the text string user_text.

When displaying string, we can also use keyword SETTEXTSIZE to set its size. The syntax is:
SETTEXTSIZE xsize, ysize

where the arguments refer to the fraction of the graphic screen width that each character represents.
For example, the default text size is 70 40. This means each character is 1/70 of the graphic screen width,
and 1/40 of the screen height. An argument of zero restores the text size to the default.

Also current date can be displayed in the graphics windows with keyword GDATE, and the format is
determined by the Zemax main menu File > Preference option.

Some versions of Zemax can display the title of the lens file on the graphics window using keyword
GLENSNAME so the graphics window user created looks like other Zemax windows. But in general the
standard graphics windows created with GRAPHICS already include this content. Please refer to Zemax
User’s Manual for details.

In the graphics window user created, user can use keywords LINE and PIXEL to draw line segments and
pixels.

osphotonics.wordpress.com 178

Application of Zemax Programming Language Open Source Photonics

The syntax of keyword LINE is:
LINE oldx, oldy, newx, newy

where oldx and oldy are the coordinates of the starting point of the line segment, newx and newy are
those of the end point of the line segment. They should be contained within the current graphics frame
defined by XMIN, YMIN, XMAX, and YMAX. The coordinates can be real values, but Zemax will round
them to the nearest integers.

The syntax of keyword PIXEL is:
PIXEL xcoord, ycoord

where xcoord and ycoord are the coordinates of the pixel in the current graphics window.

Keyword COLOR can be used to control the color of the pen when drawing text, pixels or line segments.
The syntax is:

COLORn

The value n is an integer between 0 ~ 24 for different colors. 0 is for black, and the other colors are as
defined in Zemax main menu File = Preferences option.

In ZPL display, functions XMIN(), XMAX(), YMIN() and YMAX() are often used to read the minimum and
maximum coordinates of the current graphics window. Please note that the origin of the coordinates is
located at the upper left corner of the graphics window, with x increases from left to right, and y
increases from up to down. Also, the height-width ratio of current graphics device can be read through
function ASPR(). The functions mentioned here don’t need any arguments.

We can lock an opened window with keyword LOCKWINDOW. The syntax is:
LOCKWINDOW winnum

where winnum is the window number. If winnum is 0, then all the windows will be locked, and if it is -1,
then the current window will be locked after the program is executed.

osphotonics.wordpress.com 179

Application of Zemax Programming Language Open Source Photonics

If we want to unlock a window, we can use keyword UNLOCKWINDOW. The syntax is:
UNLOCKWINDOW winnum

where winnum is the window number. If winnum is 0, then all the windows will be unlocked, and if it is
-1, then the current window will be unlocked after the program is executed.

If we want to close a window, we can use keyword CLOSEWINDOW. The syntax is:
CLOSEWINDOW
or

CLOSEWINDOW winnum

If CLOSEWINDOW is used alone with no argument "n" provided, it will run the ZPL macro in "quiet"
mode. The text window normally displayed at the end of the macro execution will not be displayed if the
CLOSEWINDOW keyword is included at any line in the macro. CLOSEWINDOW has no other effect on
macro execution.

If CLOSEWINDOW is used with an integer argument "n" provided, it will close analysis window number n.

When we discuss keywords PRINT and OUTPUT in section 2.7, we mentioned that we can output the
result to a file using keyword OUTPUT. But how do we display the result saved to the file? We can do it
with keyword SHOWFILE. The syntax is:

SHOWFILE filename$, saveflag

It displays a text file to the screen using the Zemax file viewer. The filename must be a valid file name.
The file must be a text file (as would be created by OUTPUT and PRINT commands in ZPL) and must be in
the current folder (determined by Zemax main menu File = Preferences = Directories option). Once
the file is displayed, it may be scrolled up and down and printed like any other text file. The ability to
scroll and print the data is the primary advantage of using OUTPUT and SHOWFILE instead of PRINT
commands. SHOWFILE also closes the file if no CLOSE command has been executed. If the saveflag is
zero or omitted, then the file is erased when the window is closed. If saveflag is any value other than
zero, then the file remains even after the window is closed.

osphotonics.wordpress.com 180

Application of Zemax Programming Language Open Source Photonics

Besides displaying text files, ZPL can also display image files. For example, with keyword IMASHOW,
image files with IMA or BIM format can be displayed in a graphics window. The syntax is:

IMASHOW filename$S

This keyword requires the name of the IMA or BIM file. The extension must be included. The filename
may be enclosed in quotes if any blank or other special characters are used. The file must be located in
the <data>\<images> folder. This command will open a new window to display the file.

Now let’s give an example to show how to use the functions and keywords related to screen display.

Example 3.12-1: Screen display

! ex31201
! This program shows how to use display-related keywords and functions

! open a graphic window
GRAPHICS

! get the coordinaces
xmx = ZMAX()

*xmn = XHIN()

10 ymx = YHAX()

11 ymn = YHIN()

12 xWidth = xXmX-xmn

132 yWideh = ymx-ymnh

W o =] Fofn s WD M e

14 xLefr = x¥mn + (0.1 ¥ xWidch)
15 x*Righ = xmn + (0.9 % xWidth)
16 yTopp = vmn + (0.1 * yWidth)
17 yBote = ymn + (0.7 ¥ yWidth)
18

19 ! draw a frame

20 LINE xLeft,vTopp,xRigh, yTopp

zZl LINE xRigh, yTopp,xRigh, yBott

22 LINE xRigh, vBott, xLeft, yBott

23 LINE xLeft,vBott,xLeft,yTopp

24

25 ! add some text

26 SETTEXTSIZE 80, 80

27 GTEXET #mx*0.2,viox*0.75,0, " X axisz"
28 SETTEXTSIZE 50, 50

29 GTEXTCENT wymx*0.75, " X axis"™

30 SETTEXTSIZE 30, 30

21l GTEXT xmx*0.6, ymx*0.75,0, " ¥ axisz"
32 SETTEXTSIZE 0, O

33 GTEXT #*mx*0.05,ymx*0.45,90, " ¥ axis"
24 GDATE # add data/time
35

osphotonics.wordpress.com 181

Application of Zemax Programming Language

Open Source Photonics

35
36
37
38
239
40
4l
42
43
44
45
46
47
48
49
50
sl
52
£3

! draw a curve

pi = 3.1416

FOR theta, 1, 3600, 1
r = yWidch/4/3600%*cheta
¥ = r*COSI(theta*pi/180) +xmn+0.5*xWidth
y = r*3INE (checa*pi/180) +ymn+0.4*yWidth
COLQOR theta - INTE(theta/z5) *25
PIXEL x,¥

NEXT

! draw title
COLOR O
myTitle§d = "Thi:
GTITLE myTitle$

FRINT "
CLOSEWINDOW
GRAPHICS OFF

In this program, we first open a graphics window using keyword GRAPHICS, and then read the basic
coordinates of the window (lines 8 ~ 11). After that, we defined the coordinates of 4 corners and draw a
rectangle (lines 12 ~ 23), and then output some text information (lines 26 ~ 34). In the text output, we
set the size (lines 26, 28, 30, 32), center (line 29), rotation (line 33), and output the date (line 34). After
that, we draw a spiral curve in the graphics window (lines 37 ~ 44) with color control (line 42). At the
end of the program, we add a title to the graphics window (lines 47 ~ 49). Although we add a print
command on line 51, the result will not be seen because we choose to run the program in “quiet” mode,

and the window used to display the text message is closed.

osphotonics.wordpress.com

182

Application of Zemax Programming Language Open Source Photonics

After program is executed, the graphical result is seen as in figure 3.12-1:

#) 1: Graphic Viewer

Print iindow Zoom

T ORARIS

o AMIR = RAXKI= e R T =

THIS T8 A USER CREEATED GEAPHIC WIRDOW

AYZ, THC.

LeE@ AEC STREET
DPTICE CITY
LENS , TMX
CONFICURATION 1 DF 1

THU THAM Z% L1:i21:1% Za@az

Fig. 3.12-1: result of program ex31201.ZPL

osphotonics.wordpress.com 183

Application of Zemax Programming Language Open Source Photonics

3.13 File Operation

During optical design with Zemax, file operations are often needed. We discussed some basic file
operation commands in section 7 of chapter 2. In this section, we will continue to discuss more file
operation commands.

When we do optical design, often times we don’t need to start from scratch. Instead, we can load
existing lens files, or re-load lens files when running ZPL programs. ZPL provided a keyword LOADLENS
to do this. The syntax is:

LOADLENS filenameS, appendflag, session

where filenames is the lens file. If the filename contains the complete path, then the specified file will
be loaded. If the path is left off, then the default folder for lenses defined by Zemax main menu File

- Preferences = Directories will be used. If the appendflag is zero or absent, then LOADLENS loads the
file. If the appendflag is greater than zero, then the file is appended to the current lens starting at the
surface specified by the value of the appendflag. The appendflag should only be used when appending
one sequential system to another. Appending non-sequential systems isn’t currently supported. If the
session flag is non-zero, any associated session file will be loaded with the lens and all windows will be
updated, otherwise, the lens session file is ignored.

When lenses are loaded, any associated glass catalogs and data files, including the COATING.DAT file,
are automatically loaded if they are not already loaded. However, if these catalogs have been modified,
then the LOADCATALOG keyword may be used to force a reload of the catalogs. Use of this keyword is
not required unless the COATING.DAT or glass AGF catalog files have been modified since the start of
the current Zemax session. When using this keyword, no arguments are needed.

If we want to re-load merit function file, we can use keyword LOADMERIT. The syntax is:
LOADMERIT filename$S

where filenameS$ is the merit function file. If the filename contains the complete path, then the
specified file will be loaded. If the path is left off, then the default folder defined by Zemax main menu
File > Preferences > Directories will be used.

osphotonics.wordpress.com 184

Application of Zemax Programming Language Open Source Photonics

A similar keyword IMPORTEXTRADATA can be used to import data into the extra data editor from a file.
The syntax is:

IMPORTEXTRADATA surface, filenameS

where surface is the surface number, filename$ is the extra data file to be loaded. Filename should
include full path.

Opposite to loading lens files, if we want to save a lens file currently in memory, we can use keyword
SAVELENS. The syntax is:

SAVELENS filenameS, session

This command will save the current lens file to the specified file name. The name of the current lens in
memory will also be changed. If the file name is absent, then the lens data is stored in the current file
name. If the session argument evaluates to anything other than zero, the session file will also be saved.

If we want to save current merit function, we can use keyword SAVEMERIT. The syntax is:

SAVEMERIT filename$

This command will save the current merit function to a file. If the filename contains the complete path,
then the specified path will be used. If the path is left off, then the default folder defined by Zemax main
menu File > Preferences - Directories will be used.

Another keyword to save file is SAVEWINDOW. It is used to save the text from any text window to a file.
The syntax is:

SAVEWINDOW winnum, filename$S

where winnum is the text window number that should be saved to a file, and filenameS$ is the target file
name that may include a full path name or use the default path. Zemax numbers windows sequentially
as they are opened, starting with 1. Any closed windows are deleted from the window list, without
renumbering the windows which remain. Any windows opened after another window has been closed
will use the lowest window number available.

File operation often requires to copy, rename, delete and search a file. ZPL provided keywords
COPYFILE, RENAMEFILE, DELETEFILE and FINDFILE for this.

osphotonics.wordpress.com 185

Application of Zemax Programming Language Open Source Photonics

Keyword COPYFILE is used to copy a source file to a target file. The syntax is:
COPYFILE sourcefilename$, newfilename$

where sourcefilenameS is the source file name, and newfilenames is the target file name. The file
names can include path, otherwise the default path will be used. If the target file exists, it will be
overwritten.

Keyword RENAMEFILE is used to modify the name of a file. The syntax is:

RENAMEFILE oldfilename$, newfilenameS

Keyword DELETEFILE is used to delete a file. The syntax is:

DELETEFILE filenameS

Keyword FINDFILE is used to find names of files. The syntax is:

FINDFILE TEMPNAMES, FILTERS

This keyword requires two expressions, one to specify the string variable name to store the file name in,
and another string variable which contains a "filter" string. The filter string usually specifies a path name
and wildcards appropriate to the desired file type.

FINDFILE is useful for listing all files of a certain type in a folder, or for analyzing large numbers of similar
lens files. To reset FINDFILE back to the first file of any type, just call FINDFILE with a different filter, then
call FINDFILE again with the original filter name. Each time FINDFILE is called with a new filter, it resets
back to the first file that meets the filter specifications.

We will now give some examples to show how to use the commands we discussed above. Before doing
that, we assume the lens file and the related session file already exist, and they are “ex31301.ZMX” and
“ex31301.SES”, respectively. If the two files don’t exist, we can run program “ex30401.ZPL” in Zemax,
then save current optical system to a file, and name it as “ex31301".

osphotonics.wordpress.com 186

Application of Zemax Programming Language

Example 3.13-1: File operation

Open Source Photonics

L= T < TS I = I T S o =

e ol o R R W W W W W W W W W WMNMNMMMEMRMERMRMRMRMNREEREEEEREERERER
o WM D WD I 0 e W R D W) o WD W] i kO

' ex31301
!' Thi= program shows file operation

' Azsume files "ex31301.ZHX" and "ex31301.3E3" have already been created,
' atherwize run "ex30401.2ZPL" to build the lens ayvatem and save files.

LOADLENS "D:\ My Macros)chi)
LOADLENS "D:% Hy Macroshch3h

SAVELENS "D:\Hy Macros‘c
SAVEMERIT "D: My Macrosich3®
PRINT

PRINT "Thi=s
SAVEWINDOW 1,

line iz printed on the screen and will be saved

D:Y My Hacrosi\ch3vtempWin.txt™

COPYFILE "D:\ My Macros'ch3htemp.ZMX", "D:V\My Macros'\chihtempl.ZNX"
COPYFILE "D:\My Macros'\ch3)temp.3E3", "D:V\My Macros\ch3templ,SES"
COPYFILE "D:\WMy Macros\ch3)\temp.MF", "D: My Macros\ch3\templ.HF"
RENAMEFILE "D:\Hy Macroshch3'\temp.MF", "D: My Macros\ch3\temp2.MF"
path$ = "D:\My Macros\ch3i"

FILTERS = pach$ + "cemp®.=7

FPRINT

PRINT "Listing all files created in this program:”

FINDFILE TEMPFILE%, FILTERS:

LABEL 1

IF (SLEM(TEMPFILE%))

PRINT TEMPFILES

FINDFILE TEMPFILE%, FILTER$
GOTO 1

ENDIF

FILTER1§ = path§ + "=7. "
FINDFILE TEMPFILES, FILTER1§
FINDFILE TEMPFILES, FILTERS
LALBEL 2

IF (SLEN{TEMFFILES))
TEMPFILE$ = path$ + TEMPFILES
DELETEFILE TEMPFILES$

FINDFILE TEMPFILE$, FILTERS

GOTO 2

ENDIF

FPRINT

PRINT "All the above shown files have bhesn deleced. ™

il

a file. ™

In this program, line 6 loads existing lens file, line 7 re-loads the same file and appends it to the current
optical system. Line 9 saves the new current lens system to files “temp.ZMX” and “temp.SES”, and line

osphotonics.wordpress.com

187

Application of Zemax Programming Language Open Source Photonics

10 saves current merit function to file “temp.MF”. Line 13 outputs a text message to a text window, line
14 saves the content of the text window to file “tempWin.txt” (assume the number of the text window
is 1). Lines 16 ~ 18 copy files, line 20 renames a file. Lines 22 ~ 23 set the search condition, line 26 does
the first search, line 28 evaluate the search result, if not empty then print file name (line 29), line 30
searches again, and go back to loop for evaluation, until all the files meeting the search condition are
printed out. Line 34 sets a new search condition for line 35 to do the search again, in order to re-locate
the first search file. Lines 36 ~ 43 actually repeat the same search as in lines 22 ~ 32, and delete the
searched files. The result is shown in figure 3.13-1:

#) 1: Text Viewer

pdate Settings Prink Window
Executing D: WMy MacroshCH3IWEXKI1301 . Z2PL.

This line is printed on the screen and will be sawved in a file.

Listing all files created in this program:
tenp . MF

tenp. SES

tenp . ZFL

tenpl . MF

tewmpl.3ES

tenpl. 2

tenps . MF

tenpWin. txt

411 the ahowe shown files hawe been deleted.

Fig. 3.13-1: result of ex31301.ZPL

We can see that a series of files were generated during the execution of the program, however, all those
files are deleted at last, so if we try to use windows explorer to view those files after running the
program, the files cannot be found.

The function PRINT we discussed before actually outputs the result to either the screen or afile.
However, if we want to output the result to a printer, we can use keyword PRINTFILE or PRINTWINDOW.

osphotonics.wordpress.com 188

Application of Zemax Programming Language Open Source Photonics

Keyword PRINTFILE is used to print a text file to the printer. The syntax is:
PRINTFILE filename$S

where filenames is the file name that may include path name or use the current path. The file should be
a text file. PRINTFILE also closes the file if no CLOSE command has been executed.

Keyword PRINTWINDOW is used to output any open graphic or text window to the printer. The syntax is:
PRINTWINDOW winnum

where winnum is the window number.

If we want to save the content of a graphic window to a file, depending on the file format, we can use
keyword EXPORTBMP, EXPORTJPG, or EXPORTWMF.

Keyword EXPORTBMP is used to save a graphic window to a BMP file. The syntax is:

EXPORTBMP winnum, filenameS, delay

In this command, the integer winnum corresponds to the graphic window number that should be saved
to a file, the filename is the full file name including the path, but with no extension. Zemax will
automatically add the BMP extension. The optional delay parameter specifies a time delay in
milliseconds. For some complex graphics, a delay is required to allow the graphic to be completely
redrawn and the screen capture to complete. If the BMP files appear incomplete, try a delay value of
500 ~ 2500 milliseconds. It needs to be pointed out that the content of the graphic window is obtained
by screen capture. If Zemax is running in the background (e.g. other programs overlap Zemax graphic
window), the result of the output file may not be as desired.

