

Application of Zemax Programming Language

Open Source Photonics

osphotonics.wordpress.com

Sponsored by

www.612photonics.com

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 2

Table of Contents

Preface

Chapter 1 Zemax optical design software and Zemax Programming Language (ZPL)

1.1 Introduction to Zemax

1.2 Introduction to Zemax Programming Language ZPL

Chapter 2 Basics of Zemax Programming Language

 2.1 Basic Structure

 2.2 Variable and Constant

 2.3 Function

 2.4 Keywords

 2.5 Flow Control

 2.6 Sub-Function

 2.7 I/O and File Operation

Chapter 3 ZPL commands in details

 3.1 Numerical Operation Functions

 3.2 String Functions

 3.3 Setting and Reading Zemax System Properties

 3.4 Setting and Reading Lens Properties

 3.5 Merit Function

 3.6 Solve

 3.7 Optimization

 3.8 Ray Tracing

 3.9 System Analysis

 3.10 Non-Sequential Components

 3.11 Multi-Configuration

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 3

 3.12 Display

 3.13 File Operation

 3.14 ZBF File

Chapter 4 ZPL Application Examples

 4.1 Sequential Optical Systems

 4.1-1 Basic ray-tracing parameters

 4.1-2 Light spot near focal plan

 4.1-3 Geometrical beam and Gaussian beam comparison

 4.1-4 Comparison of transmission property of different glass materials

 4.1-5 Reading refractive index and transmission data of catalog glass

 4.2 Non-Sequential Optical Systems

 4.2-1 Light Pipe

 4.2-2 Cosine Fourth Rule

 4.2-3 Importance sampling

 4.2-4 Interference fringes

 4.2-5 Efficiency of the integrating sphere

 4.2-6 Generating 3D light distribution with Detector Volume

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 4

Preface

The rapid development of modern computer technologies greatly changed the method and efficiency of

optical design. Work previously can only be done by a few experts now becomes much easier with the

aid of powerful optical design software such as Zemax. Any optical engineer, after trained, can now

easily design complex optical systems.

Zemax is popular because it is powerful, flexible, easy to learn, and cost-effective. Besides many

standard functions, Zemax also provides a tool called Zemax Programming Language (ZPL). This tool

allows us to extend the standard function of Zemax to meet our special needs. In fact, this tool is so

helpful that more and more Zemax users are trying hard to learn it and use it in their design works.

On the other hand, the learning process is usually not smooth, sometimes even quite frustrating. Since

we have gone through this process ourselves, we fully understand that we need help during our learning.

This is why we published a series of blogs on osphotonics.wordpress.com to share what we learned in

the past and hope they can help readers to learn ZPL quicker and easier. Some of the examples and

plots are based on older versions of Zemax, and some are based on more recent versions. However, the

main idea should remain the same. We encourage readers to refer to official Zemax User’s Manual for

the updates on ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 5

Chapter 1

Zemax optical design software and Zemax Programming Language

1.1 Introduction to Zemax

Zemax is a commonly used optical design program for Microsoft Windows sold by American company

Radiant Zemax. It is used for the design and analysis of both imaging and illumination systems.

The main method used in Zemax is Ray Tracing, including Sequential Ray Tracing and Non-Sequential

Ray Tracing.

In Sequential Ray Tracing mode, Zemax defines an optical system as being made up of various surfaces,

and assumes that a light ray starts from the object surface, goes through the various surfaces of the

system in a pre-defined order, and finally reaches the image surface. Figure 1.1-1 shows an example of

Sequential Ray Tracing:

Fig. 1.1-1 Sequential ray-tracing.

http://en.wikipedia.org/wiki/Optical_design
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Lighting

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 6

As we can see, Ray 1 starts from the Object surface, goes through Surface 1 and Surface 2, and then

arrives at Image surface. Ray 2 goes along a different path, but the sequence of the surfaces it goes

through is exactly the same as that for Ray 1. In another word, the order each ray goes through the

optical surfaces is exactly the same, therefore, the behavior of each ray in the optical system is

predictable. By tracing the light path of each ray, Zemax knows the performance of the whole system.

However, in some other cases, different ray goes through the surfaces of the same optical system in

different orders. Therefore, non-sequential ray tracing method is needed.

In Non-Sequential Ray Tracing mode, Zemax defines the optical system as being made up of many

components (or solid modules), and each component is called an object. For example, a lens is an

object with not only two surfaces, but also an edge that might scatter or absorb light, and even fattened

outer faces for mounting. Other common objects supported in Non-Sequential Ray Tracing include

prisms, light pipes, lens arrays, light sources, detectors, TIR reflectors, partial transmissive and partial

reflective compnents, etc.

Figure 1.1-2 shows an example of non-sequential ray tracing:

Fig. 1.1-2 Non-Sequential ray-tracing

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 7

As can be seen, Ray 1 starts from the Source, passes through Surface 1, Surface 3, and then reaches the

Detector. Ray 2 starts also from the Source, however, it is reflected by surface 1, and never reaches the

Detector. Ray 3 starts from the Source, passes through Surface 1, is reflected by Surface 4, passes

through Surface 3, and finally reaches the Detector. This shows that in a non-sequential system,

different rays may follow different paths, interact with some or all of the surfaces in different orders.

Therefore, Zemax needs to trace each ray in the optical system to know its optical path, and get the

overall performance of the system.

In order to set up a functional sequential optical system in Zemax, the following data needs to be

provided:

 * number of surfaces

 * parameters of each surface

 * system aperture

 * working wavelength

 * field of view

In order to set up a functional non-sequential optical system in Zemax, at least the following data needs

to be provided:

* parameters of each object (including the source and the detector) and their relative position in

the space

 * working wavelength

Besides the full sequential ray tracing mode and the full non-sequential ray tracing mode, Zemax also

provides a mixed ray tracing mode (NSC with port). In this mode, part of the optical system is treated as

sequential system, and part of the optical system is treated as non-sequential system.

The user interface of Zemax is made up of different types of windows, each of which serves a different

purpose. When running Zemax, a default window called Main window will be seen, as shown in figure

1.1-3.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 8

Fig. 1.1-3 Zemax Main Window

 Besides the Main window, Zemax also provides other types of windows:

Editor windows: used to define and edit surface data and other data.

Graphic windows: used to display graphic data, such as layouts, ray fans, and MTF plots.

Text windows: used to display text data such as prescription data, aberration coefficients, and numerical

data.

Dialogs: used to change options or data, or report error messages.

In the main window shown in figure 1.1-3, we already saw the lens data editor (LDE). Figure 1.1-4 ~

figure 1.1-11 show some editors and windows commonly used in Zemax.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 9

Fig. 1.1-4 Merit Function Editor

Fig. 1.1-5 Multi-Configuration Editor

Fig. 1.1-6 Tolerance Data Editor

Fig. 1.1-7 Extra Data Editor

Fig. 1.1-8 Non-Sequential Component Editor

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 10

Fig. 1.1-9 Graphic Window

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 11

Fig. 1.1-10 Text Window

Fig. 1.1-11 Dialog Box

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 12

In general, Zemax has very powerful optical design capabilities. It can accurately calculate light path,

refraction and reflection, phase and optical path difference, optical image and distortion, polarization,

transmission and absorption in thin film coating, scattering, etc. However, despite its powerfulness,

Zemax cannot help you to master basic principles in optical design. A good optical designer should only

use Zemax as an effective tool to help his or her design, but cannot simply rely on this tool. When

needed, the optical designer needs to know how to extend this tool to make it more capable.

For better knowledge of how to use Zemax, please refer to Zemax User’s Manual.

For better knowledge of general optical design, please refer to the following book list:

Bass, Handbook of Optics, McGraw-Hill

Born & Wolf, Principles of Optics, Pergamon Press

Fischer & Tadic-Galeb, Optical System Design, McGraw-Hill

Geary, Joseph M., Introduction to Lens Design: With Practical Zemax Examples, Willmann-Bell

Hecht, Optics, Addison Wesley

Kingslake, Rudolph, Lens Design Fundamentals, Academic Press

Laikin, Milton, Lens Design, Third Edition, Marcel Dekker

Mahajan, Virendra, Aberration Theory Made Simple, SPIE Optical Engineering Press

O' Shea, Donald, Elements of Modern Optical Design, John Wiley and Sons

Rutten and van Venrooij, Telescope Optics, Willmann-Bell

Shannon, Robert, The Art and Science of Optical Design, Cambridge University Press

Smith, Gregory Hallock, Practical Computer-Aided Lens Design, Willmann-Bell, Inc.

Smith, Warren, Modern Optical Engineering, McGraw-Hill

Smith, Warren, Modern Lens Design, McGraw-Hill

Welford, Aberrations of Optical Systems, Adam Hilger Ltd.

Welford, Useful Optics, University of Chicago Press

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 13

1.2 Introduction to Zemax Programming Language ZPL

As mentioned in last section, although Zemax is already very powerful in optical design, there are times

the designer needs to further extend its functions to fit some special design needs. Therefore, Zemax

provided a tool called Zemax Programming Language (ZPL) to allow users to write their own procedures.

ZPL is a macro language specifically designed for use with Zemax. It’s similar to the BASIC programming

language, except not all BASIC constructs and keywords are supported, and capabilities and functions

unique to ray tracing have been added.

ZPL macros can be created and edited with any text editor (such as Notepad editor in Windows). The

file may have any name but must end in the .ZPL extension. File name may include letter (upper case

and lower case letters are treated as the same) and numbers, but may not include some special

characters such as ~ () = + - * / ! > < ^ & | #. The file must be placed in the ZPL Folder, which by default

is “\Macros”. The default folder can be changed through Zemax main menu: File Preferences

Directories, as shown in figure 1.2-1:

Fig. 1.2-1 ZPL path setting.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 14

Each time after modifying the path, the macro list should be refreshed through Zemax main menu:

Macros Refresh Macro List, so the ZPL files in the updated folder can be seen properly.