Keyword EXPORTJPG is used to save a graphic window to a JPG file. The syntax is:
EXPORTIPG winnum, filenameS, delay

where winnum is the graphic window number, filename$ is the target file name including the path but
no extension, and delay is in the unit of milliseconds.

Keyword EXPORTWMEF is used to save a graphic window to a WMF file. The syntax is:
EXPORTWMEF winnum, filename$

where winnum is the graphic window number, filename$ is the target file name including the path.
Different from EXPORTBMP and EXPORTIJPG, extension should be included in the file name.

osphotonics.wordpress.com 189

Application of Zemax Programming Language Open Source Photonics

Besides outputting graphic window to a file, ZPL can also export the whole lens system to IGES, STEP,
SAT or STL format file for other CAD software to use. Keyword EXPORTCAD is designed to do so. The

syntax is:

EXPORTCAD filename$S

where filenames is the target file name including the path. The format of the file is determined by a
series of parameters that are put in the default vector VEC1. The details of the elements in the vector is
listed in table 3.13-1:

Table 3.13-1 Parameters of EXPORTCAD output file

Element Description

VEC1(1) The File type. Use 0 for IGES, 1 for STEP, 2 for SAT, 3 for STL.

VECL(2) The number of spline points to use (if required on certain entity types). Use 16, 32, 64,
128, 256, or 512.

VECL(3) The First surface to export. In NSC Mode, this is the first object to export.

VECL1(4) The last surface to export. In NSC Mode, this is the last object to export.

VECL(5) The layer to place ray data on.

VEC1(6) The layer to place lens data on.

VECL(7) Use 1 to export dummy surfaces, otherwise use 0.

VECL(8) Use 1 to export surfaces as solids, otherwise use 0.

VEC1(9) Ray pattern. Use 0 for XY, 1 for X, 2 for Y, 3 for ring, 4 for list, 5 for none, 6 for grid,
and 7 for solid beams.

VEC1(10) The number of rays.

VEC1(11) The wave number. Use O for all.

VEC1(12) The field number. Use 0 for all.

VEC1(13) Use 1 to delete vignetted rays, otherwise use 0.

VEC1(14) The dummy surface thickness in lens units.

VEC1(15) Use 1 to split rays from NSC sources, otherwise use 0.

VEC1(16) Use 1 to scatter rays from NSC sources, otherwise use 0.

VEC1(17) Use 1 to use polarization when tracing NSC rays, otherwise use 0. Polarization is
automatically selected if splitting is specified.

VECL1(18) Use 0 for the current configuration, 1 to n for a specific configuration where n is the
total number of configurations, n+1 to export “All By File”, n+2 to export “All By
Layer”, and n+3 for “All At Once”.

VEC1(19) Tolerance setting. Use 0 for 1.0E-4, 2 for 1.0E-05, 3 for 1.0E-06, and 4 for 1.0E-07.

VEC1(20) ~ | If the program mode is sequential, and the range of surfaces includes a non-sequential
VEC1(21) components surface, these values allow a range of objects to be exported. VEC1(20) is

the first object to export, and VEC1(21) is the last object to export. If both values are
zero or out of range all objects are exported.

osphotonics.wordpress.com 190

Application of Zemax Programming Language Open Source Photonics

Example 3.13-2 shows how to use EXPORTCAD:

' ex31302
' This program shows how to use EXPORTCAD key word
' Assume the optical system 13 defined in "ex31301.zpl"™

1
2
3
4
§ VEC1{1) =
g
7
8
b

1 # define STEP file
VEC1(3) = 1 # start surface
VEC1({4) = & # end surface
VEC1({7) = 1 # export dummy surfaces if any
VEC1Li{g) = 1 # export solid model
1o WVEC1{18) = O # current configuration,
11
12 EXPORTCAD "D:\My HMacros\ch3lex3l30Z.scp"

The program assumes the current optical system is defined in example 3.13-1, and the goal is to export
the doublet defined between surface 1 ~ surface 5 to a STEP file. After running the program, a file
“ex31302.stp” is generated. If we use a CAD program to open this file, we can see the double as shown
in figure 3.13-2:

Fig. 3.13-2: the doublet exported by program ex31302.ZPL

osphotonics.wordpress.com 191

Application of Zemax Programming Language Open Source Photonics

3.14 ZBF File

In section 9 of this chapter, we discussed keyword POP for analyzing physical optics propagation. Zemax
beam file (ZBF) is used to save the analysis result. Since ZBF is very important to physical optics
propagation analysis, ZPL provided a series of related keywords, including ZBFCLR, ZBFMULT,
ZBFPROPERTIES, ZBFREAD, ZBFRESAMPLE, ZBFSHOW, ZBFSUM, ZBFTILT, ZBFWRITE, etc. We will discuss
them in details in this section. Please note that Zemax saves all the ZBF files into the folder
““.\POP\Beamfiles\”. Although the extension name can be anything, we suggest use “.ZBF” for
consistency and clarification.

Keyword ZBFCLR is used to clear the complex amplitude data in a ZBF file. The syntax is:
ZBFCLR filename$

where filenameS is the file name.

Keyword ZBFMULT is used to multiply the complex amplitude data in a ZBF file by a complex factor. The
syntax is:

ZBFMULT filename$, Ax, Bx, Ay, By

where filename$ is the name of the ZBF file, A and B are the real part and imaginary part of the complex
number to multiply every point in the ZBF file by, x and y are different polarized light directions. The
resulting data is written back to the same file name.

Keyword ZBFPROPERTIES is used to open the specified ZBF file and place various data about the beam in
a vector variable. The syntax is:

ZBFPROPERTIES filenameS, vector

where filenameS is the name of the ZBF file, and vector is 174 for the 4 default vectors provided by
Zemax. After this command executes, the following beam data will be placed in the specified vector: nx,
ny, dx, dy, waist_x, waist_y, position_x, position_y, rayleigh_x, rayleigh_y, wavelength (in lens units),
total power, peak irradiance (power per area), the is_polarized flag (0 for no, 1 for yes), and the media
index; the values are placed in vector positions 1 through 15.

osphotonics.wordpress.com 192

Application of Zemax Programming Language Open Source Photonics

Keyword ZBFREAD is used to open ZBF file and place the electric field and beam property data in two
user-defined array variables. The syntax is:

ZBFREAD filenameS, beamname, propertyname

where filename$ is the ZBF file name, beamname is a 3 dimensional array of minimum size (nx, ny, 2) for
an unpolarized beam and minimum size (nx, ny, 4) for a polarized beam, propertyname is a one
dimensional array of minimum size 14. After this command executes, the following beam data will be
placed in the specified propertyname array: nx, ny, dx, dy, waist_x, waist_y, position_x, position_y,
rayleigh_x, rayleigh_y, wavelength (in lens units), total power, peak irradiance (power per area), the
is_polarized flag (0 for no, 1 for yes), and the media index; the values are placed in array positions 1
through 15. The electric field data will be placed in the beamname array. The third dimension of the
beamname array is 1 for Ex Real, 2 for Ex Imaginary, and if the beam is polarized, 3 for Ey Real, and 4 for
Ey Imaginary.

Keyword ZBFRESAMPLE is used to re-sample a ZBF file to a new width and point spacing. The syntax is:
ZBFRESAMPLE filenameS, nx, ny, wx, wy, decenterx, decentery

where filenames is the name of the ZBF file. The beam will be resampled and interpolated as required to
create a new beam file with nx and ny points, of total width wx and wy, in the x and y directions,
respectively. The nx and ny values must be powers of 2, such as 32, 64, 128, etc. The decenterx and
decentery values may be provided to optionally decenter the new beam relative to the old beam. If
either nx or ny is zero, no change is made to the existing beam sampling. If either wx or wy is zero, no
change is made to the existing beam width. The length units in the ZBF file are converted automatically
to the current lens units. The resulting data is written back to the same file name.

Keyword ZBFSHOW is used to display a ZBF file in a viewer window. The syntax is:
ZBFSHOW filenameS

where filenames is the ZBF file name. This command will open a new viewer window, and display the
ZBF file.

Keyword ZBFSUM is used to sum either coherently or incoherently the data in two ZBF files and places
the resulting data in a third ZBF file. The syntaxis:

ZBFSUM coherent, filename1s, filename2S, outfilename$

where coherent is 0 for incoherent or other integer for coherent summation, filename1s, filename2$,
outfilename$ are the names of two source files and the target file. If an incoherent sum is performed,
the output data will be real valued only. If the two source files do not have the same number of data
points, point spacing, and reference radii in both x and y directions, then the second source file listed is
first scaled and interpolated, and the reference radii is adjusted to match the first file before the

osphotonics.wordpress.com 193

Application of Zemax Programming Language Open Source Photonics

summation is performed. The length units in the ZBF files are converted automatically to the current
lens units. The outfilename may be the same as one of the source file names, in which case the original
file is overwritten.

Keyword ZBFTILT is used to multiply the data in a ZBF file by a complex phase factor to introduce phase
tilt to the beam. The syntax is:

ZBFTILT filenames, cx, cy, tx, ty

where filenameS is the ZBF file name, cs and cy are the center of the phase tilt, tx and ty are the slopes
of the tilt in units of radians per lens unit length. The coordinates x and y refer to positions within the
beam file, with the center coordinate (x = 0, y = 0) being at the point (nx/2 + 1, ny/2 + 1) where nx and
ny are the number of points in the x and y directions. The length units in the ZBF file are converted
automatically to the current lens units. The resulting data is written back to the same file name.

Keyword ZBFWRITE is used to write electric field and beam property data arrays to a ZBF file. The syntax
is:

ZBFWRITE filenameS, beamname, propertyname

where filename$ is the ZBF file name, beamname and propertyname are two arrays defined by a
previous call to DECLARE. The beamname must be a 3 dimensional array, of minimum size (nx, ny, 2) for
an unpolarized beam and minimum size (nx, ny, 4) for a polarized beam. The propertyname array must
be a one dimensional array of minimum size 14. The following beam data must be placed in the
specified propertyname array: nx, ny, dx, dy, waist_x, waist_y, position_x, position_y, rayleigh_x,
rayleigh_y, wavelength (in lens units), total power, peak irradiance (power per area), the is_polarized
flag (0 for no, 1 for yes), and the media index. The values are placed in array positions 1 through 15. The
electric field data must be placed in the beamname array. The third dimension of the beamname array is
1 for Ex Real, 2 for Ex Imaginary, and if the beam is polarized, 3 for Ey Real, and 4 for Ey Imaginary.

Now we will show how to use ZBF related commands in ZPL with an example. Assume the optical
system is the doublet defined in example 3.04-1, as shown in figure 3.14-1. Since we will use previously
save file in this example, we don’t have any special requirements to the optical system.

osphotonics.wordpress.com 194

Application of Zemax Programming Language Open Source Photonics

#)1: Layout |:| |E| [z|

Update Settings Print Window Zooim

LAYOUT
AYZ, THC.
. Le@ad ABEC STREET
TOTAL AXIAL LEMZTH: 72L&, 20@@@ MM OPTICS CITY
LEMS , ZMX
COMFTIZURATION 1 DOF 1

Fig. 3.14-1: Optical system associated to file “ex30910b.ZBF”

When we discuss POP in section 9 of this chapter, we saved file “ex30910b.ZBF”. The data saved are the
beam data of the 0 degree incident light when it reaches the last surface. The example below will use
this file. Please note that the ZBF file was saved in folder “...\POP\Beamfiles”.

osphotonics.wordpress.com 195

Application of Zemax Programming Language Open Source Photonics

Example 3.14-1: Usage of ZBF related keywords.

! ex31401
! This program shows application of some ZBF related key words.
I Assume file "ex30910b.ZBF"™ already exists.

oldFiled =
newFilels
newFile2$
newFile3$§
newFileds$

W = oin o W N

10

11 ZEFPROPERTIES oldFile§, 1
12 nx = wvecl (1)

13 ny = vecl(2)

14 ip = wvecl(14) # check if is polarization

15

16 ! Allocate enough memory to hold the besm data

17 IF (ip == 0) THEN DECLARE beamlrray, DOUBLE, 3, nx, ny, 2
18 IF (ip == 1) THEN DECLARE heamirray, DOUBLE, 3, nx, nvy, 4
1% DECLAERE propertyArray, DOUELE, 1, 15

20

21 ZBEFRELAD oldFile$, beamArray, propertyArray

22 ZBFURITE newFilel$, beamAirray, propertylrray

23 IZBFURITE newFile2$, beamlrray, propertylrray

z4 ZBFSHOW newFilel$

25

26 decenterx = 0O

27 decentery = 0.015

28 ZBFRESAMPLE newFile2$, 0, 0, 0, 0, decenterx, decentery
29 ZBF3HOU newFileZ$§

30

31 ZBFSUM 1, newFilel$, newFile2$, newFile3$ | coherent summation
3z ZBF3HOU newFile3§

33

34 ZBFSUM 0, newFilel$, newFile2$§, newFiled4$ I incoherent sSwanation
35 ZBFSHOU newFile4$§

36

37 CLOSEWINDOW # run in "guiet”™ mode

In this program, we use keyword ZBFPROPERTIES to read the beam properties in the source file, and
defined two arrays beamArray and propertyArray (lines 11 ~ 19). Line 21 reads the beam data in the
source file, lines 22 and 23 save the data into two new files for later use. After that, we use keyword
ZBFRESAMPLE to shift original beam in Y direction for 0.015 lens unit (lines 26 ~ 28), then do the
coherent summation (line 31) and incoherent summation (line 34) using the two beams, and save the
result into two different files. We also use keyword ZBFSHOW to open a viewer window to view
different files. The results are shown below:

osphotonics.wordpress.com 196

Application of Zemax Programming Language Open Source Photonics

#1) 2: Beam File Viewer, 2

Update Settings Print Window Text Zoom Update Settings Print Window Text Zoom
IBYZ2LD LBYg0E
03730 oYaze
E23LB E2347
TEIHT TIALE
£Z526 £zaEs
SZ1@5 sz
H1aE4 H1923
31263 3144z
20942 2092
18421 184S

B [}
TOTAL IRFADIAMCE FILE EX=14901RA. ZEF TOTAL IRRADIAMNCE FILE EXG14@1E, ZBF

WRUELENCTH B.GEBBA #x TN [HOEX B, GHREE WRELENCTH B8990 k2 TN TICEX B, 43000

PEE Dottt © % BUETE: B80T 12 BS HRrT FEE L wamievams o P Bonsolint? - T SUGIE SR T BB 12T PR BT aceie g wars

¥ FALDT. STTE. 3.Q43ME-GBa. UATST- 7.4G30-QE, PSe 1. |QMEvoME. PaYLETEH- 3.awirE-po) € FILOT: GIfe: 3.Q4MME-Q85. UALST- 7.4A00F-G83. POS. -1 LeOME+0H, PRYLETGH- 3.9547E-DI

(a) (b)

|I:I |r5_(£} 4: Beam File Viewer 4

Update Settings Print Window Text Zoom Update Settings Print Window Text Zoom
418815 2p9EEE
arezly |B3LO7
azuLz L 67207
29zal1 Y8308
250307 L 25485
el [l = LBYseq
L&TI06 BIaR3
L2EURE L2272
B2L02 Higez
yigmz 209:a1

B B
TOTHL TRRADIANCE FILE EXG1491C. ZEF TOTAL_TRRADIANCE FILE EXG19@10. ZBF

ggtﬁﬁ”u%ﬁﬁnya Bq%gEIgI 3 ﬁgg?n &, BY97E-PAZ_HILLINETERS sgtﬁﬁuu%ﬁﬁn?zaﬁawggggl 3 EE%EH [=N E‘|‘5’FE BBZ NILLINETERS

PERE IHAOLARCE = U, lNZE*ﬂZE URﬂSmeIETERS“ TOTAL FIMER = B.@GEPE+ABAZ WATTS PERE 1| AL F'UHER = 3 91EE‘553 UHTTS

¥ FILOTI ST7e- 5,QWAME-GBo. WRTST- 7:4930E-Gd. POS. -1 BGHEFDAR. FYLETGH- 3,304rE-pat Q+NE-B3, WALST: 7.NAME-GHS. POR. -1 ioGHEsoaB. RAVLETGN: 3.39%7-Boi

() (d)

Fig. 3.14-2: The content in the viewer window after program execution.

(a) ~ (d) are original beam, shifted beam, coherent sum beam, and incoherent sum beam.

osphotonics.wordpress.com 197

Application of Zemax Programming Language Open Source Photonics

Chapter 4
ZPL Application Examples

In this chapter, we will give some ZPL examples for real applications. From these examples we can see
that with the aid of ZPL, a lot of tedious routine work can be finished by computer, and our work
efficiency can be greatly improved. As an optical engineer, if one can master the tool of ZPL, he can do
his design much faster and more flexible.

4.1 Sequential Optical Systems

The examples given in this section involve only sequential optical system.

Example 4.1-1: Basic ray-tracing parameters.

In this example, we will let the user input Hx, Hy, Px, Py to define a light ray, and calculate the
coordinates, incident angle and exit angle at the intersection point of the light ray and each surface in
the optical system. The program is shown below:

osphotonics.wordpress.com 198

Application of Zemax Programming Language Open Source Photonics

! ex40101
! This program traces a given ray and generate the table of ray data.

! first, let user define the ray

W o] oA s G M e

INPUT "Please enter the value of Hx: ", hx
INPUT "I s anter the of Hy , hy
INPUT "F : gnter the va of Px ;s Px
INPUT "Please enter the value of Pvy: ", p¥
10 ! print the top frame
11 PRINT
12 FORMAT 5.2
13 PRINT "User defined Hx, Hy, Px, Py: ", hx, hy, px, DY
14 PRINT
158 PRINT "surf globa 1 ¥ global a0 aor"
16 PRINT Me====s===========s==========================s========="
17

18 ! trace the ray for entire system:

19 RAYTRACE hx, hy, px, pv¥

1)

2l ! calculate ray data at sach surface

22 FOR 3 = 1, NSUR(), 1

23 normal = S57.29577951*ATAN (RANY (=) /RANZ (s))

24 slope = 57.295779S51%ATAN (RAYM(=-1)/RAYN (3-1))

25 aol = (slope - normal) # in degrees
Z6 slope = S57.295779S1®ATAN(RAYM(s)/RAYN(s))
27 aor = (8lope - normal) # in degrees

28 FORMAT 2 INT

29 PRINT ™ ", =,

30 FORMLT 10.4

31 PRINT RAGX (=), RAGY(s), RAGZ(s), aoi, aor

32 NEXT

33

34 ! print the bottom frame

38 PRINT "

In this program, lines 5 ~ 8 ask the user to define the light ray, line 19 traces the ray, lines 22 ~ 32
calculate the parameters of each intersection points, wherein line 23 calculates the normal direction of
each surface, line 24 calculates the ray direction before it hits each surface, and line 26 calculates the
ray direction after it leaves each surface.

This program is a general program and works for different optical systems. If we assume the optical
system is the doublet defined in example 3.4-1, and the user-defined ray is Hx =0, Hy =1, Px =0, and Py
=0, then the result after execution is:

osphotonics.wordpress.com 199

Application of Zemax Programming Language Open Source Photonics

$) 1: Text Viewer [ZI[EIF'S__Q

Update Settings Print ‘Window
Executing D: WMy Macrosh CH4MEx40101 . ZPL.

User defined Hx, Hy, Px, Py: 0.00 1.00 0.00 O_00

surf gleobal X global ¥ global Z aoi aor
1 0.oooo o.oooo o.oooo L.oooo L.oooo
Z 0. o000 £4.1018 z27E.4843 T.20EE 4.80c2
e 0.000a F4_7E0OQ E50_30E81 -9_9E37 -3_z8Lk
4 0.oooo ZL_2l0% 309_5EEL3 -Z_9E545 -4_7898
5 0.oooo 34_857¢ 70&_0000 1.30758 1.3075

Fig. 4.1-1: Result of program ex40101.ZPL

Example 4.1-2: Light spot near focal plan.

In this example, we move the image plan around the focal plan by changing the thickness of the surface
just before the image surface, and observe the change of the size of the light spot on the image plan.
The program is shown below:

osphotonics.wordpress.com 200

Application of Zemax Programming Language Open Source Photonics

0o =] hodn b WM

10
11
1z
13
14
15
le
17
lg
13
Z0
Zl
ZZ
23
24
Z5
Z6
Z7
28
z9
30
31
32z
332
34
35
36
37
38
33
40
41
42
43

! ex40102

! This program shows how to modify lens data and update graphic window.

I It can be used to create animation.

surface = NSUR()-1 # serial number of the second to the last surface
z0 = THIC (surface) # the original thickness of that surface

strlj = enter the shift from focus (0 ~ " + $3TR(z0) + "):"

str2§ = : enter the total steps (positive integer): "

' let user define the offset and total steps

LABEL 1

INPUT =strli, shiftc
IF ((shift < 0)| (shift > =z0)) THEN GOTO 1

LAEEL 2
INPUT =str§, stepNum
IF (stepNum < 1) THEN GOTO 2

stepNum = INTE (stepNUM)
startZ = z0 - shifc

endZ = z0 + shift
stepSizge = shift*2/sceplum

prefixs = "D: My Macrosi\chd4lex40102 shift
ext§ = ", UHF"
FOR z = startZ, endiZ, stepSize

FORMAT 3.1
shift§ = SSTR{z-z0)
filelame$ = prefix$ + shift§ + extc$
value = 2
SURP surface, THIC, wvalues
UFDATE 1 # assunme serial nunber of the graphic window i= 1
EXPORTEMP 1, fileName$
NEXT
value = z0 # put back the original thickness
SURP surface, THIC, wvalue
UPDATE ALL
CLOSEWINDOW

This program is also a general program. As an illustration, we assume the optical is the doublet defined

in example 3.4-1. Before running the program, open the Spot Diagram window in Zemax, and set the

system according to figure 4.1-2:

osphotonics.wordpress.com

201

Application of Zemax Programming Language Open Source Photonics

Spot Diagram Settings

Fatterm: Hexapolar | ‘wavelength: 2 -
Refer Ta: Chief Fay | Field: 1 -

Show Scale: Scale Bar | Surface: Image hd
Plot Scale: 1000

Ray Denzity: 30 v Use Symbals
[Direction Cogines [Usze Polarization
Configuration: Current - [Scatter Rays

Color Bavs Bu: W aves - [Show Ay Disk
] | Ear‘u:el| Save | Load | Heset| Help |

Fig. 4.1-2: Spot Diagram settings

In this program, the user is first asked to input the range and step number of the image plan shift (lines
12 ~ 18), and then the program will evaluate the user input, requiring shift range be positive but not
larger than the thickness of the surface just before the image plan, and step number be positive, too. If
the input cannot meet the requirement, then the user will be asked to input again. Line 20 assures the
step number is a positive integer. After that, the program calculates the starting and stopping Z
coordinates and the step size (lines 22 ~ 24), and in each loop, generates a new file name based on the
shift value of the image plan (line 32), modifies the image plan position (line 34), updates the Spot
Diagram window (line 35), and outputs the content of the window to the target file (line 36). Lines 39 ~
41 restore the original image plan location to assure the original optical system is not impacted by the
program.

During the execution of the program, we can see that the light spot size in the Spot Diagram is changed.
After the execution, the following files are generated in the given folder (assume our inputs are shift = 5,
step = 10):

ex40102 shift -5.0.BMP
ex40102 shift -4.0.BMP
ex40102 shift -3.0.BMP
ex40102 shift -2.0.BMP
ex40102 shift -1.0.BMP

ex40102 shift 0.0.BMP

osphotonics.wordpress.com 202

Application of Zemax Programming Language Open Source Photonics

ex40102 shift 1.0.BMP
ex40102 shift 2.0.BMP
ex40102 shift 3.0.BMP
ex40102 shift 4.0.BMP
ex40102 shift 5.0.BMP

wherein the content of the 1%, 3" and 6 file is shown in figure 4.1-3:

semee o 36 .00 w0 20 00 e
OIAG SPOT_OLAGRAN

LTS AR pa.

RS RRODE
EED RHODK ¢
SHE B

o A
RS RRODE 1788
EED RHODK ¢ s
SHEGE : ledd

el
¥

P wan FEFERBICE : CHIEF FAT felel¥]

FEFERRIE : OHEF B | oo FEFERENE_: GHEF R conr:

Fig. 4.1-3: Content of some of the files generated from program ex40102.ZPL

With the files generated from this program, it’s not hard to make an animation to demonstrate how the
light spot size on the image plan changes with the shift of the plan.

Example 4.1-3: Geometrical beam and Gaussian beam comparison

In this example, we will discuss how to read Zemax analysis data by comparing the beam size at each
surface (Y coordinate of the intersection of the light ray and the surface) obtained from geometrical
beam method and Gaussian beam method. Assume the optical system is the doublet defined in
example 3.4-1. Since Zemax has a default beam waist radius of 0.05 lens unit when calculating Gaussian
beam, we need to modify this number according to our system. Create a new lens file in Zemax, run
program EX30401.ZPL, and open a paraxial Gaussian beam analysis window from menu Analysis 2
Physical Optics = Paraxial Gaussian Beam, press the right button of the mouse to pop out the setting
dialog, change the beam waist size to be 25, as shown in figure 4.1-4, and then save the settings.

osphotonics.wordpress.com 203

Application of Zemax Programming Language Open Source Photonics

Paraxial Gaussian Beam Settings

W avelength: 2 - k2 Factar: 1
Waizt Size: 2H Surf 1 towaist [0

IIpdate Orient: Y - Surface: i -

Size 7.38112E-002 Radius -1.18239E+000
Waizt 2.99355E-003 Rayleigh 4.7314EE -002
£ -1.18045E+000 Divergence B.23955E-002
W avelength H.EVEEZE-00T M2 Factor 1.00000E+000

] 4 | Eancel| Save | Load | Rezet | Help

Fig. 4.1-3: Paraxial Gaussian Beam Settings for example Ex4.1-3

PI

1
hx
hy
bx
ry

RL

1
L3
GE
Op
ra
=1

Li

RE
ro
IF
=

Le
VE
te
IF
CL
DE

ex40103
Thi=z program compares the Geometrical heasun size and Gaussian beam sicze
bz=zume the lens system is defined in ex3040l

= 3.14159285

define a marginal ray

=0

=0

=0
1

trace the ray for entire system:
TTRACE hx, hy, px, py

ochtain Gaussian beam data
= STEMFFILENAME () # get a temperory file to atore Gaussian bheam data

TTEXTFILE AL3%, Ghp # store Gaussian beam data in the temp £ile
EN L% # open the newly created temp file
w=20 # line number in the file
=0 # surface number
EEL 1
ADSTRING E§ # read a line in the file
w = row + 1 # line nuwber
row < 28 THEN GOTO 1 # line 28 iz the datas of the first surface
=35+ 1 # surface nunber
mpi = $GETITRING(ES, 2) # the second sub-string
C1li=z) = SVAL (tempd]) # convert to nwrkber, and 3tored in an array
wpi = SCETITRING(ES, 1) # the first sub-string
[tempd §!= "IMA™) THEN GOTO 1 # repeat until reaching IMAL surface
Q3E # cloze file
LETEFILE A% # delete the tewmp f£ile

osphotonics.wordpress.com

204

Application of Zemax Programming Language Open Source Photonics

In this program, line 14 does the ray-tracing to obtain the geometrical beam size, i.e. the Y coordinate of
the intersection of the marginal ray and the surface. Lines 17 ~ 34 obtain the Gaussian beam data,
wherein line 17 generates a temporary file, line 18 stores the content of the paraxial Gaussian beam
analysis window into the temporary file, line 19 opens the temporary file to read the data, and line 25
reads a whole line in the file. Since the file format is fixed, and we know the 28™ line in the file is the
data of the first surface, so if the line number is smaller than 28, the program jumps back to label 1 to
continue to read next line, until it reaches line 28. Lines 29 and 30 of the program convert the 2nd string
(Gaussian beam radius) into a number, and store it in the default vector VEC1. Lines 31 and 32 evaluate
the first string of the read data and see if it is “IMA”, if yes, it means the data of the last surface has
been reached, otherwise the program goes back to label 1 and continues to read next line. After the
data of the last surface is read, line 33 closes the temporary file, and line 34 deletes the file.

35

36 ! print header

37 PRINT

38 PRINT "surf Geometrical Gaussian®™
39 PRINT f================================"
40

41 FOER =2 = 1, N3UR(), 1

4z FOEMAT 1 INT

43 FPRINT ™ ', 3.

44 FORMAT 6.4

45 PRINT " ", RAGY (=), ", VECL (=)
45 NEET

47

48 PRINT M=============ss=ss=s===============1

49

Lines 37 ~ 48 display the result on the screen, wherein function RAGY() is the result of the geometrical
ray tracing, and array VEC1() is the Gaussian beam result read from the temporary file.

osphotonics.wordpress.com 205

Application of Zemax Programming Language Open Source Photonics

The result of the program is shown in figure 4.1-5:

#) 1: Text Viewer

pdate Settings Print Window
Executing D: WMy MacroshCH4% EX40103_ Z2PL.

Fig. 4.1-5: Result of program ex40103.ZPL

Example 4.1-4: Comparison of transmission property of different glass materials

In optical design, sometimes we need to search for glass materials with special transmission properties.
For example, we may want to find glass that has highest transmission in the visible wavelength range
(400nm ~ 700nm), but has biggest absorption at UV and infrared wavelengths. In this example, we will
search for such glass material among the thousands of glasses in Zemax database. Assume our
interested wavelength range is 380 ~ 1000nm, and we hope to get lowest transmission in 380 ~ 400nm
and 700 ~ 1000nm range, but highest transmission in 400 ~ 700nm range. We will set the thickness of
the glass to be 1mm, calculate transmission at different wavelength, convert the transmission value to
absorption value in the range of 380 ~ 400nm and 700 ~ 1000nm, and define a merit value as the root
mean square of all those values across the whole interested wavelength range. Each glass material will
have one merit value. After sorting all the merit values, we can choose those with highest merit values
as our candidates.

osphotonics.wordpress.com 206

Application of Zemax Programming Language Open Source Photonics

1 ! ex40104

z ! This program compares different glasses to find the best profile.

2 ! Agssume the target is to get lowest transwission in 380~400rwm, 7O00~10001m
4 ! and get highest transmissicon in 400~700mmm

5

& ! define some parameters

7 startWawvy = 0.38 # start wavelength, 350 nm

2 stopllavy = 1 # atop wavwelength, 1000 nro

9 steplhun = 500 # total steps hetween start and stop wavelengths

10 cn = 0 # initial total glass numker of all the catalogs

11

1z saveNawesd = "D: My Macros'chdhiex401l04. cxt'™

13

14 IETVECIIZE 10000

15

1 GOSTE caloculate # calculate the merit walue for each glass
17 GO2UE sortResult # sort the results based on werit value

18 FOSUE reportResult # print result on screen and save in a file
13

z0 END

21

22

Lines 1~ 20 is the main program, wherein lines 7 ~ 10 define some basic parameters, and line 12 gives
the output file name. We will use the default Zemax vectors to store glass data. Since the total number
of glasses is bigger than 1000, line 14 increases the vector size to 10000. Line 16 calls sub-program
“calculate” to calculate merit value of each glass material, line 17 calls sub-program “sortResult” to sort
the merit values, and line 18 calls sub-program “reportResult” to output the final result.

osphotonics.wordpress.com 207

Application of Zemax Programming Language Open Source Photonics

ZZ

Z3 3UE calculate

24

Z2E originalWave = WAVL 1) # store the original first wawvelength
26

27 FOR cMNum = 1, 16, 1 # go through the catalogs

43 COSUE getCatalog # zet catalog

z9 o= 1 # initial glass number

30 LABEL 1

21 merit = 0 # initial merit

32 FOR 5 = 1, stepMum+1l, 1 # go through the wavelengths

33 w = startWav+(=-1) * (stopWav-startWavw) /stephiun

34 ATAP Z0Z, 1, w # zet the wawvelength

zE GETGLAZZDATL 1, o # store glass data in VEC1

36 alpha = VEC1(23) # Internal transmizzion coefficient
37 IF alpha < 0 THEN alpha = -1%alpha # correct some catalog errors
38 t = EXPE(-1*%alpha) # transmission, assuwe 1 mm length

39 IF (f{w < O0O.4) || (w > 0.7)) THEN t = 1-t # need absorption

40 merit = merit+t¥*t # updated merit

41 HEXT =

4z o = gm + 1 # total glass numher incresse by 1

43 VECZ [grn) = clum f# store catalog number

44 VECI (gmm) = o # store glass number of the catalog

45 VECE (gpon) = SORT (merit) # store merit wvalue

45 FORMAT 1 INT

47 REWIND

48 FRINT gm, " processed. . "Now processing glass Y, o, " oof f, cName§
49 g =og+ 1 # glass number of the catalog increase by 1
L0 GETGLAZSDATE 1, o # store new glass data

51 IF WVEC1(1l) > O THEN GOTO 1 # if formula i= walid, go back to process
EZ NEXET chwum

L3

L4 B¥EP 202, 1, originalWlawve # recover the original first wawvelength
EE

£s RETURN

£

Lines 23 ~ 56 is the sub-program “calculate” used to calculate the merit value of a glass material. Since
we need to change the first wavelength value in the system settings, we save the original wavelength
value in line 25, and after calculation, we restore the original wavelength value in line 54, so the original
optical system remains impacted. The loop in lines 27 ~ 52 evaluates total 16 glass catalogs, wherein
line 28 calls sub-program “getCatalog” to load glass catalogs in serial, and the loop in lines 32 ~ 41
calculates transmission or absorption at each wavelength, and calculates the merit value (note the
square root hasn’t been calculated yet). We found that in the glass catalog data provided by Zemakx,
sometimes the transmission coefficient alpha is positive, and sometimes negative, so we change them
to be positive in line 37, and calculate the transmission based on positive coefficient in line 38. Line 39
evaluates the wavelength, and if it is out of visible range, then use absorption instead of transmission to
calculate the merit value. After finish calculating the merit value of a glass type, line 42 increases the
total glass number, and lines 43 ~ 45 store the corresponding catalog number, glass number in the
catalog, and merit value into default vectors VEC2, VEC3 and VEC4, respectively. Since the calculation
needs some time, lines 46 ~ 48 display the current progress on the screen. Keyword REWIND is used to

osphotonics.wordpress.com 208

Application of Zemax Programming Language Open Source Photonics

assure the display is always on the same line. Figure 4.1-6 shows the screen content at a certain
moment during the program execution. After that, line 49 increases the glass number in the catalog by
1, line 50 reads the new glass parameters, line 51 evaluates if the glass is valid (We use the method of
judging the code of dispersion equation type. The code is a positive integer for a valid glass type, O for
an invalid glass type), if yes then program jumps to label 1 to process the new glass, otherwise, the end
of a catalog is reached, so the program proceeds to the next glass catalog in the loop.