Subfolders under the updated path can also be added, and ZPL files can be put into the subfolders

without modifying the path settings. This is convenient and can help managing files. For example,

under the path “D:\My Macros” shown in figure 1.2-1, two subfolders Project 1 and Project 2 can be

created, and different ZPL files can be put in each of the subfolders, and shown in figure 1.2-2:

Fig. 1.2-2 Managing ZPL files through subfolders

Rememeber to refresh the macro list under the main menu each time after creating new subfolders and

writing new ZPL programs.

ZPL programs can be run from the main menu, select Macros Edit/ Run ZPL Macros. When doing so,

ZPL control dialog box will pop up in the main window, as shown in figure 1.2-3:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 15

Fig. 1.2-3 ZPL control dialog box

The following options are in the ZPL control dialog box:

Active File: A drop-down list of macros available. The target macro can be chosen here.

Close After Execution: If checked, the ZPL control dialog box will automatically close after the macro

execution.

Quiet Mode: If checked, the default output text window will not be shown. This is useful for graphics

macros that do not generate useful text.

Check Obsolete Syntax: If checked, Zemax will test the macro for use of obsolete syntax.

Status: During execution of the macro, Zemax will use this area to print a status message stating the line

number of the macro being executed. The status message is updated every quarter second.

Terminate: The terminate button will stop execution of the macro currently running.

Cancel: The cancel button terminates the current macro if one is running. If no macro is running, cancel

closes the ZPL control dialog box.

Edit: The edit button invokes the Windows NOTEPAD editor. The editor can be used to modify or

rename the macro.

View: The view button will display the contents of the macro file in a text window which can be scrolled

or printed. No editing is allowed in the view window.

To run a macro, simply select the macro from the "Active File" list, and then click on Execute

Besides using ZPL control dialog box to run ZPL programs, one can also directly click the macro name in

the “Macros” menu under the main menu to run it, as shown in figure 1.2-4:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 16

Fig. 1.2-4 Run ZPL program directly

Zemax also provides some shortcut buttons to allow convenient access to frequently used macros. By

assigning macros to some buttons, one can directly run the macro by simply pressing the shortcut

button. Macros can be assigned from the main menu, select File Preferences, and in the Preferences

dialog, a macro can be connected to a button, as shown in figure 1.2-5:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 17

Fig. 1.2-5 Shortcut button setting

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 18

Chapter 2

Basics of Zemax Programming Language

2.1 Basic Structure

First, let’s take a look at a basic ZPL program, as shown in example 2.1-1:

Example 2.1-1: basic structure of ZPL program

From the example we can see that ZPL program is a text file made up of a series of command lines. The

content of the command line can be comments, assignments or keywords. We added a line mark in

front of each line, but it’s just for the convenience of explanation. The line marks don’t exist in actual

ZPL programs.

There are 3 different ways to add comments in ZPL, as shown in lines 5, 6 and 7, respectively. The first

way starts with key word REM, indicating this line is a comment line. The second way starts with symbol

“!”, also indicates this line is a comment line. The third way is to add symbol “#” at any place in a line,

indicating that any content following this symbol in the same line is comment, and won’t be executed.

Comments make programs easier to understand and modify, and have no effect on performance.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 19

The basic assignment format in ZPL is:

variable = (expression)

In the assignment, variable should start with a letter, and can be any combination of letters and

numbers including “_”, but cannot include special characters such as ~ () = + - * / ! > < ^ & | # ” and

space. Upper case letters and lower case letters are treated as the same. The total length of the

variable should not exceed 28 characters. Some examples of valid variables are x, y1, variable_z,

myVariable, etc. However, variable shouldn’t use ZPL reserved keywords and function names. As a

good practice, the name of a variable should be simple and easy to understand, especially when many

people work on the same program.

There are 3 types of variables in ZPL: numeric variables, array variables and string variables. We will

discuss those different types of variables in details in next blog.

In an assignment, the (expression) may consist of a constant value, other variable name containing some

preassigned value, or a complex mathematical expression involving functions, constants, and variables.

When an assignment is executed, the expression on the right side of the equal sign is evaluated, and the

result is assigned to the variable designated on the left.

The keywords in ZPL are used to fulfill some special tasks. For example, the PRINT keyword in the

program is used to display result on the screen.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 20

2.2 Variable and Constant

In ZPL, constant values are some pre-determined values or strings, such as 0, -5, 3.1416, “Here is my

string”, etc. Variables are divided into numeric variables, array variables, and string variables. They are

used to store different types of data.

1. Numeric variables

Numeric variables are used to store numeric values whose exact value may not be known when the

program is written, but is defined when the program is run. If not specifically mentioned, the default

memory space allocated to a numeric variable by Zemax is 64 bit, and the values are stored in the

format of double precision numbers. ZPL also supports 32 bit (including sign bit) integer variables.

Unlike many other high level programming languages, numeric variables don’t need to be declared in

ZPL.

2. Calculation of numeric variables

Basic arithmetic operations can be done directly on variables in ZPL, including addition (+), subtraction (-

), multiplication (*), and division (/). More complicated operations such as power and square root can

be done through different numeric functions defined internally by ZPL. We will discuss those functions

later.

3. Array variables

Array variables are used to store single- or multi-dimensioned arrays numeric values. Unlike simple

numeric variables we discussed before, array variables must be declared prior to their use. The

declaration syntax is:

DECLARE name, type, num_dimensions, dimension1 [, dimension 2 [, dimension 3 [, dimension 4] etc...]]

The name may be any legal variable name as described in the previous section. The type must be either

DOUBLE or INTEGER, indicating the type of array variable. The integer value num_dimensions defines

the number of dimensions of the array (not the size), and must be between 1 and 4, inclusive. The

integers dimension1, dimension2, etc., define the size of the array in that dimension. Note that array

variables start at index 1, and thus an array of size 10 has valid indices from 1 to 10. An exception is that

ZPL defined 4 one-dimension array variables VEC1 ~ VEC4 with indices from 0.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 21

Array variables may be defined anywhere inside the program, not necessarily at the beginning.

To release the memory associated with an array variable, use the RELEASE keyword. The syntax is

RELEASE name

The RELEASE keyword is optional, as the memory associated with the declared variable is automatically

released when the program terminates. However the RELEASE keyword is useful for conserving memory

if large arrays are only needed during a portion of the program execution.

Array variables are assigned values using the following syntax:

name (index1, index2, …) = value

It can assign numeric value to the array variable name(index1, index2, …). After assignment, the values

stored in the array may be retrieved with the following syntax:

newValue = name (index1, index2, …)

Now let’s see an example of array variables.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 22

Example 2.2-1 Assignment and operation on numeric variables:

In this example, we defined a 3 x 3 integer magic matrix. This matrix is a 2 dimensional array with the

same summation of each row, each column, and two diagonals.

Save this program as EX20201.ZPL. Follow the method introduced in blog 1.2, click the program

EX20201 in Macros of Main Menu, and the following result can be obtained:

Fig. 2.2-1 Execution result of program ex20201.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 23

For user’s convenience, ZPL defined 4 one-dimensional array (vector) VEC1, VEC2, VEC3 and VEC4 to

store double precision floating numbers. The default length of each array is 1000. Those 4 arrays can be

directly used without additional definition. It needs to be pointed out that the index of those 4 arrays

can start from 0, such as VEC1(0), so the default length 1000 can have 1001 array elements, i.e. VEC1(0)

~ VEC1(1000). If the length of the array needs to be modified, one can use keyword SETVECSIZE to do it.

We will discuss more on this later on.

4. Numeric logical operators

Logical operators are used to construct complex commands which ultimately evaluate to one or zero.

Most logical operations take the form (left_expression) (operator) (right_expression), similar to

mathematical expressions such as 1 + 2. The exception is the not operator "!" which takes only a single

argument, of the form !(right_expression).

The following table lists numeric logical operators supported by ZPL:

Table 2.2-1 Numeric logical operators supported by ZPL

Logical Description

& And, returns 1 only if both expressions are non-zero.

| Or, returns 1 if at least one expression is non-zero.

^ Xor, returns 1 if only one expression is non-zero.

! Not, returns 0 if (right_expression) is non-zero, else returns 1.

= = Equality, returns 1 if expressions are equal.

> Greater than, returns 1 if left_expression is greater than

right_expression.

< Less than, returns 1 if left_expression is less than right_expression.

>= Greater than or equal to, returns 1 if left_expression is greater than

or equal to right_expression.

<= Less than or equal to, returns 1 if left_expression is less than or equal

to right_expression.

!= Inequality, returns 1 if expressions are unequal.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 24

5. String variables and operations

ZPL supports string variables and basic string operations. Like numerical variables, string variables don’t

need to be declared. A string variable ends with symbol “$”. The way to assign a value to a string

variable is:

myString$ = “Here is my string”

where myString$ is a string variable, and the content between “” (exclusive) is the string constant.

ZPL also defines many string related function. We will discuss them later.

Different strings (including string constants and string variables) can be joined by operator +, as shown

below:

total$ = "A$ is " + A$ + " and B$ is " + B$

The content of a string can be displayed in a text window by using keyword PRINT. Note that PRINT only

supports single string variable, and thus neither string operation nor string function can be allowed with

PRINT. If one wants to display different strings in the same line, he can use “,” to do it, as shown below:

PRINT A$, B$, C$

Also, if the last character in a PRINT command is “,”, no new line will be started after the finish of

current command, and the next print line starts to display at the current cursor location.