1: Text Viewer M=
Update Settings Print Swindomw

Z0Z processed. MNow processing glass 45 of COBMING

Fig. 4.1-6 The progress shown on the screen during the execution of ex40104.ZPL.

57

£g SUE getCatalog

=]

g0 IF cNUM == 1 THEN cHamei = "LRCHERT
gl IF cNUM == Z THEN cNamed = "CDGHT

gz IF cNUM == 3 THEN clamei = "TCORNINGT
63 IF cNUM == 4 THEN cHamei = "HERALEUZT
64 IF cNUM == 5 THEN cHamei = "HIELRI"
g5 IF cMUM == & THEN clamei = "HOTL®

66 IF cNUM == 7 THEN cHNamei = "LIGHTPLTH"
67 IF cNUM == & THEN cNamei = "LZOo3"

g8 IF cMNUM == 9 THEN clamej = "OHLRLT

g3 IF cNUM == 10 THEN cNawei = "FPILEINGTONT
70 IF cNUM == 11 THEN cNawej = "RPOT

71 IF cMNUM == 12 THEN cMNamei = "SCHOTT™
7z IF cNUM == 13 THEN cNamej = "SUMITL"
73 IF cNUM == 14 THEN cNamwei = "TOPLIT
74 IF cNUM == 15 THEN cNawei = "UMICORE™
78 IF cNUM == 16 THEN cNamwei = "IZECNT

76

77 3ITIFP 23, cNamed

72 LOADCATAL G

79

20 RETURIN

21

oz

osphotonics.wordpress.com 209

Application of Zemax Programming Language

Open Source Photonics

Lines 58 ~ 80 is the sub-program “getCatalog”. Its function is to assign the glass catalog name according

to the catalog number, and load the catalog.

=H
83 3UE sortResult

a4

25 FOR i = 1, om, 1 #
gs FOR 3 =1, 1, -1 #
a7 IF 7 » 1 #
ag IF VEC4(3) > VEC4({j-1) #
23 temp = VEC4(j-1)

a0 VEC4(3j-1) = VEC4i(j]

Il VEC4 (] = temp

9z temp = VEC3I[(j-1)

23 VEC3 (j-1) = VEC3(j]

94 VEC3I(j) = temp

35 temp = WECZ [(j-1)

6 VECZ (j-1) = VECZ(3])

97 VECZ (j) = temp

98 ENDIF

29 ENDIF

100 HNEET 3

101 FORMAT 1 INT

10z REWIND

10% PRINT i, " of total *, gm,

lo¢ NEEZT 1

105

loe REETURI

107

108

= [u]
= [u]
if
if

through all the stored nunbers
through all processed numbers

j iz not the firstc
current merit is larger

" glasses sorted”

Lines 83 ~ 106 is the sub-program “sortResult”. Its function is to sort the glasses stored in the default
vectors according to the merit values stored in VEC4 using a common bubble sorting method. Similarly,
lines 101 ~ 103 displays the progress during sorting, as shown in figure 4.1-7.

osphotonics.wordpress.com

210

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer |Z| |E| [Z|
pdate Settings Print Window

1020 of total 1621 glasses sorted

Fig. 4.1-7 Progress display during sorting of glasses.

10s
109
110
111
112
11z
114
115
116
117
115
112
1z0
1z1
lz2
123
1z4
1zt
126
127
128
1z2
130
1351
ARCH:S
123

SUE reportResultc
INZERT 1 # insert a surface temporarily

REWIND

FPEINT

PRINT "Catalog zlas= Merit "
PRINT M=====================S=======================I
FORMALT 6.5

FOR 1 = 1, gm, 1

clum = VECZ (1) # get the catalog number
GOSUE getCatalog # load the catalog
g = VEC3 (1) # get the glass nuber in the catalog
SURF 1, GLAN, g # =Zet the glass material for the surface
glassNamei = $GLAII (1) # read back the glass name
PREINT cMamed, ", glasshamed, ", VEC4 (i)

NEET

DELETE 1 # delete the temporary surface

! zave the result

SAVEWINDOW 1, saveName§ # assume there i= no other windows open

RETUEI

Lines 109 ~ 132 is sub-program “reportResult”. It’s used to output calculation result. In this sub-
program, lines 113 ~ 116 display a table head on the screen, 118 ~ 125 use a FOR loop to print all the
sorted glass catalog names, glass names and merit values. Since we only know the glass number, in

order to print the glass name, we need to insert a temporary surface (line 111) in the lens data editor,

set the surface material type as the glass with known number, and read back the glass name using

function SGLASS() in line 123. After all the glasses are displayed, line 127 deletes the temporary surface,
and restore the original optical system. Line 130 saves the content displayed in the text viewer window
to a target file.

osphotonics.wordpress.com

211

Application of Zemax Programming Language

Open Source Photonics

Figure 4.1-8 shows partial of the result of the program displayed in the text viewer window. It needs to
be pointed out that our program assumes the data in Zemax glass catalogs are all correct. Sometimes
this assumption may not be true, and the designer needs to make his or her own judgement on the

result of the program.

$) 1: Text Viewer

Update Setkings Print Window

Catalog

EFO

M-MEF1
M-BACD1E
ADF10
C3
ADFEQD
BACDN1E
FFS
HM-LACL1zZ0
BACEDED
TAFE
ADCL
HN-NEFDE2
M-LAFZ21
BAF10
H-NEFD13
E-FDE1
E-FI:31 MOLL
L-TIMZ2
L-TIMZs_HMOLD
PELL
BELEL
PELE
PELZS
PELE
PELEL
BEM1eC
EZM1eC_HMOLD

Z1.08480
21.05473
zl.02413
2l.02235
Z1l. 02220
21.08245
z1.02E13
zl.0g02e
Z1.03043
Z1.07330
El.07a38k
2107263
21.07348
Z1.075E88
El.074326
21.07373
Z21.07373
zl. 02132
El. 02132z
Z0.878:232

20,8783

Z0.1EZ6l8
EO.1EE2E

Z0.1EE73
2012555

20012503
EO.1E44E

Z0.1E442
Z0.12447

Fig. 4.1-8 Partial content of the result of program ex40104.ZPL

displayed in the text viewer window

osphotonics.wordpress.com

212

Application of Zemax Programming Language Open Source Photonics

Finally, as a verification, we compare three glasses CF6, BK3 and SF5 in the sorting list with merit value
from high to low, and display their transmission curves in figure 4.1-9. From the plot we can see that
our sorting result is reasonable. The transmission data shown in figure 4.1-9 come from Zemax glass
catalog. We will describe how to get those data in next example.

Glass Transmission Comparison

1.2

1 e o —

0.8 N
0.6 ™~

0.4 SCHOTT BK3

= HOYA CF6

Transmission

0.2 SUMITASF5

0

03 04 05 06 07 08 09 1 1.1

Wavelength (micron)

Fig. 4.1-9 Comparison of internal transmission of 1mm-thick glass plate

A question to readers: in real application, it might be better to combine two different glasses to get
desired transmission property. So how to do it in ZPL program?

osphotonics.wordpress.com 213

Application of Zemax Programming Language Open Source Photonics

Example 4.1-5: Read refractive index and transmission data of catalog glass.

Zemax catalogs provides many glass property data such as refractive index, transmission, etc, and they
can be very helpful in real applications. We wrote this simple program to show that we can easily get
those data through ZPL program.

Lines 8 ~ 12 of the program ask the user to input the glass material name, thickness, start wavelength,
stop wavelength, and step number. Line 15 set wavelength 1 as the primary wavelength, so line 26 can
read the refractive index of that wavelength. In the loop of lines 21 ~ 34, line 22 calculates each
wavelength value, line 23 sets the glass material of surface 1 as the user defined glass, line 24 sets
wavelength 1 (i.e. the primary wavelength) as the calculation wavelength, line 25 updates the system
settings, line 26 reads the refractive index associated to the primary wavelength, lines 27 ~ 29 read the
transmission coefficient of glass, and as in last example, line 30 evaluates the coefficient, and treat it as
a positive value, and then line 31 calculates the transmission of the given thickness glass, line 33 displays
the result to the screen as a table. Finally, line 36 saves the content of the text viewer window to a
target file. In figure 4.1-9 of last example, the data we displayed were read with this program.

Before we run this program, we can create a new lens file, and we don’t need to save the lens file after
we run the program.

osphotonics.wordpress.com 214

Application of Zemax Programming Language

Open Source Photonics

LYo R B e T T S U O o

10
11
12
13
14
15
1l
17
1z
13
pdi]
Zl
ZE
23
E4
25
Z&
E7
Z8
Z3
30
2l
3
33
24
35
1

! ex40105

! This program lists refractive index and internal transmission of glass

! The glass type and wavelength range is given by user

sawelame § "o My Macroshchdhex40105.txt"

' let user define the glass type and wavelength range

INFPUT "Flease enter the glass type”, glassType?d

INFUT "Flease enter the glass thickness (mm) ", glassThickness

INPUT "Flesse enter the starting wavelength [(wm) @ ', startWave

INPUT "Pleasse enter the stopwavelength [wm) @ 7, stoplWawve

INFUT "Flease enter the number of steps: ", stephlhan

! 2et the first wawvelength as primary wawvelength

Puav 1

PRINT

PRINT "Wawelength (wm) Refractive Index Internal Transmission™

PRINT M=====ss===ss=sss=sss=sssssssssssssssssssssssssssss=ss======

FOR i = 1, steplum+l, 1
w = startWave+(i-1) ¥ (stopWave-startWave) /steplum # calculate wavelength
SURF 1, GLLE, glassTypesd # =set the glass wmaterial for surface 1
SY¥YSP zOo2, 1, w # =Zet the new wavelength for the primary
UPDATE
index = INDX(1) # get the refractive index of primary wave at surface 1
glassTyped = SGLALIZ (1)

GETGLASSDATA 1,
alpha = WEC1(23)
IF alpha < 0 THEN alpha

GHUM (glassTypes)
Internal transmission coefficient
-1*%alpha

£t = EXPE (-1%alpha*glas=sThickness) f# transmission,
FORMAT 5.7
FRIMNT ".r W, r rr; index, r rr; T
NEET
savewindow 1, savelames$

store glass data in VECL

f correct Some catalog errors
length unit is mro

osphotonics.wordpress.com

215

Application of Zemax Programming Language Open Source Photonics

4.2 Non-Sequential Optical System

The examples given in this section involve only non-sequential optical system.

Example 4.2-1: Light Pipe.

In optical design, we often use light pipe to guide the light. The simplest light pipe is a cylinder that is
made of glass or plastic. Light can enter from one end of the pipe, and come out from the other end.
The cross section of the light pipe can be round or other shape such as triangle, rectangle or hexagon,
etc. When designing light pipe with different lengths and different cross sections, we need to consider
light coupling ratio, light spot uniformity, and other factors. In this example, we will compare the
maximum output light intensity, total flux and spot uniformity of light pipes with different length and
shape.

First, we assume the light source is a circular disk with Lambertian light distribution. The location of the
light source is at the origin, the normal of the source is along +Z direction, and the size is smaller than
the light pipe cross section. We also assume the area of the cross section of the light pipe is fixed, the
shape can be equilateral polygon with 3 to 8 sides, and the length can be 10, 40, 160 or 640 lens unit.
The light pipe also starts at origin Z = 0, with its length along +Z direction. The material of the pipe is
Acrylic. Finally, we assume a rectangular detector is put at the end of the light pipe to collect the output
light from the pipe. The size of the detector is slightly larger than the circumcircle of the light pipe. The
whole system is shown in figure 4.2-1:

osphotonics.wordpress.com 216

Application of Zemax Programming Language Open Source Photonics

£1] 1: NSC Shaded Model
Update Setkings Print Window Zoom Spin

Light Light Pipe

Source Detector

Fig. 4.2-1: the optical system in example ex40201.ZPL

Since this optical system is very simple, we can easily construct the whole system from scratch in the ZPL
program, change the system parameters in a loop, and do the ray tracing to get the final result.

osphotonics.wordpress.com 217

Application of Zemax Programming Language Open Source Photonics

1 ! ex40201

2 ! This program compares output of different shape and length light pipes.
2 ! Assume the mode i= total Non-Secquential Hode.

4

5 ! define constant and parameters

6 PI = 3.14159265

7 objPath§ = "D:" CEO0S

g fileName$ = "polvgon.txt

9 outputNames$ = objPath$ + fileName$ # polygon UDL file

10 crossirea = 1 # the area of the cross section of polygon
11 sourceRadius = 0.1 # the radius of a circular source
12 pMum = 100*100 # total pixel nunber

13 rayMwun = 1000000 # number of rays to be traced

14

158 ! define result as a 3-dimention array

16 lengrhium = 4 # assume lengths are 10, 40, 160, 640

17 gideNum = & # assume =ides are 3, 4, 5, 6, 7, 8

18 paralum = 3 # assume to analyze maxFlux, totalFlux, nonUniformity
1% DECLARE result, DOUELE, 3, lengthilum, sidelwn, paraliwn

20

2l ! ¢lean and prepare the NSC editor

22 GOZUE prepareEditor

23

24 ! define the first object as Source Ellipse

28 GOSUE defineSource

26

27 ! go through different polygons

28 FOR mn = 3, 8, 1 # different n sided polygons

23 FOR m = 1, lengthNum, 1 # go through different lengths

30 GOSUE createPolygon

31 GOSUE createletector

32 GOSUE analvze

feJc! NEXT m

34 NEXT n

35

36 ! print resulc

37 GOSUE reportResult

38

3s END

Lines 1 ~ 39 are the main program. Among them, lines 6 ~ 13 define some basic constants and
parameters, lines 16 ~ 19 define a 3 dimensional array to store the calculation result. After that, line 22
calls sub-program “prepareEditor” to set the non-sequential component editor, line 25 calls sub-
program “defineSource” to set up the light source, lines 28 ~ 34 form a loop to do ray tracing and
analysis by varying the side number of the polygon of the light pipe cross section and the length of the
pipe. Particularly, line 30 calls sub-program “createPolygon” to set up the light pipe, line 31 calls sub-
program “createDetector” to set up the detector, and line 32 calls sub-program “analyze” to trace rays
and analyze result. After that, line 37 calls sub-program “reportResult” to output result to the screen.
In this program, we use modularized code design, and put detailed settings into various sub-programs.
This gives us a simple and clear main program, and makes the whole program easier to understand and
to debug.

osphotonics.wordpress.com 218

Application of Zemax Programming Language

Open Source Photonics

40

41

42 SUE prepareEditor

43

44 totaldbijNum = NOBJ (1)

45 FOR i, totalObjNwm, 1, =1

46 DELETEOBJECT 1, 1 # delete all the ohjects
47 NEXT # there is still a null obhject in the
48

49 ! add two more objects in the editor, so the total is 3
0 INSERTOBJECT 1, 1

51 INSERTOBJECT 1, 1

52

£2 RETURN prepareEditor

54

133

gditor at last

Lines 42 ~ 53 are the sub-program “prepareEditor”. Its function is to first delete all the objects in the
non-sequential component editor (leaves only a null object at last), and then insert two more null

objects so there are total 3 null objects in the editor. In line 53, we add the name of the sub-program
“prepareEditor” in order to make the code clearer and easier to read. In fact, Zemax treats the RETURN

command the same with or without the name of the sub-program.

55

56 SUE defineSource

57

58 ! define the source type

59 SETNSCPROPERTY 1, 1, 0, 0O, "NSC SRCE"
&0

6l ! define the position

62 SETNSCPOSITION 1, 1, 3, -0.1 g =
63

64 ! define the Iource parameters

65 SETNSCPARAMETER 1, 1, 1, 100 # Layout Rays
66 SETNSCPARAMETER 1, 1, 2, rayNum # Lnalysis Rays
67 SETNSCPARAMETER 1, 1, 3, 1 # Power

68 SETNSCPARAMETER 1, 1, 6, sourceRadius # X Half Width
69 SETNSCPARAMETER 1, 1, 7, sourceRadius # ¥ Half Width

71
72 RETURN defineSource
73
74

70 FETNSCPARAMETER 1, 1, 9, 1 # Cosine Exponent, assume Lambertian

osphotonics.wordpress.com

219

Application of Zemax Programming Language Open Source Photonics

Lines 56 ~ 72 are the sub-program “defineSource”. Its function is to define the first object in the non-
sequential component editor as a circular source, and set it up.

73

74

75 SUE createPolygon

k3

77 ! calculate rl(from center to a side) and r2 (from center to a vertex)
78 rl = SQRT(crossirea/ (n*TANG(PI/n)))

79 r2 = rifCOSI({PI/n)

20

8l ! write the polygon UDA file

g2 OUTPUT outputName$

83 PRINT "POL O 0O *,

84 FORMAT 8.7

85 PRINT c2,

86 FORMAT 1.0

87 PRINT " ", n, " Q"

88 PRINT "ERE"™
g9 OUTPUT SCREEN

20

91 ! set the second object as extruded
92 SETNSCPROPERTY 1, 2, 0, 0, "N3C_EXTR"™

93

94 ! define the filename in the coment

85 SETNSCPROPERTY 1, 2, 1, 0, fileName$ # notice the path is not needed
k-1

97 ! define the material

98 SETNSCPROPERTY 1, 2, 4, O, "ACRYLIC™
23

100 ' define the polygon parameters

101 length = 10*POWR(4, m-1)

102 SETNSCPARAMETER 1, 2, 1, length # length

103 SETNSCPARAMETER 1, 2, 2, 1 # front x scale
104 SETNSCPARAMETER 1, 2, 3, 1 # front vy scale
105 SETNSCPARAMETER 1, 2, 4, 1 # rear x scale
106 SETNSCPARAMETER 1, 2, 5, 1 # rear v scale
107

108 RETURN createPolygon

109

110

Lines 75 ~ 108 are sub-program “createPolygon”. Its function is to define the second object in the non-
sequential component editor as a polygon light pipe, and set it up. The method we choose to create a
polygon light pipe is to use Extruded type object in Zemax, generate equilateral polygon through user-
defined aperture (UDA) file, and extrude it to a light pipe. In the program, line 78 calculates the radius
of the inscribed circle of the polygon, line 79 calculates the radius of the circumcircle of the polygon,
lines 82 ~ 89 define the UDA file. Please note that line 82 sets the output to a file, line 89 sets the
output back to the screen, so it is guaranteed that the output in the rest of the program uses the default

osphotonics.wordpress.com 220

setting, i.e. the screen. Line 92 sets up the object type, line 95 defines the UDA file name, where the
path name is not needed, and the file should be stored in the objects folder (defined by Zemax main

Application of Zemax Programming Language Open Source Photonics

menu, File = Preferences = Directories), which is “D:\My Macros\ch4” in this example. Lines 98 ~ 106
set up the material and other parameters.