PRINT is also often used with another keyword REWIND. The function of REWIND is to erase the last line

of message displayed by PRINT command, and change the cursor to the end of last line. In this way new

messages can be displayed by overwriting old ones. This is often used when counters are needed.

6. String logical operators

String logical operators are very similar to the numeric logical operators. The major difference is that the

expressions being compared are strings rather than numbers. The supported string logical operators are

defined in the following table.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 25

Table 2.2-2 String logical operators supported by ZPL

Logical Description

$= = Equality, returns 1 if left_string and right_string are identical.

$> Greater than, returns 1 if left_string is greater than right_string.

$< Less than, returns 1 if left_string is less than right_string.

$>= Greater than or equal to, returns 1 if left_string is greater than or

identical to right_string.

$<= Less than or equal to, returns 1 if left_string is less than or identical to

right_string.

$!= Inequality, returns 1 if left_string and right_string are not identical.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 26

2.3 Function

A lot of numerical functions are defined in ZPL, and they can be used to calculate various numeric values.

Those functions may require no arguments, one argument, or multiple arguments. In all cases, a pair of

round brackets () are needed to follow the function name. If arguments are needed, they should be put

in the brackets. All functions return a single value.

Example 2.3-1 shows the usage of sinusoidal function SINE(x)

Many string functions are also defined in ZPL, and their return values are strings. We will discuss them

in details later.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 27

2.4 Keywords

Keywords is an important part of ZPL. They are used to control instruction flow, output result, and do

other important tasks such as modifying lens parameters and ray tracings. The words DECLARE,

RELEASE and PRINT we’ve seen are some common keywords of ZPL.

The general syntax for a keyword is

KEYWORD argument1, argument2, argument3…

Some keywords have no arguments, others have many. Arguments may be either numeric expressions

or string constants or string variables. Some keywords accept a mixture of numeric and string arguments.

We will discuss ZPL keywords in details later.

As a reference, here are the list of keywords used in ZPL:

APMN, APMX, APTP, APXD, APYD

ATYP, AVAL

BEEP

CALLMACRO

CALLSETDBL

CALLSETSTR

COAT

CLOSE

CLOSEWINDOW

COLOR

COMMAND

COMMENT

CONI

CONVERTFILEFORMAT

COPYFILE

CURV

DECLARE

DEFAULTMERIT

DELETE

DELETECONFIG

DELETEFILE

DELETEMCO

DELETEMFO

DELETEOBJECT

DELETETOL

EDVA

END

EXPORTBMP

EXPORTCAD

EXPORTJPG

EXPORTWMF

FINDFILE

FLDX, FLDY, FWGT, FVDX, FVDY, FVCX, FVCY,

FVAN

FOR, NEXT

FORMAT

FTYP

GCRS

GDATE

GETEXTRADATA

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 28

GETGLASSDATA

GETLSF

GETMTF

GETPSF

GETSYSTEMDATA

GETTEXTFILE

GETVARDATA

GETZERNIKE

GLAS

GLASSTEMPLATE

GLENSNAME

GLOBALTOLOCAL

GOSUB, SUB, RETURN, and END

GOTO

GRAPHICS

GTEXT

GTEXTCENT

GTITLE

HAMMER

IF-THEN-ELSE-ENDIF

IMA

IMAGECOMBINE

IMAGEEXTRACT

IMASHOW

IMASUM

IMPORTEXTRADATA

INPUT

INSERT

INSERTCONFIG

INSERTMCO

INSERTMFO

INSERTOBJECT

INSERTTOL

LABEL

LINE

LOADARCHIVE

LOADCATALOG

LOADDETECTOR

LOADLENS

LOADMERIT

LOADTOLERANCE

LOCALTOGLOBAL

LOCKWINDOW

MAKEFACETLIST

MAKEFOLDER

MODIFYSETTINGS

NEXT

NSLT

NSTR

NUMFIELD

NUMWAVE

OPEN

OPENANALYSISWINDOW

OPTIMIZE

OPTRETURN

OUTPUT

PARM

PARAXIAL

PAUSE

PIXEL

PLOT

PLOT2D

POLDEFINE

POLTRACE

POP

PRINT

PRINTFILE

PRINTWINDOW

PWAV

QUICKFOCUS

RADI

RANDOMIZE

RAYTRACE

RAYTRACEX

READ

READNEXT

READSKIP

READSTRING

RELEASE

RELOADOBJECTS

REM, !, #

REMOVEVARIABLES

RENAMEFILE

RETURN

REWIND

SAVEARCHIVE

SAVEDETECTOR

SAVELENS

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 29

SAVEMERIT

SAVETOLERANCE

SAVEWINDOW

SCATTER

SDIA

SETAIM

SETAIMDATA

SETAPODIZATION

SETCONFIG

SETDETECTOR

SETMCOPERAND

SETNSCPARAMETER

SETNSCPOSITION

SETNSCPROPERTY

SETOPERAND

SETSTDD

SETSURFACEPROPERTY, SURP

SETSYSTEMPROPERTY, SYSP

SETTEXTSIZE

SETTITLE

SETTOL

SETUNITS

SETVAR

SETVECSIZE

SETVIG

SHOWBITMAP

SHOWFILE

SOLVEBEFORESTOP

SOLVERETURN

SOLVETYPE

STOPSURF

SUB

SURFTYPE

TELECENTRIC

TESTPLATEFIT

THIC

TIMER

TOLERANCE

UNLOCKWINDOW

UPDATE

VEC1, VEC2, VEC3, VEC4

WAVL, WWGT

XDIFFIA

ZBF2MAT

ZBFCLR

ZBFMULT

ZBFPROPERTIES

ZBFREAD

ZBFRESAMPLE

ZBFSHOW

ZBFSUM

ZBFTILT

ZBFWRITE

ZRD2MAT

ZRDAPPEND

ZRDFILTER

ZRDPLAYBACK

ZRDSAVERAYS

ZRDSUM

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 30

2.5 Flow Control

Flow control is a key part of computer programing. ZPL provided the following keywords for flow

control:

FOR-NEXT

IF-THEN-ELSE-ENDIF

LABEL

GOTO

PAUSE

GOSUB-SUB-RETURN-END

We will discuss FOR-NEXT, IF-THEN-ELSE-ENDIF, LABEL, GOTO and PAUSE in this section. Keywords

GOSUB-SUB-RETURN-END will be discussed in the next section.

FOR-NEXT are always used together to define a program block that needs to be run a specific number of

times. The syntax is:

FOR variable, start_value, stop_value, increment

 (commands)

NEXT

The keyword FOR marks the beginning of a group of commands to be executed a multiple number of

times. FOR requires a variable to be specified which acts as a counter (it need not be an integer), a

starting value for the counter, a stop value, and an increment. The increment value should always be an

integer. The NEXT keyword marks the end of the group of commands. FOR-NEXT loops may be nested.

The number of FOR and NEXT commands must be the same.

The “,” after the first variable in the FOR command line can also be replace with “=”, i.e.

FOR variable = start_value, stop_value, increment

Many programmers prefer this format for its readability.

Also, in the NEXT command line, other characters can be added after the keyword NEXT without

impacting the execution of the program. Many programmers like to add corresponding loop variable

after NEXT to make program more readable, especially when multiple loops are nested. But we need to

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 31

know that any character after NEXT doesn’t have actual impact on the program. Its only purpose is to

improve readability of the program.

Upon reaching a FOR command, the expressions for the start, stop, and increment values are evaluated

and saved. The stop and increment values are not evaluated again, even if the expressions defining the

values consist of variables whose values change within the program block. Only the values valid at the

beginning of the FOR loop are used.

If the start value and stop value are the same, the loop executes exactly once. If the start value is less

than the stop value, then the loop continues until the counter variable is greater than the stop value. If

the start value is greater than stop value, then the loop continues until the counter variable is less than

the stop value.

Example 2.5-1 shows an application of FOR-NEXT loop.

Please note that even we tried to assign new values to variables start_value, stop_value and increment

within the loop, however, the result was not impacted, as shown in figure 2.5-1.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 32

Fig. 2.5-1 Result of program ex20501.ZPL

IF-THEN-ELSE-ENDIF provides conditional macro execution and branching. The syntax is:

IF (expression)

 (commands)

ELSE

 (commands)

ENDIF

or

IF (expression) THEN (command)

The value of expression is considered false if it is zero, otherwise it is considered true. When the

expression is true, commands after IF will be executed, otherwise commands after ELSE will be executed.

Please note that parenthesis () can be omitted here. In general, IF and ENDIF are always used together,

and ELSE is optional. Keywords IF-ENDIF may be nested.

IF (expression) THEN (command) is a simplified format of conditional expression, and is usually used

when only a single command needs to be executed. In the simplified format, ENDIF is not needed, and

ELSE is not supported.

Example 2.5-2 shows an example of using IF-THEN-ELSE-ENDIF conditional expression. A random

number generation function RAND(x) is used in the program to generate a random floating number

between 0 and x.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 33

In some special cases, the program needs to jump to another place to continue to execute, so keyword

GOTO is needed. Keyword GOTO is always used with another keyword LABEL. The syntax is:

LABEL label_number

…

GOTO label-number

or

LABEL text_label

…

GOTO text_label

Keyword LABEL can be followed with any number or string (here we can think of numbers as a special

string), and can be put at the front of any line in the program. When GOTO command is executed, the

program will jump to corresponding LABEL line, and continue to execute the commands after that.

Example 2.5-3 shows an application of GOTO command:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 34

The result is:

Fig. 2.5-2 Result of program ex20503.ZPL

It needs to be pointed out that in structured programming, GOTO command is in general not

recommended, because it can often cause unclearness of the program structure and is hard to debug.