109
110
111
112
113
114
115
116
117
11s
113
lz0
1Z1
122
123
124
125
126
127
128
129

SUE createlDetector

' define the type of the third object as Detector Eect
SETHNSCPROPERTY 1, 3, 0, 0, "N3C DETE"™

' define the position of the second object

z = length + 0,01

SETNSCPOIITION 1, 3, 3, =z B z

' define the detector parameters

halfWidcth = £2%1.1 # zet the detector =lightly larger than the pipe
SETNSCPARAMETER 1, 3, 1, halfWidth # X Half Width
SETNSCPARAMETER 1, 3, 2, halfWidth # Y Half Widch
SETHNSCPARAMETER 1, 3, 3, 100 # Nurnber of ¥ Pixels
SETNSCPARAMETER 1, 3, 4, 100 # Number of ¥ Pixels

RETURN createletector

Lines 111 ~ 127 are the sub-program “createDetector”, defining the type, position, size and pixel

numbers.

osphotonics.wordpress.com

221

Application of Zemax Programming Language Open Source Photonics

128

129

1320 5UB analyze

131

132 temp = N3DD(1, O, DO, O] # clear the detector
133 MSTR 1, 1, 1, 1, 1, 1, 1, 0O # ray tracing

134

135 maxFlux
136 sumF lux
137 sumSguare
138 totalCount = 0O

139 FOR pix = 1, pNum, 1

140 pFlux = N3DD(l, 3, pix, 0O) # check light flux on esach pixel
141 IF maxFlux < pFlux THEN maxFlux = pFlux

142 IF pFlux > 1E-8

1]
o

143 sumFlux = suwFlux + pFlux

144 sumSquare = sumSgquare + pFlux®pFlux

145 totalCount = totalCount + 1 # only count those illuminated pixels
148 ENDIF

147 MEXT

148

14% tenmp = totalCount *maxF lux *maxF lux-2 *maxF lux *sumF lux+swnSquare

180 ripple = ZQRT(temp) S (maxFlux*3QRT(totalCount))

151 result(m, n, 1) = maxFlux/ (halfWidth*halfVidth*4/pNum) # intensity on pixel
152 resultim, n, 2) sunF Lux

153 result(m, n, 3) ripple

154

155 RETURN analyze

156

157

Lines 130 ~ 155 are sub-program “analyze”. Line 132 clears the detector, line 133 does the ray-tracing,
lines 139 ~ 147 read the light flux on each pixel (line 140), evaluate if the light flux value on the current
pixel is larger than the maximum flux value (line 141), if yes then replace the max flux value with the
current pixel flux value. The goal is the find out the maximum flux value of all the pixels. Also, if the
current pixel flux value is larger than 0 (line 142), then add it into the total light flux “sumFlux” and
summation of square of the light flux “sumSquare”, and increase effective pixel number by 1 (lines 143 ~
145). In this sub-program, we need to calculate the following values, and save the result to the array
“result”: maximum light intensity on a single pixel, i.e. the maximum light flux on a single pixel divided
by the area of each pixel (line 151); total light flux (line 152); ripple or non-uniformity (line 150), defined
as the root mean square of the difference of light flux on each pixel and the maximum light flux
“maxFlux”, using the relation of Xi(pFluxi-maxFlux)? = Xi(pFluxi)? — 2*X(pFlux;)* maxFlux+ Xi(maxFlux)? =
sumSquare — 2*sumFlux*maxFlux+totalCount*sumSquare.

osphotonics.wordpress.com 222

Application of Zemax Programming Language

Open Source Photonics

157

152 SUE reportResult

159

160 PRINT

16l PRINT "length side nax—-F1 total-Flux wn-uniformity™
162 PRINT " "
163 FOR m = 1, lengthNumw, 1

164 FOR n = 3, sideNum, 1

165 length = 10*POWR (4, m=-1)

leé& FORMAT 3.0

167 PRINT " ", length, " ", n, " ",

168 FORMAT 11.8

1639 FPRINT resultiw, n, 1), ", result(m, n, 2), " ", resultim, n, 3)
170 NEXZT n

171 PRINT ™

172 NEXT m

173

174 RETUEN reportResulc

17%

176

Lines 158 ~ 174 are sub-program “reportResult”. Its function is to output the result stored in array

“result” to the screen.

The final result of the whole program is as shown in figure 4.2-2:

osphotonics.wordpress.com

223

Application of Zemax Programming Language

#) 1: Text Viewer

Open Source Photonics

Update Settings Print Window
Executing D:3WMy Macros' CH4%EX40Z01. ZPL.

length =side max—Flux

10 2 0.54330384
10 4 o.98323z281
10 5 1.033545268
10 g 0.98345255
10 7 1. 13124770
10 o] l.0l1zE502%
40 3 0.24141557
40 4 0.37470743
40 L 0.93351068
a0 & 1.00724617
40 7 l.0e363062
40 o] 0.9833E802E
1e0 3 0.34366147
le0 4 0.96348162
1&0 L 0.93839345587
le0 & 0.98361326
1e0 7 1. 02188224
le0 =] 093222065
g0 3 O.9ELE7178E
60 4 0.375453588
&40 = 0.98213371
&40 & 0. 32087380
g0 7 0.9%364588]1
60 g 1.01831313

total-Flux

0_8336012E
023754776
0583606445
0383673802
O_23264547E5
02326831343

0383331077
083714738
0225839507
0_83633063
0383602228
O 2326344568

0.8331921581
033663434
O_23E84487F
023287708z
0835639761
0.353583068

022175583
0583513538
0.353409843
0_83431E525
0232435704
0.53447147

non-uni formity

47865470
.43453269
43315534
42302788
.42373l640
- 4E774033
47507123
.4387291:
4336967
. 43E288871
.4434:2962
- 4E173E25949
.47039640
4371867
.4E338E529
.4Z44p393
43432436
SdEZEZgE3z0
S 4EETTILE
.4ZE66194
42370388
.41773E888
-4Z0ovag:z
42445957

Fig. 4.2-2: Result of program ex40201.ZPL

Please note that when the light pipe is long, the number of total internal reflections of each ray in the
pipe is large. Therefore, the setting of “Maximum Intersections Per Ray” and “Maximum Segments Per
Ray” in Zemax (System = General 2 Non-Sequential) might need to be adjusted, otherwise many rays
will be lost due to surpassing the maximum limit, and the proper result cannot be obtained.

From the result shown in figure 4.2-2, when the light pipe is long enough, its output light flux becomes
stable. This is easy to understand, because the transmission of light in the pipe is through total internal

reflection, so the loss is negligible.

osphotonics.wordpress.com

224

Application of Zemax Programming Language Open Source Photonics

People also investigated the relation between cross section of the light pipe and the output uniformity,
and believe that if the total plan can be covered by multiple cross section shape (such as hexagon), the
output light uniformity will be better. The worst uniformity comes from round cross section light pipe.
This is beyond our discussion in this book. Interested readers may want to investigate it further.

If we modify the program a little bit, we can also output to the screen the shape of the light spot seen
on the detector, as shown in figure 4.2-3. We will skip the details here.

Fig. 4.2-3: The light spot seen on the detector after running program ex40201.ZPL.

osphotonics.wordpress.com 225

Application of Zemax Programming Language Open Source Photonics

Example 4.2-2: Cosine Fourth Rule.

We know in an optical system, even the exit pupil is uniformly illuminated and there is no vignetting, the
illuminance between the center and the edge of the image plan is different, and it follows the cosine
fourth rule, i.e. point H on the image plan with an off-axis angle © has only an illuminance of cos*(8)
compared to that of a point A on the axis, as shown in figure 4.2-4:

H
Exit
Pupil ‘
0 0
A
‘ Image
Plane

Fig. 4.2-4: optical system following cosine fourth rule

In this example, we use a round Lambertian light source to simulate the exit pupil with uniform
illumination, and put a rectangular detector on the image plan, with its Y coordinate determined by
angle ©. We will invesitgate the variation of light flux at point H by changing angle ©.

osphotonics.wordpress.com 226

Application of Zemax Programming Language

Open Source Photonics

LT BT T I

10
1l
12
13
14
15
16
17
18
19
di]
21
zZ
23
Z4
Z5
Z6
z7
28
Z9
30
21
32
=3
24
35
26
37
=8
39
40
41
4z
43
44
45

! exd0202

! this program is used to check cosine fourth rule

! define some constant and parsmeters

PI = 3.1415%9
sourceR = 1
detectorHi = 1

dd = 15

raylum = 10000000
saveNames = "D:\Hy

source radius

detector half width

on axi=s distance

total rays to be traced

Hacroshchd\ex40202.cxe™

#
#
#
#

! greate optical system

INSERTOEBJECT 1, 1

! define the first

=0 the total object number i= 2

obiject

SETNSCPROPERTY 1, 1, 0, 0Q, "NSC SRCE"™ # elliptical source
SETHNSCPARAMETER 1, 1, 1, 100 # Layout Rays
SETNSCPARAMETER 1, 1, 2, rayNum # Anmlysis Rays
SETNSCPARAMETER 1, 1, 3, 1 # Power

SETHNSCPARAMETER 1, 1, &, sourceR # X Half Width
SETHNSCPARAMETER 1, 1, 7, sourceR # ¥ Half Width
SETWNSCPARAMETER 1, 1, 9, 1 # Coszine Exponent,

! define the second ohject

SETNSCPROPERTY 1, 2, 0, 0O, "NSC_DETE" # detector rectangular
SETNSCPOSITION 1, 2, 3, dO # z position
SETHNSCPARAMETER 1, 2, 1, detectorHW # X Half Widch
SETNSCPARAMETER 1, 2, 2, detectorHW # Y Half Width
SETHNSCPARAMETER 1, 2, 3, 1 f#f Numwber of X FPixels
SETHNSCPARAMETER 1, 2, 4, 1 # Nuwrber of ¥ Pixels
! trace the rays

FOR thetm = 0, 80, 5 # in degrees

v = dO*TANG (theta*PI/150)
SETNSCPOSITION 1, 2, 2, v # v position
temp = N3IDD(1, O, O, Q) # clear the detector
WNSTR 1, 1, 1, 1, 1, 1, 1, O # ray tracing
FORMAT 2 INT # =ame a= FORMAT 2.0
PRINT "theta = ", theta,
FORMAT 6.4
PRINT " degrees, I = ", NSDPD(1,2,0,1)
HNEXT theta
! save the result
SAVEWINDOW 1, saveName=3F # asswume there is no other windows open

assume Lambertian

Create a new non-sequential optical system, and open a new Non-Sequential Component (NSC) editor.
Line 13 inserts a null object, so there are totally two null objects in the system. Lines 16 ~ 22 set the first
object as a round light source, and lines 25 ~ 30 set the second object as a rectangular detector. We
assume the sizes of the light source and the detector are far smaller than the distance between them.
Lines 33 ~ 42 modify the value of angle theta, and thus change the Y position of the detector, trace the

osphotonics.wordpress.com

227

Application of Zemax Programming Language

Open Source Photonics

rays, read the total light flux on the detector and output to the screen. At the end of the program, save
the result displayed on the screen (assume text window 1) to a target file. Figure 4.2-5 shows the

content of the saved file.

B ex40202.txt - Notepad
File Edik Format Wiew Help

Executing DWWy Macros\CHANEX 0202 .2PL.|

theta= 0 degrees, [=01399
theta= 5 degrees, [=0.1376
theta =10 degrees, I=01325
theta=15 degrees, I=0.1224
theta =20 degrees, I=0.1104
theta =25 degrees, I=0.0953
theta =30 degrees, I=0.0797
theta =35 degrees, I=0.0840
theta =40 degrees, I=0.0438
theta =45 degrees, I=00353
theta =50 degrees, 1=0.0241
theta =55 degrees, I=00155
theta =6é0 degrees, T=0.0090
theta =65 degrees, T=0.0044
theta =70 degrees, I=0.0019
theta =75 degrees, I=0.0004
theta =20 degrees, 1=0.0001

8=

Fig. 4.2-5: The content of the saved file after running program ex40202.ZPL

The saved file is a text file so it’s easy to further process it with other software. Figure 4.2-6 shows the
normalized result comparing to cos*(8). It’s clear to see that the simulated result follows the cosine
fourth rule. When the distance between the light source and the detector is short, such relation may

not be true. Readers can investigate further by themselves.

osphotonics.wordpress.com

228

Application of Zemax Programming Language Open Source Photonics

Verification of Cosine Fourth Rule

A LightFlux on Detector = (COS(theta) to the fourth

1.2

0.8
0.6

iy N
0.2

0 T T
0] 20 40 60 80

Normalized Light Flux

Theta (degree)

Fig. 4.2-6: Comparison of the result of program ex40202.ZPL and the cosine fourth function.

Example 4.2-3: Importance sampling.

When doing scattering analysis, we often face such a problem: the sample scatters light towards all the
directions in the space, so the detector can only collect a very small part of the scattered light. Insuch a
case, if we want to do ray-tracing analysis, we need to trace huge amount of rays, and this is usually
unrealistic. In order to solve this problem, Zemax provided an importance sampling method to increase
the number of rays scattered towards the target without impacing the actual light energy distribution in
the space. This greatly increased the efficiency of the analysis, and is often used in optical system design.
We will discuss in detail the programming of importance sampling in this example.

As shown in figure 4.2-7, assume a collimated light beam is sent from the light source onto a Lambertian
sample, and the sample scatters incident light towards different directions in the space. We put 8
different detectors on the same plan in the space to measure the intensity of the scattered light. The
distance between the sample and each detector is the same. We want to investigate how the light
intensity varies on each detector when the sample tilts.

osphotonics.wordpress.com 229

Application of Zemax Programming Language Open Source Photonics

Detectors

1“'E~,
“

Lambertian
Sample

Fig. 4.2-7: Optical system in program ex40203.ZPL.

osphotonics.wordpress.com 230

Application of Zemax Programming Language Open Source Photonics

1! ex40203

2 ! This program shows the application of iwportance sawpling.

2 ! Assume the mode is total Non-Secuential Mode.

4

£ ! define constant and parameters

&€ PI = 3.14159265

7 saveNsmed = "D:' My Macros)chd)ex40203.,cxc®

8 sourceRadius = 1 # the radius of a circular sSource
9 sampleHW = 3 # the half width of the sample
10 decectorHW = 1 # the half width of the detector
11 source¥Y = 10 # the ¥ position of source

12 detectorY = 10 # the Y position of detector

12 rayNwn = 1000000 # number of rays to be traced

14

15 ! define result as a Z-dimention array

1€ detectorlum = & # assume § total detectors

17 tiltAngleNum = 10 # assume rotate 10 different angles, 1~10 degrees
18 DECLARE result, DOUEBLE, 2, detectorlMNum, tiltinglelun
139

20 ! clean and prepare the N3C editcor

21 GOSUE prepareEditor

22

23 ! define the first object as Source Ellipse

24 GOSUE defineSource

2L

26 ! define the second object as Rectangle sample

27 GOSUE defineSample

28

29 ! define the third to the tenth object as Detector Rectangle
30 GOSUE defineDetectors

31

32 ! analvyzing

232 FOR theta = 0, tiltingleNuwo-1, 1

24 GOSUE analyze

35 NEXT

26

37 ! print and output result

38 GOSUE reportResult

39

40 END

41

42

Lines 1 ~ 40 are the main program. Among them, lines 6 ~ 13 defins a two-dimensional array to save the
result; line 21 calls sub-program “prepareEditor” to clear NSC editor, and adds total 10 null objects; line
24 calls sub-program “defineSource” to set the first object as the light source; line 27 calls sub-program
“defineSample” to set the second object as the Lambertian sample; line 30 calls sub-program
“defineDetectors” to set the 3™ to 10" object as detectors; lines 33 ~ 35 modify the tilt angle of the
sample, and call sub-program “analyze” to set importance sampling, do ray-tracing, and analyze the
result; at last, line 38 calls sub-program “reportResult” to output result.

osphotonics.wordpress.com 231

Application of Zemax Programming Language Open Source Photonics

42

43 SUE prepareEditor

44

45 totalCbjNum = NOBEJ (1)

46 FOR 1, totaldbjMNum, 1, -1

47 DELETEOBJECT 1, i # delete all the objects

48 NEXT # there i= =still a null object in the editor at last
49

B0 ! add 9 more objects in the editor, 30 the total is 10

Bl FOR i = 1, 5, 1

52 INSERTOBJECT 1, 1
53 NEXT

54

£5 RETUEN prepareEditor
56

57

Lines 43 ~ 55 are sub-program “prepareEditor”. It's used to clear NSC editor and add total 10 null

objects.
57
58 SUE defineSource
59
60 ! define the =ource type
61 SETNSCPROPERTY 1, 1, 0, O, "N3C SRCE"
-4
63 ! define the posicion
64 SETNSCPOSITION 1, 1, 2, 10 # ¥ position
68 SETNSCPOSITION 1, 1, 4, 90 # rotate about X by 90 degrees
&5
67 ! define the source parametLers

cg SETNSCPARAMETER 1, 1, 1, 100
69 SETNSCPARAMETER 1, 1, 2, rayNum Analysi=s Rays
70 SETNSCPARAMETER 1, 1, 3, 1 Power

71 SETNSCPARAMETER 1, 1, 6, sourceRadius § X Half Widcth
7z SETNSCPARAMETER 1, 1, 7, sourceRadius # T Half Width

Layout Rays

I a3

74
78 RETUEN defineSource
76
77

72 SETNSCPARAMETER 1, 1, 8, 0O # Source distance, assuwe collimated

Lines 58 ~ 75 are sub-program “defineSource”. It’s used to set the first object as a round light source.

Particularly, line 73 sets the light beam from the source as collimated light.

osphotonics.wordpress.com

232

Application of Zemax Programming Language Open Source Photonics

76

77

78 SUE defineSample

739

80 ! define the sample type

g1 SETNSCPROPERTY 1, 2, 0, 0O, " # rectangle

g2 SETNSCPROPERTY 1, 2, 4, 0O, # reflective

83 SETNSCPROPERTY 1, 2, 7, 0O, # Lawbertian

84 SETHNSCPROPERTY 1, 2, 8, 0, 1 # Scatter fraction
85 SETNSCPROPERTY 1, 2, 9, 0, 1 # number of scatter rays
86

87 ! define the position

g8 SETHNSCPOSITION 1, 2, 2, 0 # Y position

89 SETNSCPOIITION 1, 2, 4, 90 # rotate about X by 90 degrees
a0

91 ! define the sample =ize

9z SETHSCPARAMETER 1, 2, 1, sampleHW # ¥ Half Width

93 SETNSCPARAMETER 1, 2, 2, sampleHW # Y Half Width

24

95 RETURN defineSample

36

a7

Lines 78 ~ 95 are sub-program “defineSample”. It’s used to set the 2" object as a Lambertian scattering
sample, and set the scatter fraction as 1 (line 84), the total ray number as 1 (line 85).

osphotonics.wordpress.com 233

Application of Zemax Programming Language

Open Source Photonics

87

28

99
100
101
102
103
104
105
106
107
108
10%
110
111
112
113
114
115
116
117
118
11%
120
121
122

S5UE definelDetectors

FOR i =3, 10, 1
! define the detector type as detector
SETNSCPROPERTY 1, i, 0, 0O, "NSC_DETE"™

! define the position of the detector
theta = (i-3)*45*PI/180

¥ = detector¥Y*COSI(theta)

z = detectorY*3INE (theta)
SETNSCPOSITION 1, i, 1, %
SETNSCPOSITICON 1, i, 2, detectorY
SETNSCPOSITION 1, i, 3, =
SETNSCPOSITION 1, i, 4, 20

EE - R

! define the detector parametLers
SETNSCPARAMETER 1, i, 1, detectorHW
SETNSCPARAMETER 1, i, 2, detectorHW
SETNSCPARAMETER 1, i, 3, 1
SETNSCPARAMETER 1, i, 4, 1

NEXT

RETURN defineDetectors

rectangle

in radians

calculate X coordinate
calculate Z coordinate

X position
T position
Z position

rotate about X by 90 degrees

X Half
Y Half
Number
Nuwber

Widch
Width
of X Pixels
of ¥ Pixels

Lines 98 ~ 120 are sub-program “defineDetectors”. It’s used to set 3~ 10" object as detectors. Since
we only need to read the total light intensity on the detector, we set the pixel number of each detector
as 1 (lines 116 and 117).

osphotonics.wordpress.com

234

Application of Zemax Programming Language Open Source Photonics

1lZz

123 3UB analyze

124

1258 ! tilt =ample

126 SETNSCPOIITION 1, 2, 4, 90+theta # rotate about X by another theta degrees
127

lzeg FOR i = 3, 10, 1 # going through different detectors
129 ! set the importance sampling towards the detector
130 SETNSCPROPERTY 1, 2, 151, 0, 1 # sample at importance sSampling mode

131 FORMAT 1 INT

132 targetChijectd = (STR{INTE (1))

133 FORMAT 4.2

134 target3ized = {3TR(detectorHU=Z)

135 targetDatad = "1 " + targetCbjectd + " " + targetSized + " D.6"

136 SETHNSCPROPERTY 1, 2, 152, 0, targetbhatad # importance sampling setting
137

138 ! ray tracing
139 temp = N3DD{1, O, O, 0O) # clear the detector
140 NSTR 1, 1, 1, 1, 1, 1, 1, 0O # ray tracing

141 resulc(i-2, theta+l) = WSDD(1, i, 0O, 0} # record detector reading
142 NEXT

143

144 ! recover sSample

145 SETNSCPOSITION 1, 2, 4, 90 # recover original rotation

148

147 RETURN analyze

148

149

Lines 123 ~ 147 are sub-program “analyze”. It’s used to define the tilt angle of the sample (line 126), set
importance sampling, and do ray-tracing and analysis. Among them, line 130 sets the scattering mode
as importance sampling, lines 131 ~ 135 generate the target data string based on different detector, line
136 sets importance sampling target data, line 139 clears the detector, line 140 does the ray-tracing, line
141 reads the values on the detector to the “result” array, and line 145 restores the original sample
rotation angle.

osphotonics.wordpress.com 235

Application of Zemax Programming Language Open Source Photonics

149

150 SUE reportResult

151

152 PRINT

153 PRINT "theta D1 D2 D3 D4 D5 D& D7 ng"
158 FOR theta = 0, tiltAngleNuwn-1, 1

15& FORMAT & INT

157 PRINT " ", theta, " ¥

158 FORMAT 5.4

159 FOR i = 1, detectorNum, 1

180 PRINT result({i, theta+l)/resultii, 1), " ",
161 IF i == detectorNum THEN PRINT

162 HNEXT 1

163 NEXT theta

164

165 ! mave the result

166 SAVEWINDOW 1, sawelame: # assume there iz no other windows open
167

168 RETURN reportResult

Lines 150 ~ 168 are sub-program “reportResult”. It’s used to output result to the screen, and save the
content of the Text Viewer window to the target file. Please note that there is a comma at the end of
line 157 and also line 160, meaning no line change after printing, and line 161 evaluates if all the
detector values have be printed, then print a space and change to a new line. Further, since we only
want to know the relative readings on the detectors, the result printed by line 160 is the ratio between
the current value on the detector and the value on the detector with 0 tilt angle.

1: Text Viewer M =13
pdate Settings Print Window

Executing D: WMy MacroshCH4Y EX40Z2032 Z2PL.

LY R B R N
copcoooooor
FREEE e
cpooooooor
cpooooooor
cpooooooor

osphotonics.wordpress.com 236

Application of Zemax Programming Language

Fig. 4.2-8: Result of program ex40203.ZPL

Open Source Photonics

The result saved in the target file can be processed by other software such as Excel, and we can get the

final result as shown in figure 4.2-9. It can be seen that when the sample is tilted, the value on each

detector will change accordingly, and the result follows a cosine function.

Sample Tilt Sensitivity

Normalized Detector Reading

0.9 ‘ .‘—/
0.85
N~
0.8
1 2 3 4 5 6 7 8

Detector Number

—4— 0 degree
—— 1 degree
=2 degree
=3 degree
== 4 degree
—0—15 degree
-6 degree
-7 degree

8degree

——9 degree

Fig. 4.2-9: Relation between detector reading and sample tilt angle from program ex40203.ZPL

osphotonics.wordpress.com

237

Application of Zemax Programming Language Open Source Photonics

Example 4.2-4: Interference fringes.

The rectangular detector provided in ZEMAX non-sequential mode is very useful. It not only can detect
light flux, but also can be used to do interference analysis. In this example, we will discuss the simplest
interference system, and observe interference fringes using rectangular detector.

As shown in figure 4.2-10, assume a collimated laser beam was sent onto a glass plate, so the reflected
light from top and bottom surfaces will interfere with each other. If the bottom surface of the glass
plate is a standard plan, and the top surface has a small curvature, we can then see interference fringes
on the detector. Here we assume the size of the detector is smaller than the cross section of the light
beam, so the impact from the edge of the beam can be neglected.

Detector /

Fig. 4.2-10: Interference between light reflected from the top

and the bottom surface of the glass plate.

Program ex40203.ZPL is used to change the curvature of the top surface of the glass plate, observe the
change of the interference fringes accordingly, and output the result to a series of files.

osphotonics.wordpress.com 238

Application of Zemax Programming Language Open Source Photonics

Before running the program, we need to do some preparation. First, create a new lens file under non-
sequential mode. Set the default null object in the NSC editor as type “Detector Rect”, and open a
detector viewer, change its show data type to “Coherent Irradiance”, as shown in figure 4.2-11:

Detector Viewer

Surface: | 1 j
Detectar: | Detector Object 1 ﬂ
Shaow A | Grey Scale ﬂ
Fow/ Calurnr: |

Z-Flane: | J
Scale: | Lirear ﬂ
Smoathing: | 1] ﬂ
Shaowe D ata: Coherent lradiance

Ray Databaze: |n-:une ﬂ
Filker: |

Max Plot Seale: |0.0000
Min Plot Scale: ~ {0.0000

] | Ear‘u:el| Save | Load | Rezet | Help |

Fig. 4.2-11: set the Show Data type of the Detector Viewer as “Coherent Irradiance”

After setting the detector viewer, the following program can be executed. Lines 1~ 34 are the main
program, wherein line 6 ~ 17 define some parameters needed in the program, line 20 calls sub-program
“prepareEditor” to insert two more null objects, line 23 calls sub-program “defineSource” to set the first
object as the light source, line 26 calls sub-program “defineGlassPlate” to set the second object as the
glass plate, line 29 calls sub-program “defineDetector” to set the third object as the rectangular detector,
line 32 calls sub-program “analyze” to do the ray-tracing and output the interference fringes on the
detector to a series of files.

osphotonics.wordpress.com 239

Application of Zemax Programming Language

! ex40204

! Thizs program shows the observation of interference fringes.

I Some pre-setting of Detector Viewer is needed.

! define constant and parameters

sourceRadius = 1 i

detectorHW = 0.5 # the half widch of
gourceY = 3 # the ¥ position of
sourcel = -3 # the Z position of
detectoryY = 3 # the Y position of
decectorZ = 3 # the Z position of
plateThickness = 0.2 # lens unit, assume
rd = 100 # initial radius of
raylwe = 1000000 # number of rays to
prefix$ = "D:\ My MHacros\chd\exd40204 R

ext$ = "L UMF"

! prepare the N3C editor
GOSUE prepareEditor

' define the first obhject as Source Ellipse

GOSUE definelSource

! define the second object as glass plate

GOSUE defineGlassPlate

! define the third object as detector

GOSUE defineDetector

! analyeze
GOSUE analyze

END

the radius of a circular source

the detector

source

Source

detector

decector

it

top surface of glass plate
be traced

The following are the sub-programs.

36
37
38
39
40
41
42
43
44
45
46

SUE prepareEditor

! add 2 more objects in the editor,

FOR i =1, 2, 1
INSERTOBJECT 1, 1
MNEXT

RETURN prepareEditor

so the total is 3

osphotonics.wordpress.com

Open Source Photonics

240

Application of Zemax Programming Language

Lines 37 ~ 44 are the sub-program “prepareEditor”. It's used to insert two null objects.

46
47
48
49
50
El
gz
53
54
-1
L1
&7
E8
59
&0
El
&2
63
&4
ES
-1
67

SUE defineS3ource

! define the source type
SETNSCPROPERTY 1, 1, 0, 0, "NSC SRCE"™
! define the position

SETNSCPOSITION 1, 1, 2, sourceY
SETNSCPOSITION 1, 1, 3, sourcel
SETNSCPOSITION 1, 1, 4, 45

I define the source parameters
SETNSCPARAMETER 1, 1, 1, 100
SETNSCPARAMETER 1, 1, 2, rayNum
SETNSCPARAMETER 1, 1, 3, 1
SETNSCPARAMETER 1, 1, 6, sourceRadius
SETNSCPARAMETER 1, 1, 7, sourceRadius
SETNSCPARAMETER 1, 1, 8, O

FETURN definelource

Y position
Z position
rovate about X hy 45 degrees

Layout Rays

Analysis Ravys
Power

X Half Width
¥ Half Width

Source Distance, assume collimated

Lines 47 ~ 65 are the sub-program “defineSource”

’

Open Source Photonics

. It’s used to set the first object as a collimated light

source.
&7
68 SUE defineGlassFlate
639
70 ! define the object type and material
71 SETNSCPROPERTY 1, 2, 0, 0, "NSC SLEN"
72 SETNSCPROFPERTY 1, 2, 4, 0O, "BE7?"
73
74 ! define the position
78 SETNSCPOSITION 1, 2, 4, S0 # rotate about X by 90 degrees
76
77 ! define the glass plate parameters
78 SETNSCPARAMETER 1, 2, 1, O # Radius 1
79 SETHNSCPARAMETER 1, 2, 3, 2 # Clear 1
g0 SETNSCPARAMETER 1, 2, 4, 2 # Edge 1
g8l SETNSCPARALMETER 1, 2, 5, plateThickness # Thickness
gz SETNSCPARAMETER 1, 2, 6, O # Radius 2
g3 SETNSCPARAMETER 1, 2, B, 2 g Clear 2
84 SETHNSCPARAMETER 1, 2, 9, 2 # Edge 2
85
86 RETURN defineGlassFPlate
87
238

osphotonics.wordpress.com

241

Application of Zemax Programming Language Open Source Photonics

Lines 68 ~ 86 are the sub-program “defineGlassPlate”. It's used to set the second object as a glass plate.

The type of the glass plate is set as standard lens, so the curvature of its top surface can be easily

modified.
88
89 3UE defineDetector
20
91 ! define the detector type as detector rectahgle
92 SETNSCPROPERTY 1, 3, 0, 0, "N3C DETE"
23
94 ! define the position of the detector
98 IETNSCPOSITION 1, 3, 2, detector¥ # ¥ position
9 SETNSCPOSITION 1, 3, 3, detectori # Z position
97 SETNSCPOSITION 1, 3, 4, -45 # rotate about X by -45 degrees
ag
99 ! define the detector parameters
lo0 SETHNSCPARAMETER 1, 3, 1, detectorHW # ¥ Half Width
10l SETNSCPARAMETER 1, 3, 2, detectorHW # T Half Width
102 SETNSCPARAMETER 1, 3, 3, 100 # Number of X Pixels
103 SETHNSCPARAMETER 1, 3, 4, 100 # Number of ¥ Pixels
104
105 RETURN defineDetector
106
107

Lines 89 ~ 105 are the sub-program “defineDetector”. It's used to set the third object as a rectangular

detector.

107

log SUE analyze

109

110 FOR i = 1, 10, 1

111 radiusl = r0 + POWR (2, 1i-1)

112 SETNSCPARAMETER 1, 2, 1, radiusl # change Radius 1
112 temp = MN3DD(1, O, O, Q) # clear the detector

114 NSTR 1, 1, 1, 1, 1, 1, 1, O # ray tracing

115 FORMAT 1 INT

11¢€ r§ = $5TR(radiusl)

117 fileNamed = prefixi + r$ + extcd

118 UFDATE 1 # assuwe serial number of the graphic window is 1
119 EXPORTEMP 1, fileName§

1z0 NEXT

121

122 RETURN analvyze

123

osphotonics.wordpress.com

242

Application of Zemax Programming Language Open Source Photonics

Lines 108 ~ 122 are the sub-program “analyze”. It's used to modify the curvature of the top surface of
the glass plate, do ray-tracing, generate file names according to the curvature of the top surface of the
glass plate, and output the content of the detector viewer to the target files.

After running the program, we can see the following files are added in the target folder:

ex40204 R101.BMP
ex40204 R102.BMP
ex40204 R104.BMP
ex40204 R108.BMP
ex40204 R116.BMP
ex40204 R132.BMP
ex40204 R164.BMP
ex40204 R228.BMP
ex40204 R356.BMP

ex40204 R612.BMP

Among them, the content of the 1, 5™, and 9*" files are shown below in figure 4.2-12:

3,932 4.0726 4.5781
3.6652 4.1203
3163

2.5508 3.2047

o

uuuuuuuuuu

2,788

.00

TETELTOR THAGE : COMERENT TRRADTERCE TETELTOR THAGE : COPERENT TRRADTANCE

B0 K, TOTAL KITS = $4eec3

Fig. 4.2-12: The content of some files generated from program ex40204.ZPL.

osphotonics.wordpress.com 243

Application of Zemax Programming Language Open Source Photonics

Example 4.2-5: Impact of entrance size and detector size to the efficiency of the integrating sphere.

Integrating sphere is a common device used in optical measurement. One type of structure has two
perpendicular ports on the sphere, one for light source, and the other for detector, as shown in figure
4.2-13. As we know, both the size of the light entrance port and the size of the detector have impact on
the integrating efficiency, because light can get lost from those two places. In this program, we will
change the size of the light source and the detector, and investigate its impact on the integrating
efficiency.

First, we will use the sphere object in Zemax to simulate an integrating sphere. Assume the radiusis 1
(we are only interested in the relative value, not the absolute value). We then put a round light source
at location Z = 1, and put a round detector at location Y = 1. The actual locations require some simple
calculation to assure they are tangent to the sphere. Further, to assure there is no overlapping during
ray-tracing, we move the light source and the detector slightly towards the sphere center. We set the
detector material as “ABSORB” to simulate the loss of light when entering it. Since we cannot set the
light source as absorbing material, we put another round disk with the same size of the light source
between the light source and the sphere vertex, close to the light source. This is to simulate the light
loss when it comes back to the entrance port.