Unfortunately, ZPL doesn’t support conditional loop command such as WHILE in C language, so we can

only use GOTO-LABEL command to do the job, and extra attention needs to be paid.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 35

ZPL also provides another keyword PAUSE for program control. It is used to pause the execution of the

current program, display information in the message window, and wait for user response. When the

user hits the OK button, the current program will continue to run from where it pauses. The syntax is:

PAUSE

or

PAUSE message

Where message can be any number or string.

Example 2.5-4 shows an application of PAUSE command:

When the program runs to i == 5, a message window will be displayed, and the program will be paused,

as shown in figure 2.5-3:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 36

Fig. 2.5-3 Result of program ex20504.ZPL at pause.

After hit OK button, the program continue to execute, and the final result is shown below:

Fig. 2.5-4 Final result of program ex20504.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 37

2.6 Sub-Function

Sub-function or sub-program can be defined in a ZPL program, and can be called in the main program or

other sub-programs. The way to define sub-program is:

SUB sub_name

 (commands)

RETURN

The sub-program starts with keyword SUB, followed by the name of the sub-program sub_name. The

commands part is the main body of the sub-program, which is put together to finish a special task. The

sub-program must end with RETURN, but other RETURN commands can also be used at other places

within the main body of the sub-program. Sometimes for the sake of readability, the name of the sub-

program can be added after RETURN in the same line, however, please remember that the name has no

actual impact on the program so it can be anything, so special attention needs to be paid in order not to

make any confusion.

As a rule, ZPL requires that if sub-program is used in a program, at least one END command is needed to

mark the end of the main program, and the main program needs to be put in front of the sub-program.

It’s important to remember that the variables in ZPL are global variable. Therefore, if a variable is

modified in a sub-program, the value of the same variable at other places in the whole ZPL program will

also be modified.

Example 2.6-1 shows an application of sub-program:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 38

Please notice that we first assigned values to variables x and y in the main program, but in the sub-

program, new x and y values generated by random function replaced the old values, and thus in the final

result the displayed x and y values are their new values. Also, we used two RETURN commands in the

sub-program. If x > y, the sub-program will end at the first RETURN, and go back to the main program

without running the rest of the sub-program.

Figure 2.6-1 shows the result of the program:

Fig. 2.6-1 Result of program ex20601.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 39

2.7 I/O and File Operation

ZPL provides a keyword INPUT to allow user type in numerical or string information when a program is

running. The syntax of INPUT is:

INPUT "Prompt String", variable

INPUT variable

INPUT "Prompt String", string_variable$

INPUT string_variable$

Example 2.7-1 shows an application of keyword INPUT:

When the program runs to each INPUT command, a dialog window will pop up, showing corresponding

messages and waiting for the input, as shown in figure 2.7-1:

Fig. 2.7-1 The first pop-up window of running program ex20701.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 40

When the user type in the numerical or string information and press OK button to confirm, the value

typed in will be stored in the corresponding variable, and the program continues to run.

We know in previous sections that ZPL can output numerical or string information to the message

window using keyword PRINT. In fact, PRINT not only can output messages to the display, but can also

output messages to files. This is controlled by keyword OUTPUT. The syntax of OUTPUT is:

OUTPUT SCREEN

OUTPUT filename$

OUTPUT filename$, APPEND

If OUTPUT is followed by SCREEN, then the following PRINT command will display the result on the

screen. If OUTPUT is followed by filename$, then the following PRINT command will output the result

into the corresponding file. Further, if APPEND is used with OUTPUT, then the result will be added at the

end of the corresponding file without overwriting the existing content of the file.

Example 2.7-2 shows an application of keyword OUTPUT:

In this example, we assume the folder “D:\My Macros\ch2\output_files\” already exists, otherwise

ZEMAX will report error message. Figure 2.7-2 is the result of the program seen on the screen and in

different files:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 41

Fig. 2.7-2 Result of program ex20702.ZPL

Keyword PRINT is often used with another keyword FORMAT. FORMAT can be used to control the

output numerical precision format of the message window or the file. The syntax is:

FORMAT m.n

FORMAT m.n EXP

FORMAT m [INT]

FORMAT "C_format_string" LIT

The integers m and n are separated by a decimal point. The values for m and n used must be explicit, i.e.
values stored as variables cannot be used. The value m refers to the total number of characters to be
printed, even though some of them may be blank. The value n refers to the number of places to display
after the decimal point. The optional keyword EXP after the m.n expression indicates exponential
notation should be used. The optional keyword INT indicates the value should be first converted to an
integer and printed in integer format using the number of places specified by m. The optional keyword
LIT (for literal) indicates the value should be printed according to the “C” language format specifier. The
C format specification can be found in any programming reference for the C language.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 42

Example 2.7-3 shows some applications of keyword FORMAT.

Figure 2.7-3 shows the result of the program seen in the pop-up window:

Fig. 2.7-3 Result of program ex20703.ZPL

Besides the way to type in information from the keyboard, ZPL also supports importing numeric or string

information from a text file, with the following keywords and functions:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 43

OPEN，READ，READNEXT，READSTRING，CLOSE， EOFF()

Keyword OPEN is used to open a text file. The syntax is:

OPEN “filename”

or

OPEN filename$

After the file is open, the needed information can be read with keywords READ, READNEXT or

READSTRING.

READ is used to read a whole line and store numeric values into variables followed by READ. The syntax

is:

READ x, y, z, …

When using READ, the number of variables listed in the read command should match the number of
columns in the text file, otherwise ZEMAX will assign 0 to extra variables. Numeric data in the file should
be delimited by spaces.

Besides READ, keyword READNEXT can also be used to read data. The main difference is READ will read
the entire data line from the opened file, up to the newline character, while READNEXT reads only
enough characters to fill the number of arguments. The syntax of READNEXT is:

READNEXT x,y,z, …

If string information is needed to read, keyword READSTRING can be used. The syntax is:

READSTRING textString$

READSTRING reads the whole line of string information and stores it to the string variable textString$.

Sometimes we need to know if the end of a file has been reached. ZPL provides a function EOFF() to do

so. If the end of the file is reached, the function returns values 1, otherwise it returns value 0. Function

EOFF() can only be used after keywords READ, READNEXT or READSTRING.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 44

And remember, keyword CLOSE is needed to close the file after finish reading.

Now let’s assume we have a text file “data.txt” with the following content:

In example 2.7-4 , we will used the keywords introduced above to read information from the file

“data.txt”, as shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 45

The result is shown in figure2.7-4:

Fig. 2.7-4 Result of program ex20704.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 46

(Note in some earlier versions of ZEMAX the last line of the text file was displayed twice on the screen.

This might be a bug of ZEMZX and may be fixed in a later version.)

We will discuss more about Input/Output and file operation in later sections.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 47

Chapter 3

ZPL commands in details

ZPL provides a lot of keywords and functions, especially those related to optical design. In Zemax User’s

Manual, each of the keywords and functions were discussed in alphabetic order. However, sometimes

we feel it will be more convenient to classify those keywords and functions and put them in a more

organized context. So in this chapter we will introduce many ZPL keywords and functions from a

different angle of view, and hope this effort can help Zemax users to be more efficient in learning ZPL.

Even to an experienced ZPL programmer, this can be used as a handy tool to find the right keyword or

function to use when programming.

From now on, we will no longer separate keywords and functions. We call them as commands in

general. The main difference is that keyword doesn’t have return values, and function usually has one

or more return values.

As Zemax is rapidly being updated every year, some of the older commands we discuss here may be

obsolete in later versions of Zemax. In such cases, please refer to Zemax User’s Manual for the details.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 48

3.1 Numerical Operation Functions

In last chapter, we already discussed some numerical operation functions in ZPL. In fact, ZPL provides a

lot of functions to perform numerical operations. Table 3.1-1 shows numerical operation functions

supported by ZPL:

Table 3.1-1 ZPL Numerical Operation Functions

Function Argument Return Value

ABSO(x) Numeric expression The absolute value of the expression.

ACOS(x) Numeric expression Arc cosine in radians.

ASIN(x) Numeric expression Arc sine in radians.

ATAN(x) Numeric expression Arc tangent in radians.

COSI(x) Numeric expression in radians Cosine of the expression.

EXPE(x) Numeric expression e to the power of the expression.

EXPT(x) Numeric expression 10 to the power of the expression.

GAUS(x) Standard deviation Returns a random value with a Gaussian

distribution, zero mean, and the specified standard

deviation.

INTE(x) Numeric expression Returns the largest integer not greater than the

argument.

LOGE(x) Positive numeric expression Log base e of the expression.

LOGT(x) Positive numeric expression Log base ten of the expression.

MAGN(x,y) x and y are any real numbers Computes the square root of x squared plus y

squared.

POWR(x,y) x and y are any numbers Computes the absolute value of x to the power of y.

RAND(x) Positive numeric expression Random floating point number uniformly

distributed between 0 and the expression.

SIGN(x) Numeric expression Returns -1 if the argument is less than zero, 0 if the

argument is zero, and +1 if the argument is

positive.

SINE(x) Numeric expression in radians Sine of the expression.

SQRT(x) Positive numeric expression Square root of the expression.

TANG(x) Numeric expression in radians Tangent of the expression.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 49

3.2 String Functions

We have learned that ZPL provides many functions with string as arguments or return values. Table 3.2-

1 shows string functions supported by ZPL:

Table 3.2-1 ZPL String Functions

Function Description

$BUFFER() Returns the current string in the lens buffer. This function is used to extract

string data from various ZPL keywords and functions.