Detector

= Light Input

Fig. 4.2-13: Diagram of a common integrating sphere.

osphotonics.wordpress.com 244

Application of Zemax Programming Language

Create a new lens file in Zemax, and then we can run our program shown below.

Open Source Photonics

1 ! ex40205

2 ! This progratm shows how to simulate an integrating sphere

3

4 ! define constant and parameters

5 sphereR = i # the radius of the integrating sphere

& gap = 0.001 # a gap from the sphere

7 startSoulR = 0 # start source radius, will skip the first one
8 stopSouR = 0.8 # stop source radius

9 stepSoulum = 20 # steps bhetween start and stop source radius
10 starcDetR = 0O # start detector radius, will skip the first one
11 =vopDecR = 0.5 # =svop detector radius

12 stepbetMum = 10 # steps hetween start and stop detector radius
13 rayNum = 100000 # number of rays to be traced

14

15 saveName$d = "D:"My Macrosichd'exd0Z05.cxt™

1é

17 ! define result asz a Z-dimention array

18 DECLARE result, DOUBLE, 2, stepSoulNum, stepDetNum

13

20 ! prepare the N3C editor and define some sSystem parameters

zl GOSUE prepareEditor

22

23 ! define the first object as Source Ellipse

24 =ourcelR = 0.01 # thiz number iz just an innicial value, will change
25 GOSUE defineSource

2e

27 ! define the second object as a sphere shell

28 GOSUE defineSphere

z9

230 ! define the third object as detector

31 detectorR = 0.01 # this number is just an innitial wvalue, will change
32 GOSUE defineDetector

33

34 ! define the fourth object as the output port

35 GOSUE defineCutputPorc

36

37 ! analyze

38 GOSUE analyze

39

40 ! export result to a file

41 GOSUE exportToFile

a2

43 END

q4

a5

Lines 1~ 43 are the main program, wherein lines 5 ~ 15 set the parameters needed in the program, line
18 is used to define a two dimensional array to store the result, and the rest is similar to the examples

osphotonics.wordpress.com 245

Application of Zemax Programming Language

Open Source Photonics

we discussed before, i.e. calling different sub-programs to set up system, do the ray-tracing and analysis,
and output the result. In this example, we will use nested sub-programs, i.e. calling other sub-programs
from a sub-program.

45
46
47
48
43
50
51
52
53
54
55
56
57
58
53

SUE prepareEditor

' add 2 more objects in the editor,
FOR 1 =1, 3, 1

INSERTOBJECT 1, 1
NEXT

4000
50000
1E-6&

SYSP 50,
5YSP S1,
S5YSP 53,

RETURN prepareEditor

maximum
maxinum
minimun

s0 the total is 3

intersection
Segments per ray
relative energy

per ray

Lines 46 ~ 57 are sub-program “prepareEditor”. It’s used to create total 3 objects in the NSC editor, and
set the maximum interesction per ray, maximum segments per ray and minimum relative energy.

59
&0
38
EZ
63
64
65
13
&7
68
63
70
71
72
73
T4
75
76
7
78
79
a0
2l

SUE defineSource

! define the source type
SETNSCPROPERTY 1, 1, 0, O, "H3C
SETMSCPROPERTY 1, 1, 4, 0O,

! define the position

sourceZ = SORT(sphereR*sphereR-sourceR¥sourceR)

SETNSCPOIITION 1,
SETNSCPOSITION 1,

1,
1,

3,
4,

sourceZ-gap
180

! define the source parametLers
SETMSCPARAMETER 1, 1, 1, 100
SETNSCPARAMETER 1, 2, raylum
SETNSCPARAMETER 1, 3,1
SETNSCPARAMETER 1, sourceR
SETNSCPARAMETER 1, =ourceR
SETNSCPARAMETER 1, g, 0

RETURN defineSource

Z position

rotate about X by 180 degrees

Layout Ravys
Inaly=is Rays
Power

X Half Width

Y Half Width

Source Distance,

o

assume collimated

osphotonics.wordpress.com

246

Application of Zemax Programming Language Open Source Photonics

Lines 60~ 79 are sub-program “defineSource”. It’s used to set up the light source. Among them, line 67
calculates the Z position of the light source, line 68 sets the light source position with a small shift. In
this sub-program, the radius of the light source “sourceR” is not fixed, and it needs to be determined
before calling this sub-program. This allows us the easily analyze different size light sources.

8l

g2 SUE defineSphere

83

84 ! define the object type as Lambertian reflective

8t SETNSCPROPERTY 1, 2, 0, 0, "NSC SPHE® # sphere

8¢ SETNSCPROPERTY 1, Z, 4, O, # reflective

87 SETHSCPROPERTY 1, 2, 7, 0, 1 # Lambertcian

g8 SETNSCPROPERTY 1, 2, 8, 0, 1 # Scatter fraction

89 SETNSCPROPERTY 1, 2, 9, 0, 1 # number of scatter rays
30

891 ! define the sphere parameters

92 SETNSCPARAMETER 1, 2, 1, =pher=R # radius

93 SETNSCPARAMETER 1, 2, 2, 0 # a shell, not a volume
24

95 RETURN defineSphere

96

a7

Lines 82~ 95 are sub-program “defineSphere”. It's used to set up the integrating sphere. We set the
sphere object type as a shell (line 93), and its optical property as Lambertian scattering (lines 86 ~ 89).

osphotonics.wordpress.com 247

Application of Zemax Programming Language

Open Source Photonics

97

9g SUE defineDetector

a9

loo ! define the detector type as detcector surface

10l SETHNSCPROPERTY 1, 3, 0, 0, "N3C DETS"

102 SETNSCPROPERTY 1, 3, 4, 0, "ALBSORE"

103

104 ! define the position of the detector

105 detectorY = S0ORT(sphereR*sphereR-detectorR*detectorR)

106 SETNSCPOSITION 1, 3, 2, detectorY-gap # Y position
107 SETNSCPOSITION 1, 3, 4, 90 # rocate about X by 90 degrees
108

109 ! define the detector parawmeters

110 SETNSCPARAMETER 1, 3, 1, O fi Radius = 0, flat
111 SETNSCPARAMETER 1, 3, 3, detectorR # max aperture

11z SETHNSCPARAMETER 1, 3, 4, O # min aperture

113

114 RETURN defineDetector

118

116

Lines 98~ 114 are sub-program “defineDetector”. It's used to set up the round detector. Just like the
light source, the size of the detector is not fixed, and it needs to be determined before calling this sub-

program. The position of the detector also needs to be calculated (line 105).

11&

117 SUE defineQutputFPort

118

119 ! define the output port type az ellipse
120 SETHSCPROPERTY 1, 4, 0, 0O, ;

121 SETHNSCPROPERTY 1, 4, 4, 0O,
122

123 ! define the position

124 outputPortZ = S0QRT(sphereR*sphereR-sourceR*sourceR)

128 SETNSCPOSITION 1, 4, 3, outputPortiZ-gap/2 # Z position
126 SETHSCPOSITION 1, 4, 4, 90

127

128 ! define the output port parameters

129 SETNSCPARAMETER 1, 4, 1, sourceR # X Half Widch,
120 SETHSCPARAMETER 1, 4, 2, sourceR # Y Half Width,
131

132 RETURN defineCutputFort

133

134

rotate about X by 90 degrees

Same a5 source
Same a5 Source

Lines 117~ 132 are sub-program “defineOQutputPort”. It’s used to put an absorbing object after the light
source, and simulate the light loss from here. Similarly, its size and position need to be calculated.

osphotonics.wordpress.com

248

Application of Zemax Programming Language Open Source Photonics

134
135
136
137
132
133
140
141
142
143
144
145
146
147
148
149
150
151
152
152
154
155
156
157
158
153
160
161

SUE analyze

! print header
GOSUE printHeader

' ray tracing and print result
FOR 1 = 1, stepSoulum, 1
sourceR = startSouR+i*(stopSouR-startSouR)/stepSoulium
FORMAT 4.2
FPRINT sourceR, " ",
FOR j = 1, stepDetluwn, 1
detectorR = startDetB+j* (stopDetR-startDetR) /stepDetium

GOSUE definelSource # modify source setting
GOSUE defineletector # modify detector setting
GOSUE defineCucputFortc # modify output port sSetting
temp = NSDD{1, O, 0O, 0O) # clear the detector
NSTR 1, 1, 1, 1, 1, 1, 1, 0O # ray tracing
resulc (i, j) = N3DD(1, 3, 0O, 0O) # record detector reading
FORMAT 6.5
FRINT N3DD(1, 3, D, Oy, ™ w # print result

NEZT 3

PRINT

NEXT i

RETURN analyze

Lines 135~ 159 are sub-program “analyze”. It’s used to modify the size of the light source and the
detector, do ray-tracing, and record the result. In this sub-program, we list result of each ray-tracing on
the screen in a table, and save the result into array “result”. Line 138 calls another sub-program
“printHeader” to print table header on the screen. The outer loop in lines 141 ~ 157 modifies the size of
the light source, the inner loop in lines 145 ~ 155 modifies the size of the detector. Lines 142 and 146
calculate the size of the light source and the detector, respectively, lines 147, 148 and 149 call different
sub-programs to set the light source, the detector, and the absorber alongside the light source, and then
do the ray-tracing, record and output data. Please note that we can call the same sub-programs from
either the main program or from this sub-program.

osphotonics.wordpress.com 249

Application of Zemax Programming Language

Open Source Photonics

161

162 SUE printHeader
163

164 PRINT

165 PRINT ™ 3= "

166 FOR 1 = 1, stepDetHum, 1

167 FORMAT 1 INT

168 PRINT " D, i, " "
169 NEXT

170 PRINT

171 PRINT ™ ",

172 FOR 1 = 1, stepDetNum, 1

173 detectorR = startDetR+i* (stopletR-startDetR) /steplecNum
174 FORNAT 4.2
175 PRINT ™ "
176 NEXT

177 PRINT

178 PRINT "===== L

179 FOR 1 = 1, stepDetium, 1
180 FPRINT " "

181 NEXT

182 PRINT ™ ™

183

184 RETURN printHeader

VE:13

186

detectorR, ")

Lines 162~ 184 are sub-program “printHeader”. It's used to print the table header. We use the default

output target screen here.

osphotonics.wordpress.com

250

Application of Zemax Programming Language Open Source Photonics

186

187

188 SUE exportToFile

189

190 OUTPUT savelame$

191 FORMAT 6.5

192

193 PRINT "First row is detector radius, ",
194 PRINT "first column 13 Source anc »
195 PRINT "and the rest data are corresponding dececcor readings.™
196 PRINT

197

198 PRINT O, "™ ",

198 FOR 1 = 1, stepDetNum, 1

200 detectorR = startDetR+1i* (stopDetR-startDetR) /stepDetiium

201 FRINT detectorR, ™ 7,

202 NEXT

203 PRINT

204 FOR 1 = 1, stepSoulNum, 1

Z05 sourcelR = start3ouR+i* (stopSouR-start3ouR) /stepSoulum

206 PRINT SourceR, " i

207 FOR j = 1, stepDetNum, 1
208 PRINT result(i, 3}, " ",
z09 NEZT j

210 FRINT

211 NEXT i

z12

213 OUTPUT SCREEN

zl4

215 RETURN exportToFile

216

Lines 188~ 215 are sub-program “exportToFile”. It's used to output the result stored in array “result” to
the target file with given format. Of course we can directly output the table printed on the screen to the
target file, as we did in example 4.2-3, but here we show a different output method.

After running the program, we can see on the screen the result shown in figure 4.2-14:

osphotonics.wordpress.com 251

Application of Zemax Programming Language Open Source Photonics

#) 1: Text Viewer

Update Settings Prink wwindow
Executing D: "My MacroshCH4WEX40Z05_ ZPL.

= ol Dz juke] L4 LE De o7 jul=] o2 Llo
005 o_10 015 o_zo o.&5 0.30 0_35 0._40 0_45 o_&o

0. 0.00824 0.02426 0.07420 0.12560 0.12530 0.Z4531 0.313c2 0.327732 0.43335 0.49%61%8
0. 00022 0_0338Z2 007354 0O_12373 0.18312 0_.z4624 0.31006 0_373%F 0_.43L808 0.4521F
0. O 0o02de 0O_02E9Z 0.07123 0.1E060 0O.L178282 0.zZ4045 0.302E2 0.2e63E 0.4Z771 0.484E52
0. 0.008l4 0.02157 0.08872 0.11660 O0.17254 0.Z3E959 0.259533 0.2576f 0.41808 0.474595
0. 000774 0_032005 006562 011154 O_16L8EZ O0O_ZE388 0.28471 0_.346153 0.40877 0_46218
0. 00072 0.0E21% 0. 0&zZ00 010853 O_157E1 0O_Z1408 0.27E%2 0_33281 0.391&3 0.44750
0. 0.00e22 0.0ze53 0.058le 0.09%32 0.14948 0.Z0Z24¢ 0.2E53325 0.2174¢ 0.37475 0.430E8
0. 000823 0_0Z456 005334 0_0%E54 0.13%17 0_.13078 0.24537 0_30171 0.35731 0.41z230
0. 000578 0O_0ZE71 0.04326 0_026032 012935 0_1726Z 0.23204% 0_Z23474 0_33936 035318
0. 0.005E2 0.0z07&¢ 0.04521 0.075%54 0.1Z010 0.lefed4 021564 0.Ze787 0.32038 0.37zZ33
0. 0.00422 0.0189¢ 0.0418% 0.07314 0.110&0 0O_1535% 0.Z00%5 0O_ZE025 0.30141 038220
0. 0004358 0.01731 0032866 0_087z5 01022 0_1422Z 0.18627 0_E33326 O0O_2Z8EL50 0.3318Z
0. 0.003%2 0.01E877 0.03508 0.08137 00,0937 0.13038 0.17124 0.Z1c47 0.E263212 O0.3210E85
0. 000287 0.01427 0.02178 0.0EE&64 O_08E5EZ0 0_.119z2¢6 0.152159 019383 O0_24456 0.Z897%8
0. 000323 0_0127% 0.0z848 0.0801% 0_07732 0_10873 0.14447 018373 0_22E31 0.Z6889
0. 0.00226 0.0115& 0O.0Z532 0.045E57 0.08922 0.09885 0.131ceZ 0.1e83¢ 0.Z0758 0.zZ4844
0. 0.002e0 0.01031 0.02342 0.0411% 0.08305 0.085%80 0.12013 0.153220 0.12037 O0.zZE9E7
0. 000233 0.00%35 0.0z101 O0_03705 005701 0_02108 0.102%1 0_13967 0.1733&6 0.Z0947
0. 0.00Z11 0.00834 0.01563 0.03251 0.05030 0.0724% 0.09785 012586 0.156e3 0.185973
0. 0.00121 0.007z27 0.0le28 0.025%25 0.04550 0.06487 0.08722 0.1lze¢ 0.14087 0.171ez

Fig. 4.2-14: Result shown on the screen after running program ex40205.ZPL

In the mean time, in the target folder given in the program, we can see a target file with content shown
in figure 4.2-15:

osphotonics.wordpress.com 252

Application of Zemax Programming Language Open Source Photonics

B ex40205.txt - Notepad E@@

File Edit Farmat “iew Help

First row is detector radiue, first column is source and cutput port radins,
atid the rest data are corresponding detector readings.

0.00000 0.05000 0.10000 0.13000 020000 025000 030000 0.33000 040000 043000 030000
0.04000 000594 003426 007420 012560 012590 024931 031369 037793 043935 049618
0.02000 000222 003382 007354 012373 018312 024424 0.31006 037392 043508 049212
0.12000 000246 003202 007139 012060 017269 024045 030352 036692 042771 042458
0.16000 000214 003157 006273 0.11660 017254 023200 020533 035765 041206 0.47495
0.20000 000774 003005 006362 011154 016522 022388 028471 034619 040577 046212
0.24000 000722 002219 006200 010553 015751 021408 027292 033281 039123 044750
023000 000639 002659 005316 009938 014248 020248 023935 031748 037475 043023
032000 000629 002436 003354 009234 013917 019078 0.24537 030171 033781 041230
0.36000 000575 002271 004926 002603 012955 017862 023049 023474 033936 039318
0.40000 000529 002076 004581 007954 012010 016564 021564 026787 032038 037203
0.44000 000422 001296 004129 007314 011060 015369 0.20095 025035 0320141 035220
042000 000435 001731 003266 006725 010222 014232 012627 023336 028230 033152
0.52000 000393 001577 003506 006127 009367 013032 017124 021647 026319 031055
0.36000 000357 001427 003175 005564 008520 011926 0.15819 019928 024454 028975
060000 000323 001279 002845 005019 007732 010573 0.14447 0185379 022381 026559
064000 000236 001156 002592 0.04557 0.06995 009585 0.13162 0165836 020756 024544
063000 000260 001031 002343 0.0411%9 006305 003960 012013 015380 019037 023947
0.72000 000233 000935 002101 003705 0.05701 008105 010891 013967 017336 020047
0.76000 000211 000234 001263 003281 005090 007245 0.09765 012586 015663 012070
0.20000 000121 000727 001638 002925 004550 006467 002738 011266 014027 017162

Fig. 4.2-15: The content of the target file saved after running program ex40205.ZPL

The result saved in the text file can be easily processed with other software. Shown in figure 4.2-16 is
the relation between the integrating efficiency and the size of the light source and the detector,
processed in Excel.

osphotonics.wordpress.com 253

Application of Zemax Programming Language Open Source Photonics

Integrating Sphere Efficiency Integrating Sphere Efficiency

0.6 1.2

0.5 —(.05

—0.1

—0.15 0.8 +

—0.2 06

—(.25

03 0.4

035 02

Light Intensity on Detector (a.u.)

0.4

Normalized Light Intensity on Detector

0.45
0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8
0.05 0.5 0.5
Source and Input Port Radius (a.u.) Source and Input Port Radius (a.u.)

Fig. 4.2-16: Integrating efficiency obtained from the result of program ex40205.ZPL

Example 4.2-6: Three-dimensional light intensity distribution obtained with volume detector.

Detector Volume is a powerful tool Zemax provided. It is a rectangular volume with an arbitrary number
of voxels. Voxels is a name derived from "volume pixels". A voxel is a 3D rectangle block that defines
some portion of the total volume occupied by imported solids. The detector volume may be nested
within or straddle any other object. Multiple detector volumes may also be superimposed and all will be
illuminated by rays passing through the individual voxels. With the help of Detector Volume we can
easily obtain the intensity distribution of incident light or absorbed light in 3-D space.

In this example, we will discuss how to obtain the 3-D intensity distribution of incident light, and display
this distribution in 3-D plot. The optical system is an LED model provided by Zemax, and can be
obtained from Zemax installation folder (default as “C:\Program Files\ZEMAX\Samples\Non-
sequential\Sources\”), file name “led_model.ZMX”. We resave the file to “ex40206.ZMX". In this
optical system, there is a simple LED model, as well as a plan detector, as shown in figure 4.2-17:

osphotonics.wordpress.com 254

Application of Zemax Programming Language Open Source Photonics

Fig. 4.2-17: Diagram of optical system ex40206.ZMX

We will slightly modify this system, delete the plan detector, and add a volume detector, as shown in
figure 4.2-18. We can do this either directly in the NSC editor, or with ZPL program. In this example we
will do it with ZPL program.

osphotonics.wordpress.com 255

Application of Zemax Programming Language Open Source Photonics

Fig. 4.2-18: Diagram of modified optical system ex40206.ZMX.

osphotonics.wordpress.com 256

Application of Zemax Programming Language Open Source Photonics

1 ! ex40z208

2z ! shows how to use detector volwne to analyze light distrikbution
3 ! Assume the optical system is defined in ex40206. ZME
1

E ! initiali=zing

& hux = 10 # x half width of wvoxel
7 huy = 10 # v half width of wvoxel
g hwz = 10 # =z half width of wvoxel
9 mwx = 20 # pixel nuwber in

10 nwy = 20 # pixel number in v

11 nve = 20 # pixel nwber in =

1z

12 DECLALARE intensity, DOUBLE, 1, nwx*nvyinws
14 DECLARE woxelColor, INTEGER, 1, nwx*nvy¥ nwve
15 DECLARE threshold, DOUELE, 1, 4

1e threshold(l) = 0.5

17 threshold(Z) = 0.2

18 threshold(3) = 0.05

12 threshold(4) = 0.01

z0

21 ! revise model

zz GOSUE changeModel

23

74 ! record light intensity

2B GOSUE recordLight

25

27 ! assign color to each wvoxel

28 GOSUE setiColor

Z9

30 ! create 3D model to wisulize light intensity distribution
31 GOSUE wisulize

3z

33 ENL

a4

35

Lines 1 ~ 33 are the main program, wherein lines 6 ~ 11 define the size of the volume detector and the
number of voxels, line 13 defines a one dimensional array “intensity” to store the incident light intensity,
line 14 defines a one dimensional array “voxelColor” to store the color group of each voxel (determined
by the relative light intensity on the voxel), line 15 ~ 19 define the light intensity throshold, line 22 calls
sub-program “changeModel” to slightly modify the optical system, i.e. delete the plan detector and add
the volume detector as mentioned before, line 25 calls sub-program “recordLight” to do the ray-tracing
and record the incident light intensity of each voxel, line 28 calls sub-program “setColor” to normalize
the light intensity of each voxel, and assign different color number according to the intensity value, and
finally, line 31 calls sub-program “visulize” to create a 3-D model of colors to represent the light intensity
distribution in the space, and import the 3-D objects to the current optical system.

osphotonics.wordpress.com 257

Application of Zemax Programming Language Open Source Photonics

3k

26 3UE changeModel

27

38 objNum = NOEJ (1) # find out total ohiject number
39

40 FOR i = ohjlum, 1, -1
41 temp = NPRO(1, i, 0O, O

4z A% = Fhuffer() # find out the object type

43 IF Lh§ §== "MEC _DETE®™ THEN DELETEOEJECT 1, 1 # delete the detector
44 NEIT

45

46 INIERTOBJECT 1, 1

47 SETNSCPROPERTY 1, 1, 0O, 0O, "MN3C DETV™ # type as detector wolume
42 SETNSCPARAMETER 1, 1, 1, hwx # x half width

43 SETHNARCPARAMETER 1, 1, 2, hwy # v half width

t0 SETHSCPARAMETER 1, 1, 3, hwz # = half width

£l SETHNSCPARLAMETEER 1, 1, 4, nwx # number of x pixels

Lz SETNZCPARAMETER 1, 1, 5, nvwy # number of v pixels

L2 SETNZCPARAMETER 1, 1, &6, nwvez # number of =z pixels

L4 JETNICPOSITION 1, 1, 3, hwz+5 # put voluwe in front of LED
£t SETHACPROFPERTY 1, 1, 142, 0O, 9 # opacity a3 10%

L&

£7 UFPLATE ALL

L

£3 RETUERN

&0

&1

an

Lines 36 ~ 59 are sub-program “”. It’s used to modify original optical system, i.e. delete the plan
detector, and add a volume detector. Lines 40 ~ 44 check each object, and delete it if its type is plan
detector (NSC_DETE). Lines 46 ~ 55 insert a new object, define its type and other parameters. Line 57
updates the system.

osphotonics.wordpress.com 258

Application of Zemax Programming Language Open Source Photonics

&l

&2 B3UE recordLight

[=3c]

&4 tewp = WIDD(1, O, O, 0) # clear detector
&5

&5 PRINT

&7 PRINT "Ray tracing ..."

&2 N3TR 1, 0, 1, 1, 1, 1, 0O # trace rays
=3

70 IMax = 0

71 FOR ix =

1, nwx, 1
7 FOR iy = 1, nvy, 1

73 FOR i= 1, nwve, 1

74 n = ix+{iy-1) *nvx+{iz-1) *fnvLFnvy # woxel numwber

75 intensityin) = N3DD(1,1,n,0d) # read incident f£lux
76 IF IMax < intensityi(n) THEN IMax = intensity(n) # update Imax
77 NEXT iz

72 MEXT iy

72 MEET ix

20

21 RETURI

g8z

=3c]

Lines 62 ~ 81 are sub-program “recordLight”. It’s used to do the ray-tracing and record the intensity of
the light incident to each voxel of the volume detector. Particularly, line 64 clears the detector, line 68
does the ray-tracing, lines 71 ~ 79 use a loop to record the light intensity of each pixel, find the maimum
value, and store the value in variable Imax.

osphotonics.wordpress.com 259

Application of Zemax Programming Language

23

g4 3UE setColor

=

26 FOR n = 1, nvx*nvy¥nvz, 1

g7 intensity(nl = intensityi(n)/IMax # normalize intensity of each wvoxel
58 IF intensitvi(n) > thresholdil)

23 voxelCalorin) = 1 # red color

20 ELZE

31 IF intensityin) > threshold(Z)

9z woxelColor(n) = 2 # vellow color
a2 ELZE

34 IF intensityin) > threshold(3)

1 voxelColor(n) = 3 # green color
g ELZE

a7 IF intensity(n) > thresholdi(4)

ag voxelColor (n) = 4 # blue color
a9 ELZE

100 wvoxelColor(n) = 0 # below the lowest threshold, then no color
10l ENDIF

loz ENDIF

103 ENDIF

104 ENDIF

108 NEET n

10&

107 RETURIN

108

109

Open Source Photonics

Lines 84 ~ 107 are sub-program “setColor”. It's used to normalize the light intensity on each voxel, and
assign each voxel to different color group according to the threshold. The basic idea is to set the voxels
with highest intensity as red, then yellow, then green, and then blue. If the light intensity is smaller than
then minimum threshold, it will be omitted.

osphotonics.wordpress.com

260

Application of Zemax Programming Language Open Source Photonics

103

110 ZUE wisuli=ze

111

11z objPathy = SCOEJECTPATH{) # get current object path nsme
113 lensFileNamed = $FILEMAME () # get current lens file name
114

115 FOR colorMum = 1, 4, 1
118 GOSUE createch]

117 MEXT

118

113 FOR colorMNum = 1, 4, 1
1z0 FO3UE import

171 MEXT

122

1z3 RETUEN

1lz4

125

Lines 110 ~ 123 are sub-program “visulize”. It’s used to create 3-D model of the voxels in each color
group, i.e. use a small cube to represent each voxel, and load the 3-D model of each color group into the
current optical system. Line 112 and 113 read the current object path name and lens file name,
respectively. The loop in lines 115 ~ 117 calls sub-program “createObj” to create a 3-D object for each
color group. Finally, the loop in lines 119 ~ 121 calls sub-program “import” to import the 3-D object in
each color group to the current optical system.

osphotonics.wordpress.com 261

Application of Zemax Programming Language Open Source Photonics

125

126 SUE createdb]

127

128 objTotal = NOBJ (1) f# current total object number
129 obijNuwm = objTotal

130

131 FOR n = 1, nvx*nvy*nwvz, 1

132 IF wvoxelColor(n) == colorihun

133 objNuwn = objNuwn+l

134 REWIND

135 FORMAT 1 INT

136 PRINT "Inserting voxel ", n, " for group ", colorNum, "

137

128 INSERTOBJECT 1, objNum # inserv one object at the end of N3C editor
139 SETHNSCPROPERTY 1, objNum, 0, 0O, "HNZC RELE" # type az rect block
140 SETHNSCPARLMETER 1, obiNwm, 1, hwx/hvx # »1 half width
14l SETHSCPARANETER 1, objNum, 2, hwy/nvy # v1 half width
14z SETHSCPARAMETER 1, objNum, 3, 2*hwz/nvz # =z length

143 SETNSCPARAMETER 1, objiNum, 4, hwx/nvx # %2 half widch
144 SETHMSCPARAMETER 1, objNum, 5, hwy/nvy # v2 half width
145 SETHNSCPROPERTY 1, obijNum, 16, 0O, 1 # rays ignore this object
l48

147 nz = INTE{(n-1)/ (nwx*nvy)) +1

l48 ny = INTE((n-1-(nz-1) *fnvx*nvy) /nve) +1

1439 n¥x = n-[(ne-=1) *Tnvx*nvy-(ny-1) *nvx

150 ¥ = (hx- (nwx+1l) S2) T2 Thus nvs # calculate x position
151 v = (ny-(nvy+l) /2) *2Thuy/ nvy # calculate y position
152 z = (nz-1-nvz/Z) *2%hwz/nvz+hwz+5 # calculate £ position
153 SETHSCPOSITION 1, objNum, 1, x

154 SETNSCPOSITION 1, ohjNum, 2, ¥

155 SETHSCPOSITION 1, objNum, 3, =

156 ENDIF

157 NEXT n

158

158 REWIND

160 PRINT "Updating object group ", colorNum, "

151 UPDATE ALL

162

163 export3tartlum = objTotal+l

164 exporci3topNuwn = objNum

165 GOSUB export

166

167 RETURHN

1&g

169

Lines 126 ~ 167 are sub-program “createObj”. It’s used to create 3-D model for the voxels in each color
group. Among them, line 128 reads the total number of objects in the current system, save it as
objTotal; line 129 assign the number to variable objNum; lines 131 ~ 157 check each voxel with a loop,
and if a voxel belongs to a particular color group (line 132), then insert a new object (line 138) at the end
of the NSC editor (determined by the value of objNum+1), and set corresponding parameters (lines 139
~ 145); lines 147 ~ 152 calculate the position of each voxel; lines 153 ~ 155 set the voxel position

osphotonics.wordpress.com 262

Application of Zemax Programming Language Open Source Photonics

accordingly; line 161 updates the current system after finishing the loop of each color group; lines 163 ~
165 indicate the start number and stop number of each new object in the NSC editor, and call sub-
program “export” to export those objects to the target file.

183

170 3UE export

171

17z ! setting for export

172 VEC1(1) = 3 # CAD file type, choose 3TL
174 VECZ (2) = & # spline segments

176 VEC1(3) = export3tartNum # start chiject

176 VEC1(4) = export3toplium # end ohject

177 WEC1i(5) = 1 # ray data layer

178 VEC1ig6) = 0 # lens data layer

179 VEC1(7) = 0O # do not export dummy surfaces
180 VEC1(8) = 1 # export surfaces as solids
181 VEC1(9) = & # ray pattern NONE

12z VEC1(10) = 0 # nuber of rays = 0

12z VEC1(11) = 0 # wavenumber

124 VEC1(12) = 0O # field nunber

128 VEC1(13) = 0O # do not 'delete wvignetted!'
lg6 VEC1(14) = 1 # dwnny thickness

127 VEC1(15) = 0 # do not split rays

1gs VEC1(16) = 0 # do not scatter rays

13 VEC1(17) = 0 # do not use polarization
190 VEC1(15) = 0 # use the current configuration
131

19z FORMAT 1 INT

192 tempd = $3TER({colorbum)

134 commenty = lensFilelame$+"Color"+tempd+" . STL™

135 exportFileNamed = ohjPathi+") "+ocommuent §

135

137 REWIND

192 PRINT "Exporting ohiect group o, tempd, ™ ..."

199 EXPORTCLD exportFilelNames

200

z0l FOR i = export3topMum, export3tartMNum, -1

z0z REWIND

Z03 PRINT "Deleting ohijesct *, i, ™ ..."

z04 DELETEQEJECT 1, 1

zZ05 WEXET

206

z07 RETURN

z08

209

Lines 170 ~ 207 are sub-program “export”. It's used to export the objects to a target CAD file. Lines 173
~ 190 define some parameters related to exporting file (some default values don’t need to be specified

osphotonics.wordpress.com 263

Application of Zemax Programming Language Open Source Photonics

in the program). We choose the export file type as STL (line 173). The range of the objects to be
exported is determined by exportStartNum and exportStopNum (lines 175 and 176), and the objects are
exported as solids (line 180). Lines 192 ~ 195 generate the target file name according to the color group,
line 199 exports the object to the target file, and lines 201 ~ 205 delete all the exported objects from the
NSC editor.

z09

Z10 SUE irmport

z11

zlz FORMAT 1 INT

z12 tempd = $3TR(colorlaum)

zl4 conmentd = lensFileMNamed+"Color"+tempd+"” . STL"

21kt

z16 newohijlum = NOBJ (1) +1

217

zlg REWIND

#19 PRINT "Importing ohject group ™, tewmpd, ™ ...

zz0

2zl INZERTOBJECT 1, newlhjilum

22z FETHNICPROFPERTY 1, newObjlhum, O, O, "MN3C STLOT # object type
FE3 SETHNICPROPERTY 1, newlhilwo, 1, 0, commentd # comnent

zzd4 RETNICPROPERTY 1, newChilMNww, 2, 0, O # reference object
ZZE J[ETHSCPROPERTY 1, newObhijMNum, 16, 0O, 1 # rays ignore this object
zzg BETHNICPROPERTY 1, newChjlww, 142, 0O, 9 # opacity as 10%
227 SJETHNSCPARLMETER 1, newObjMum, 1, 1 # Scale bhe 1

Zz§ JETHNICPARALMETEE 1, newChjMNum, £, 1 # is wolume

zz9

z30 TPDATE ALL

z231

23z REWIND

232 PRINT ™"

z3d

235 RETURN

235

Lines 210 ~ 235 are sub-program “import”. It's used to import the solid model of each color group to
the current optical system for visulization. Among them, lines 212 ~ 214 generate file name according
to the color group value, and please note no path name is included here, so the file must be put in the
default object folder; line 221 inserts a null object at the end of the NSC editor; line 222 sets the object
type; line 223 adds the comment, representing the import file name; lines 224 ~ 228 set the parameters
of the imported object; and finally, line 230 updates the current optical system.

Since the running time of this program is long, we added some prompt messages in the Text Viewer
window on the screen to indicate the progress of the program, as shown in line 67, lines 134 ~ 136, lines
159 ~ 160, lines 197 ~ 198, and lines 202 ~ 203. Figure 4.2-19 shows some prompt messages during the
program execution.

osphotonics.wordpress.com 264

Application of Zemax Programming Language Open Source Photonics

3: Text Viewer

Update Settings Print window
Executing D: "My Macrosh CH4WEX40Z06 . EPL.

Inserting woxel 3133 for group 3 ...

(a)

Executing D:WMy Macros'CH4%EX40Z06. ZPL.

Exporting obhject group 4 ...

(b)

Fig. 4.2-19: Prompt messages shown in the Text Viewer when running program ex40206.ZPL

osphotonics.wordpress.com 265

Application of Zemax Programming Language Open Source Photonics

After finish running the program, we can set the properties such as opacity and color of the imported
solid model that represents the light intensity distribution in the space. This can help to visualize the
distribution. Since the solid models are saved in related files, we can also import the models into other
CAD software for further process. Figure 4.2-20 are the distribution of light intensity observed in other

CAD software. For the purpose of publication, only gray-level graphs are plotted. It will be clearer if
color is added.

(a) (b)

(c) (d)

Fig. 4.2-20: Light intensity distribution in the space obtained from program ex40206.ZPL.

(a) ~ (d) Intensity from high to low.

osphotonics.wordpress.com 266