$CALLSTR(i) Returns the string from the CALLMACRO string buffer at index i.

$COAT(i) Returns the coating name for the ith surface.

$COATINGPATH() Returns the path name for coating files.

$COMMENT(i) Returns the comment string for the ith surface.

$DATE() Returns the current date and time string.

$EXTENSIONPATH() Returns the path name for Zemax extensions.

$FILENAME() Returns the current lens file name, without the path.

$FILEPATH() Returns the current lens file name, with the complete path.

$GETSTRING(A$, n) Returns the nth sub-string for the string A$ using spaces for delimiters. For

example, if A$ = “one two three”, then $GETSTRING(A$, 2) returns

“two”.

$GETSTRINGC(A$, n) Returns the nth sub-string for the string A$ using commas for delimiters.

For example, if A$ = “one,two,three”, then $GETSTRING(A$, 2) returns

“two”.

$GLASS(i) Returns the glass name of surface number i.

$GLASSCATALOG(i) Returns the name of the ith loaded glass catalog for the current lens. If i is

less than 1, then the names of all the loaded catalogs separated by spaces

are returned in a single string.

$GLASSPATH() Returns the path name for glass catalog files.

$LEFTSTRING(A$, n) Returns the left most n characters in the string A$. If A$ has fewer than n

characters, the remaining spaces will be padded with blanks. This allows

formatting of strings with a fixed length.

$LENSNAME() Returns the lens title defined in the General System dialog box.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 50

$MACROPATH() Returns the path name for macro files.

$NOTE(line#) Returns the notes information defined in the General System dialog box.

Because the notes may be very long, $NOTE returns the characters from

the notes in groups called lines. A line ends when a newline (carriage

return) character is found, or when the total number of consecutive

characters on the line reaches 100, whichever comes first. The line#

indicates which line in the notes is to be returned.

$NOTE will return a null (empty) string if there are no defined characters in

the notes for the specified line.

$OBJECTPATH() Returns the path name for NSC object files.

$PATHNAME() Returns the path name only for the current lens file. This is useful for

determining the folder where the lens file is stored.

$PROGRAMPATH() Returns the path name for program files.

$QUOTE() Returns the double quote character (").

$RIGHTSTRING(A$, n) Returns the right most n characters in the string A$. If A$ has fewer than n

characters, the remaining spaces will be padded with blanks. This allows

formatting of strings with a fixed length.

SCOM(A$, B$) If the two strings A$ and B$ are equal, SCOM returns 0. If A$ is less than

B$, then SCOM returns a value less than 0; otherwise, a value greater than

0.

SLEN(A$) The number of characters in the string variable A$.

$STR(expression) Returns a string formatted using the format defined by the FORMAT

keyword. The numeric expression may be any equation, including

combinations of constants, variables, and functions. See function

SVAL(A$) to convert strings to numbers.

SVAL(A$) String value. Returns a floating point value of the string A$.

$TAB() Returns the tab character (\t).

$TEMPFILENAME()

Returns the name of a temporary file, with complete path, suitable for

temporary storage of text or binary data. See keyword GETTEXTFILE.

$TOLCOMMENT(operand) Returns the comment for the specified tolerance operand.

$TOLOPERAND(operand) Returns the operand name for the specified tolerance operand.

$UNITS() Returns either MM, CM, IN, or M, depending upon the current lens units.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 51

3.3 Setting and Reading Zemax System Properties

Most ZEMAX users know that before you jump into your optical design using Zemax, you need to set

some basic system properties for Zemax, such as working wavelength, units, system aperture, etc. ZPL

provides a keyword SETSYSTEMPROPERTY (or its short format SYSP) to set various system properties.

The syntax is:

SETSYSTEMPROPERTY code, value1, value2

or

SYSP code, value1, value2

In this command, code is an integer which specifies what property is being modified, value1 and value2

are the new values for the specified property, and they may be either text in quotes, a string variable, or

a numeric expression. Most codes require only one argument value1, while some other codes require

both value1 and value2. The details of each code is shown in table 3.3-1.

Table 3.3-1 SYSP code

Code Property

4 Adjust Index Data To Environment. Use 0 for off, 1 for on.

10 Aperture Type.

11 Aperture Value.

12 Apodization Type code. Use 0 for uniform, 1 for Gaussian, 2 for cosine cubed.

13 Apodization Factor.

14 Telecentric Object Space. Use 0 for off, 1 for on.

15 Iterate Solves When Updating. Use 0 for off, 1 for on.

16 Lens Title.

17 Lens Notes.

18 Afocal Image Space. Use 0 for off, 1 for on.

21 Global coordinate reference surface.

23 Glass catalog list. Use a string or string variable with the glass catalog name, such as

“SCHOTT”. To specify multiple catalogs use a single string or string variable containing

names separated by spaces, such as “SCHOTT HOYA OHARA”.

24 System Temperature in degrees Celsius.

25 System Pressure in atmospheres.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 52

26 Reference OPD method. Use 0 for absolute, 1 for infinity, 2 for exit pupil, and 3 for

absolute 2.

30 Lens Units code. Use 0 for mm, 1 for cm, 2 for inches, or 3 for Meters. Changing lens

units does not scale or convert the lens data in any way, it only changes how the lens

prescription data is interpreted.

31 Source Units Prefix. Use 0 for Femto, 1 for Pico, 2 for Nano, 3 for Micro, 4 for Milli, 5

for None, 6 for Kilo, 7 for Mega, 8 for Giga, and 9 for Tera.

32 Source Units. Use 0 for Watts, 1 for Lumens, and 2 for Joules.

33 Analysis Units Prefix. Use 0 for Femto, 1 for Pico, 2 for Nano, 3 for Micro, 4 for Milli, 5

for None, 6 for Kilo, 7 for Mega, 8 for Giga, and 9 for Tera.

34 Analysis Units “per” Area. Use 0 for square mm, 1 for square cm, 2 for square inches, 3

for square Meters, and 4 for square feet.

35 MTF Units code. Use 0 for cycles per millimeter, or 1 for cycles per milliradian.

40 Coating File name.

41 Scatter Profile name.

42 ABg Data File name.

43 GRADIUM Profile name.

50 NSC Maximum Intersections Per Ray.

51 NSC Maximum Segments Per Ray.

52 NSC Maximum Nested/Touching Objects.

53 NSC Minimum Relative Ray Intensity.

54 NSC Minimum Absolute Ray Intensity.

55 NSC Glue Distance In Lens Units.

56 NSC Missed Ray Draw Distance In Lens Units.

57 NSC Retrace Source Rays Upon File Open. Use 0 for no, 1 for yes.

58 NSC Maximum Source File Rays In Memory.

59 Simple Ray Splitting. Use 0 for no, 1 for yes.

60 Polarization Jx.

61 Polarization Jy.

62 Polarization X-Phase.

63 Polarization Y-Phase.

64 Convert thin film phase to ray equivalent. Use 0 for no, 1 for yes.

65 Unpolarized. Use 0 for no, 1 for yes.

66 Method. Use 0 for X-axis, 1 for Y-axis, and 2 for Z-axis.

70 Ray Aiming. Use 0 for off, 1 for on, 2 for aberrated.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 53

71, 72, 73 Ray aiming pupil shift x, y, and z.

74 Use Ray Aiming Cache. Use 0 for no, 1 for yes.

75 Robust Ray Aiming. Use 0 for no, 1 for yes.

76 Scale Pupil Shift Factors By Field. Use 0 for no, 1 for yes.

77, 78 Ray aiming pupil compress x, y.

100 Field type code.

101 Number of fields.

102, 103 The field number is value1, value2 is the field x, y coordinate.

104 The field number is value1, value2 is the field weight.

105, 106 The field number is value1, value2 is the field vignetting decenter x, decenter y.

107, 108 The field number is value1, value2 is the field vignetting compression x, compression y.

109 The field number is value1, value2 is the field vignetting angle.

110 The field normalization method, value 1 is 0 for radial and 1 for rectangular.

200 Primary wavelength number.

201 Number of wavelengths.

202 The wavelength number is value1, value 2 is the wavelength in micrometers.

203 The wavelength number is value1, value 2 is the wavelength weight.

901 The number of CPU’s to use in multi-threaded computations, such as optimization. If the

passed value is zero, the number of CPU’s will be set to the default value. When testing

this value using the function SYPR, this returns the total number of CPU’s available as

reported by the operating system.

Opposite to system property setting, if we want to read system parameters, we can use function SYPR()

provided by ZPL. Most system properties set by keyword SETSYSTEMPROPERTY can be obtained using

this function. The syntax of SYPR() is:

returnValue = SYPR(code)

where code is the same as defined for keyword SETSYSTEMPROPERTY in table 3.3-1, and returnValue is

a numeric or string value for the corresponding system data. If the result is a string, the content can be

read out with string function $buffer(). It needs to be pointed out that function SYPR() doesn’t support

two argument properties in SETSYSTEMPROPERTY. Some special functions are needed to read two

argument system properties, such as using WAVL(n) to get the value of nth wavelength, and using

WWGT(n) to get the weight of nth wavelength, etc.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 54

Besides using SYPR to read system properties, we can also use keyword GETSYSTEMDATA to get most

system specific data. The syntax is:

GETSYSTEMDATA vector_expression

where vector_expression is the order of the 4 one-dimension array provided by ZPL (i.e. VEC1, VEC2,

VEC3, VEC4). For example, GETSYSTEMDATA 3 means to read system properties and store them in array

VEC3. The order of storage is shown in table 3.3-2:

Table 3.3-2 System Properties stored in array

Array Position System Property

0 The number of system data values in the vector

1 Aperture Value

2 Apodization Factor

3 Apodization Type (0:none, 1:gaussian, 2:tangent)

4 Adjust Index Data To Environment setting (1 if true, 0 if false)

5 Temperature in degrees c (valid only if Use Env Data true)

6 Pressure in ATM (valid only if Use Env Data true)

7 Effective Focal Length

8 Image Space F/#

9 Object Space Numerical Aperture

10 Working F/#

11 Entrance Pupil Diameter

12 Entrance Pupil Position

13 Exit Pupil Diameter

14 Exit Pupil Position

15 Paraxial Image Height

16 Paraxial Magnification

17 Angular Magnification

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 55

18 Total Track

19 Ray Aiming (0 for off, 1 for paraxial, and 2 for real)

20 X Pupil Shift

21 Y Pupil Shift

22 Z Pupil Shift

23 Stop Surface Number

24 Global Coordinate Reference Surface Number

25 Telecentric object space (0 for off, 1 for on)

26 The number of configurations

27 The number of multi-configuration operands

28 The number of merit function operands

29 The number of tolerance operands

30 Afocal image space (0 for off, 1 for on)

31 X Pupil Compress

32 Y Pupil Compress

You may have noticed that the same system information may be obtained by using different keywords

or function. For example, if we want to get Apodization Type of the system, we can either use function

SYPR(12), or use keyword GETSYSTEMDATA 3 to realize. Please notice that numeric values can be

directly obtained by functions, but if we use keywords, the numeric values of system information will be

stored in one of the predefined arrays in ZPL.

We will give some examples on setting and reading system properties in ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 56

Example 3.3-1: setting and reading of working wavelength

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 57

In this example, first we use SYSP 201, 3 to set the total number of working wavelengths as 3 (line 6),

and read this property with different methods SYPR(201) and NWAV() (lines 7 and 10), then we use SYSP

202, 1, 0.40 and SYSP 203, 1, 0.3 to set the first wavelength and its weight, and similarly, we set the

second and third wavelength and weight (lines 13~19), and read these properties using WAVL() and

WWGT() (lines 21~27), and finally, we use two different methods SYSP 200, 2 and PWAV 3 to set system

primary wavelength number (lines 34, 43), and read it out using SYPR(200) and PWAV() (lines 35, 44).

The result of this program is shown in figure 3.3-1:

Fig. 3.3-1 Result of program ex30301.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 58

Example 3.3-2: setting and reading of units

In this example, we first set the lens unit, and read it out with different methods, then we set and read

the source unit and prefix, and then set and read analysis unit and prefix as well as analysis unit per area

part (analysis unit of source intensity part has been set in line 18), and finally, we set and read the unit

of modulation transfer function MTF. The result of program is shown in figure 3.3-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 59

Fig. 3.3-2 Result of ex30302.ZPL

Example 3.3-3: setting and reading of system aperture

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 60

In this example, we set the type and value of the system aperture, and read them out with three

different methods. Please note that system aperture is different from the aperture of a particular lens

surface. We will further discuss the latter one in next section. The result of the program is shown in

figure 3.3-3.

Fig. 3.3-3 Result of ex30303.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 61

Example 3.3-4: setting and reading of field

In this example, we first set the type of field, and read it with two different methods, then we set the

total number of field, and read it with two methods, and finally we set and read x, y coordinate and

weight of each field. The result is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 62

Fig. 3.3-4 Result of ex30304.ZPL

Example 3.3-5: setting and reading of lens title and lens note

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 63

In this example, we set the lens title and read with two different methods. Similarly, we set lens note

and read with two different methods. Please notice that if we want to read string information with

function SYPR(), the returned result will be stored in the memory buffer, and needs to be read out using

string function $BUFFER(). The result of this program is shown in figure 3.3-5.

Fig. 3.3-5 Result of ex30305.ZPL

In the above shown examples, we discussed the basic process of setting and reading important system

properties in ZPL. Please remember that many system properties can be directly set and read in ZEMAX

environment instead of through ZPL. The user needs to determine which way is more efficient based on

his own case.

Also, we cannot cover all the commands related to system properties here. We will continue to discuss

more commands later when needed, however, we strongly encourage readers to dig into Zemax User’s

Manual for details of different commands.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 64

3.4 Setting and Reading Lens Properties

Lens Data Editor is an important place to do lens design in Zemax. As we know, in sequential ray tracing,

Zemax defines an optical system as being made up of various surfaces, and most of the properties

related to surfaces are set in Lens Data Editor. In this section, we will discuss how to set and read lens

surface properties in ZPL through various examples.

To set lens surface properties, ZPL provides an important keyword SETSURFACEPROPERTY (or SURP in

short). The syntax is:

SETSURFACEPROPERTY surface, code, value1, value2

or

SURP surface, code, value1, value2

where surface is an expression that evaluates to an integer specifying the surface number. The code

may either be an expression that evaluates to an integer or a mnemonic which specifies what property

of the surface is being modified. The third and fourth arguments are the new values for the specified

property, and they may be either text in quotes, a string variable, or a numeric expression, depending

upon the code. For most codes, the property value being modified is defined by the value1 argument. A

few operands require both a value1 and a value2, as described in the table below.

Table 3.4-1

Code Property

Basic surface data

0 or TYPE Surface type. The value should be the name of the object, such as “STANDARD” for

the standard surface. The names for each surface type are listed in the Prescription

Report in the Surface Data Summary for each surface type currently in the Lens Data

Editor.

1 or COMM Comment.

2 or CURV Curvature (not radius) in inverse lens units. Use zero for an infinite radius.

3 or THIC Thickness in lens units.

4 or GLAS Glass name.

5 or CONI Conic constant.

6 or SDIA Semi-diameter. If the value is zero or positive, the semi-diameter solve is set to
"Fixed". If the value is negative, the semi-diameter solve is set to "Automatic" and
the semi-diameter will be computed with the next UPDATE keyword.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 65

7 or TCE Thermal coefficient of expansion.

8 or COAT Coating name. Use a blank string for value1 to remove the coating.

9 or SDLL User defined surface DLL name.

10 or PARM Parameter value. Value1 is the new value. Value2 is the parameter number.

11 or EDVA Extra Data value. Value1 is the new value. Value2 is the extra data number.

12 Surface color, Use 0 for default.

13 Surface opacity.

14 Row color.

15 Surface cannot be hyperhemispheric. Use 1 to avoid surface being
hyperhemispheric.

16 Ignore surface. Use 1 to ignore surface, 0 to not ignore surface.

17 or CODE The integer code for the surface type. The integer code is an alternative to the
surface name used by code 0.

18 or GLAN Glass number. See also Code 4.

Surface aperture data.

20 or ATYP Surface aperture type code.

21 or APP1 Surface aperture parameter 1.

22 or APP2 Surface aperture parameter 2.

23 or APDX Surface aperture decenter x.

24 or APDY Surface aperture decenter y.

25 or UDA User Defined Aperture (UDA) file name.

26 or APPU Surface aperture pick up from surface number. Use 0 for no pickup.

Physical Optics Propagation Settings.

30 Physical Optics setting "Use Rays To Propagate To Next Surface". Use 1 for true, 0

for false.

31 Physical Optics setting "Do Not Rescale Beam Size Using Ray Data". Use 1 for true,

0 for false.

32 Physical Optics setting "Use Angular Spectrum Propagator". Use 1 for true, 0 for

false.

33 Physical Optics setting "Draw ZBF On Shaded Model". Use 1 for true, 0 for false.

34 Physical Optics setting "Recompute Pilot Beam Parameters". Use 1 for true, 0 for

false.

35 Physical Optics setting "Resample After Refraction". Use 1 for true, 0 for false.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 66

36 Physical Optics setting "Auto Resample". Use 1 for true, 0 for false.

37 Physical Optics setting “New X Sampling”. Use 1 for 32, 2 for 64, etc.

38 Physical Optics setting "New Y Sampling". Use 1 for 32, 2 for 64, etc.

39 Physical Optics setting "New X-Width". New total x direction width of array.

40 Physical Optics setting "New Y-Width". New total y direction width of array.

41 Physical Optics setting “Output Pilot Radius”. Use 0 for best fit, 1 for shorter, 2 for

longer, 3 for x, 4 for y, 5 for plane, 6 for user.

42, 43 Physical Optics setting “X-Radius” and “Y-Radius”, respectively.

44 Physical Optics setting "Use X-axis Reference". Use 1 for true, 0 for false.

Coating Settings.

50 Use Layer Multipliers and Index Offsets. Use 1 for true, 0 for false.

51 Layer Multiplier value. Value1 is the new value. Value2 is the layer number.

52 Layer Multiplier status. Value 1 is the status, use 0 for fixed, 1 for variable, or n+1

for pickup from layer n. Value2 is the layer number.

53 Layer Index Offset value. Value1 is the new value. Value2 is the layer number.

54 Layer Index Offset status. Value 1 is the status, use 0 for fixed, 1 for variable, or n+1

for pickup from layer n. Value2 is the layer number.

55 Layer Extinction Offset value. Value1 is the new value. Value2 is the layer number.

56 Layer Extinction Offset status. Value 1 is the status, use 0 for fixed, 1 for variable, or

n+1 for pickup from layer n. Value2 is the layer number.

Surface Tilt and Decenter Data.

60 or BOR Before tilt and decenter order. Use 0 for dec/tilt, 1 for tilt/dec.

61 or BDX Before decenter x.

62 or BDY Before decenter y.

63 or BTX Before tilt about x.

64 or BTY Before tilt about y.

65 or BTZ Before tilt about z.

66 or APU After pick up status: 0 for explicit, 1/2 for pickup/reverse current surface, 3/4 for

pickup/reverse current surface minus 1, 5/6 for pickup/reverse current surface minus

2, etc...

70 or AOR After tilt and decenter order. Use 0 for dec/tilt, 1 for tilt/dec.

71 or ADX After decenter x.

72 or ADY After decenter y.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 67

73 or ATX After tilt about x.

74 or ATY After tilt about y.

75 or ATZ After tilt about z.

76 Coordinate Return status. Valid only on Coordinate Break surfaces. Use 0 for None,

1 for Orientation Only, 2 for Orientation XY, and 3 for Orientation XYZ.

77 Coordinate Return To Surface. Valid only on Coordinate Break surfaces.

Surface scatter data.

80 Sets the scatter code: 0 for none, 1 for Lambertian, 2 for Gaussian, 3 for ABg, 4 for

DLL, 5 for BSDF, 6 for ABg File, and 7 for IS Scatter Catalog.

81 Sets the scatter fraction, should be between 0.0 and 1.0.

82 Sets the Gaussian scatter sigma.

83 Sets the ABg file name.

84 Sets the name of the user defined scattering DLL. To set the parameters see Code

181.

85 Sets the name of the data file used by the user defined scattering DLL.

86 Sets the BSDF file name. The value should be the name of the BSDF file with no

path (i.e. BrownVinyl.bsdf).

87 Sets the ABg File data file name. The value should be the name of the ABGF file

with no path (e.g. SampleABGF.abgf).

88 Sets the IS Scatter Catalog data file name. The value should be the name of the ISX

file with no path (e.g. BrownVinyl.ISX).

110 Sets the side for IS Scatter Catalog scattering. Use 0 for front, 1 for back.

111 Sets the sampling for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2

degrees, and 2 for 1 degree.

Surface draw data.

91 Sets the “Skip Rays To This Surface” checkbox status: 0 for off, 1 for on.

92 Sets the “Do Not Draw This Surface” checkbox status: 0 for off, 1 for on.

93 Sets the “Do Not Draw Edges From This Surface” checkbox status: 0 for off, 1 for

on.

96 Sets the “Draw Edges As” status: 0 for squared, 1 for tapered, 2 for flat.

97 Sets “Mirror Substrate” status: 0 for none, 1 for flat, 2 for curved.

98 Sets the mirror substrate thickness value.

User defined surface scatter DLL parameters.

181-186 Sets the user defined scatter DLL parameters 1-6.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 68

To delete a certain surface, we can use the keyword DELETE provided by ZPL. The syntax is:

DELETE n

where n is the order number of the surface to be deleted.

To insert a surface at a certain location, we can use the keyword INSERT. The syntax is:

INSERT n

where n is the order number of the surface in front of which the new surface is to be inserted.

To set a surface as the system stop aperture, we can use the keyword STOPSURF. The syntax is:

STOPSURF n

This can sets the nth surface as the stop aperture.

It needs to be noticed that after the surface properties were set or modified, keyword UPDATE is usually

needed to update the surface properties.

Similar to setting surface properties, ZPL also provides two important functions SPRO() and SPRX() to

read the surface properties. The syntax is:

SPRO(surf, code)

and

SPRX(surf, code, value2)

where surf is the order number of the surface to be read, and code value is defined by keyword SURP in
table 3.4-1. Please note that code can only be an integer and cannot be mnemonic. The main
difference between the two functions is that SPRO() supports commands with one argument in table
3.4-1, and SPRX() supports commands with two arguments in table 3.4.1.

Besides SPRO() and SPRX(), ZPL also provides other important functions to read out surface related
properties, as shown in table 3.4-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 69

Table 3.4-2 Some important functions used to read out surface properties

Function Return value

NSUR() The number of defined surfaces.

APMN(n) The minimum radius value. For spider apertures, this is the width of the

arms. For rectangular and elliptical apertures, it is the x-half width of the

aperture.

APMX(n) The maximum radius value. For spider apertures, this is the number of

arms. For rectangular and elliptical apertures, it is the y-half width of the

aperture.

APXD(n) The aperture x-decenter value.

APYD(n) The aperture y-decenter value.

APTP(n) An integer code describing the aperture type on the specified surface.

CONI(n) Conic constant of the surface.

CURV(n) Curvature of the surface.

EDGE(n) Edge thickness at the semi-diameter of that surface.

GLCA(n) Global vertex x vector of the specified surface.

GLCB(n) Global vertex z vector of the specified surface.

GLCC(n) Global vertex z vector of the specified surface.

GLCM(n, item) For item equal to 1-9, the return value is R11, R12, R13, R21, R22, R23,

R31, R32, or R33. For item equal to 10-12, the return value is the

x, y, or z component of the global offset vector.

GLCX(n) Global vertex x-coordinate of the specified surface.

GLCY(n) Global vertex y-coordinate of the specified surface.

GLCZ(n) Global vertex z-coordinate of the specified surface.

GRIN(n, w, x, y, z) Returns the index of refraction at the specified x, y, z position on surface

n at wavelength number w. Works for gradient and non-gradient media.

PARM(p,n) Parameter "p" of surface "n".

RADI(n) Radius of curvature of surface. If the surface has an infinite radius, RADI

returns 0.0. This possibility must be considered to avoid potential divide

by zero errors.

SDIA(n) Semi-diameter of surface.

SURC(A$) Surface with comment. Returns the first surface number where the

comment matches the string A$. The comparison is case insensitive. If no

surface has the matching comment the function returns -1.

THIC(n) Thickness of the surface.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 70

Among the surface-related properties, the material of the surface is a very important one. For

convenience, let’s just call all the material as glass. In table 3.4-3 some important surface glass related

functions are listed.

Table 3.4-3 Important functions to read surface glass parameters

Function Return value

GABB(n) The glass catalog Abbe number of the glass for the specified surface.

GIND(n) The glass catalog d-light index of the glass for the specified surface.

GNUM(A$) If the string A$ is the name of a valid glass, such as BK7, then GNUM

returns the number of the glass in the glass catalog. The glass number

can subsequent l y be used by SETSURFACEPROPERTY to set the glass

type on a surface. If A$ does not correspond to any glass in the catalog,

GNUM returns 0. GNUM returns -1 if the string is “MIRROR”.

GPAR(n) The glass catalog partial dispersion coefficient of the glass for the

specified surface.

GRIN(n, w, x, y, z) Returns the index of refraction at the specified x, y, z position on surface

n at wavelength number w. Works for gradient and non-gradient media.

INDX(n) Index of refraction at the primary wavelength. See ISMS.

ISMS(n) If the surface is an odd mirror, or follows an odd mirror but is not a

mirror, the return value will be one, otherwise the return value is 0.

MAXG() The number of glasses currently loaded.

TMAS() The total mass in grams of the lens from surface 1 to the image surface.

Besides the functions listed above, ZPL also provides a keyword GETGLASSDATA to read glass data in the

current catalogs. The syntax is:

GETGLASSDATA vector_expression, glass_number

where vector_expression is the sequence number of the 4 vectors provided by ZPL (VEC1, VEC2, VEC3,

VEC4), glass_number is the sequence number of the glass listed in the glass catalog, and can be read

with function GNUM(). The glass parameters are stored in vectors VECn (n is 1, 2, 3 or 4) according to

table 3.4-4.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 71

Table 3.4-4 Glass data retrieve command

Array position Glass data

0 The number of data values in the vector

1 Formula number: The number indicates the formula as follows:

1 = Schott, 2 = Sellmeier 1, 3 = Herzberger, 4 = Sellmeier 2, 5 = Conrady, 6 =

Sellmeier 3, 7 = Handbook of Optics 1, 8 = Handbook of Optics 2, 9 =

Sellmeier 4, 10 = Extended, 11 = Sellmeier 5, 12 = Extended 2

2 Reference temperature in degrees c

3 Refractive index at d line Nd

4 Abbe number Vd

5 Thermal coefficient of expansion -30 to +70 C

6 Thermal coefficient of expansion +20 to 300 C

7 Density in g/cm^3

8 Deviation from normal line P gf

9 Lambda min

10 Lambda max

11~16 Constants of dispersion A0-A5 (meaning depends upon formula)

17~22 Thermal constants of dispersion

23~ (22 +

#waves)

Internal transmission coefficient (per mm) alpha, T = exp(alpha * path). The

alpha for wavelength 1 is stored in 23, wavelength 2 is in 24, etc., up to the

number of wavelengths used by the system.

(23 + #waves) ~

(32 + #waves)

Constants of dispersion A0-A9 (meaning depends upon formula)

We will give some examples to show how to set and read important surface related parameters in ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 72

Example 3.4-1: Construct a doublet.

In this example, we will start from scratch, build a doublet lens in Lens Data Editor (LDE) in Zemax

through ZPL. Assume the basic parameters of the doublet is:

Working wavelength: F = 0.48613270m, d = 0.58756180m, C = 0.65627250m

Entrance pupil diameter: 50mm

F/#: F/8

Full field angle: 10

Boundary constraints: minimum thickness at edge and center is 4mm, maximum thickness at

center is 18mm

Glass material: BK7 and F2

After some simple calculation (omitted here), we can get initial parameters of each surface of the

doublet. In this example, we will use these parameters to construct the doublet. Later on in other

examples we will have opportunities to further analyze and optimize this doublet.

First, from Zemax file menu, choose “new” to get an empty lens data editor that includes an object

surface, an image surface, and a lens surface. In our program, we need to set some system parameters

such as the type and size of the system aperture, type and size of field, working wavelength, etc. After

that, we need to insert enough number of lens surfaces, and input lens data. The program is shown

below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 73

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 74

The first part of the program (lines 5 ~ 30) sets system properties, indluding lens unit (line 5), system

aperture (lines 7 and 8), wavelengths (lines 10 ~ 18), field (lines 20 ~ 30). The second part of the

program (lines 32 ~ 58) sets lens data, indluding choosing stop surface (line 33), inserting 3 new surfaces

(lines 36 ~ 38), and defining type, comments, curvature, thickness, material of each surface (lines 41 ~

56). At the end of the program, we updated the system to assure the data are accepted. Apparantly, a

lot of data can be directly set in LDE without a ZPL program. This example just shows how to do it

through ZPL program. Also, a lot of default setting in LDE (such as “standard surface” in line 51) can be

omitted in the program.

The result of program ex30401.ZPL is shown below in figure 3.4-1:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 75

Fig. 3.4-1 The updated content of LDE after program ex30401.ZPL is executed.

For the doublet constructed in program ex30401, we can read various parameters through ZPL program.

Some examples are given below.

Example 3.4-2: read lens surface data.

In this program, we first read the total number of surfaces of the the system (line 7), then for surface 3,

we read surface type (lines 11 and 12), comments (lines 16 and 17), curvature (lines 21 and 23), radius

(line 25), thickness (lines 29 and 31) and material (lines 35, 36 and 38), and finally we read the surface

number of the stop (lines 42 and 43). We can see that when using function SPRO() to read string

information (such as surface type, comments, etc.), the returned data are stored in the buffer, and can

be read out with buffer string function $buffer().

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 76

The result of program ex30402.ZPL is shown in figure 3.4-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 77

Fig. 3.4-2 Result of program ex30402.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 78

Example 3.4-3: read glass material parameters:

In this example, various functions and keywords are used to read material parameters.

In the program, function MAXG() was used in line 9 to read the total number of glasses loaded in the

system, and function $GLASS() was used in lines 12 ~ 14 to read the glass type of a given surface. Please

note that different from directly calling numeric function in line 9, since PRINT command cannot directly

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 79

call string function, the program needs to store the result in a string variable in line 13 first, and then

print out the result in line 14. Function GNUM() was used in lines 17 ~ 18 to read the order number of

the glass material in the catalog, and function GIND() was used in lines 21 ~ 23 to read the refractive

index of the glass at d line. Function GABB() in line 26 read the Abbe number for a given surface.

Function GPAR() in lines 29 ~ 30 was used to read partial dispersion of given surface material. As

mentioned before, besides using functions to read glass data, keyword GETGLASSDATA can also be used

to obtain the information. Lines 33 ~ 42 in the program shows how to do it. The information read with

keyword is stored in the default array VEC1, and can be easily read out. The result of the program is

shown in figure 3.4-3:

Fig. 3.4-3 Result of program ex30403.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 80

3.5 Merit Function

When using Zemax to design and optimize an optical system, merit function is often used. It is a

numerical value defined by the user and used to evaluate the deviation of an optical system

performance relative to a series of design targets. In Zemax there is a merit function editor that includes

different operands. Each operand is used to evaluate a certain system constraint or design target. The

whole merit function is composed with various operands in the merit function editor with different

weights.

ZPL provided various keywords and functions to set and read merit function.

Keyword DEFAULTMERIT is used to generate a default merit function. The syntax is:

DEFAULTMERIT type, data, reference, method, rings, arms, grid, delete, axial, lateral, start,

xweight, oweight, pup_obsc

(Note: pup_obsc is used in newer versions of Zemax. In some older versions, this parameter is not

included, as in the examples below.)

This keyword generates a default merit function in the Merit Function Editor. Any existing default merit

function will be deleted. The values are as follows:

Table 3.5-1: parameters of keyword DEFAULTMERIT

Parameter Description

type use 0 for RMS, 1, for PTV.

data use 0 for wavefront, 1 for spot radius, 2 for spot x, 3 for spot y, 4 for spot x + y.

reference use 0 for centroid, 1 for chief, 2 for unreferenced.

method use 1 for Gaussian quadrature, 2 for rectangular array.

rings the number of annular rings (Gaussian quadrature only).

arms the number of radial arms (Gaussian quadrature only). The number of arms

must be even and no less than 6.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 81

grid the size of the grid. Use an integer, such as 8, for an 8 x 8 grid. n must be even

and no less than 4.

delete use 0 to not delete vignetted rays, 1 to delete vignetted rays.

axial use -1 for automatic, which will use symmetry only if the system is axial

symmetric. Use 1 to assume axial symmetry, 0 to not assume axial symmetry.

lateral use 1 to ignore lateral color, 0 otherwise.

start use -1 for automatic, which will add the default merit function after any

existing DMFS operand. Otherwise use the operand number at which to add

the default merit function. Any existing operands above the specified operand

number will be retained.

xweight,

oweight

the x direction weigh and overall weight for the merit function. Only the data

“spot x + y” uses the xweight value.

pup_obsc the pupil obscuration ratio.

If we want to delete an operand in the merit function editor, we can use keyword DELETEMFO to do so.

The syntax is:

DELETEMFO row

or

DELETEMFO ALL

where row is the line number of the operand to be deleted, and it needs to be an integer expression

larger than 0 and smaller than the total number of operands. If “All” is used, then all the operands will

be deleted.

If we want to insert an operand in the merit function editor, we can use keyword INSERTMFO. The

syntax is:

INSERTMFO row

where row is the line number of the operand to be inserted, and it needs to be an integer expression

larger than 0 and smaller than the total number of operands. After the operation, original operands in

the line with number row and higher will be shifted one number higher. The newly inserted operand is

an empty operand. Its content needs to be defined using other keywords such as SETOPERAND.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 82

If we need to set or update an operand in the merit function editor, we can use keyword SETOPERAND

to do so. The syntax is:

SETOPERAND row, col, value

where row is the line number of the operand to be edited, col is the column number, and the value is for

the position determined by row and col. The meaning of col depends on the operand. In general, 1 is

for operand type, 2 for Int1, 3 for Int2, 4~7 for data1~data4, 8 for target, and 9 for weight. Figure 3.5-1

shows a dialog box popped out when directly setting operand in Zemax, where Operand is the type of

the operand. To operand CNAX, Surf and Wave correspond to Int1 and Int2 mentioned above, Hx, Hy,

Pol and Samp correspond to data1~data4 mentioned above.

Fig. 3.5-1 Dialog box of operand setting

When setting operand type with col = 1, “value” should be an integer associated with the operand, such

as 1 for “ACOS”, 2 for “ABSO”, 4 for “DENC”, 367 for “CNAX”, etc. The integer associated with each

operand can be determined by the return value of function ONUM(A$), where A$ stands for the string

of various operands.

Besides the method described above (col = 1), we can also use col = 11 to set the type of operand, and

set “value” as the string that represents the type, such as:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 83

SETOPERAND 1, 11, “CNAX”

or

A$ = “CNAX”

SETOPERAND 1, 11, A$

If we want to read the content of a certain operand in the merit function editor, we can use function

OPER(row,col), where row is the row number in the editor, col is the column number in the editor with 1

for operand type, 2 for Int1, 3 for Int2, 4~7 for data1~data4, 8 for target value, 9 for weight, 10 for

operand value, and 11 for the percentage contribution to the total merit function. Please note that

function OPER() only reads the current content of the merit function, but will not change it.

If we want to calculate the total value of the merit function, we can use function MFCN(). This function

will update the lens data, evaluate the validity of the merit function, calculate its value, and return the

final result.

Now we will give some examples to show how to set and read parameters in the merit function editor.

Example 3.5-1: set and read default merit function. In this example, we assume the optical is the one

defined in program ex30401. If we want to define a merit function to evaluate the image quality of this

optical system, i.e. to evaluate the overall quality of the light beam on the image plane formed by rays

coming from various field, a direct and most common way is to use the default merit function provided

by Zemax. This example shows how to do it with ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 84

After execution, the content of the merit function editor is shown in figure 3.5-2:

Fig. 3.5-2 Merit function generated by program ex30501.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 85

In the mean time, the total value of the merit function obtained by function MFCN() is displayed in the

text message window, as shown in figure 3.5-3.

Fig. 3.5-3 The merit function resulted from program ex30501.ZPL

The powerful optimization function of Zemax relies on changing the value of different variable to

minimize the value of the merit function. We will discuss how to optimize an optical system with ZPL

program in latter sections.

Besides the default Zemax merit function discussed above, often times the user needs to define his own

merit function to meet his special design target. We will show how to do this in the following example.

Example 3.5-2: Self-defined merit function

How to define the merit function depends on the design target of an optical system. In this example, we

still assume that the optical system is the doublet defined in program ex30401. Further, we assume that

due to the limitation of the detector size, the image height of view field 3 (y = 5) on the image plane

needs to be 30 lens units. So we need to modify the default merit function and construct a user-defined

merit function. To realize this, we can start from the default merit function defined in last example, and

insert a new operand CENY with a target value as 30. The program is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 86

In this example, we inserted two empty rows in the merit function editor, set the operand in the first

row as CENY, and then set corresponding parameters such as surface number, wavelength number, field

number, target, weight, etc., and finally output the value of the current merit function, as shown in

figure 3.5-4.

Fig. 3.5-4 The value of merit function after running program ex30502.ZPL

If we set surfaces of the doublet (surface 2, 3 and 4) and the distance of its back surface to the image

plane as variables, we can easily optimize this optical system with the merit function we just defined.

The value of the merit function after optimization can be 0.02. You can try it out if interested.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 87

3.6 Solve

Zemax is very powerful on solving and optimizing existing optical systems. To allow user to access this

feature in programs, ZPL provided many related keywords and functions. In this and next section, we

will discuss how to handle solve and optimization in ZPL programs.

A commonly used keyword for setting and modifying arguments for solve is SOLVETYPE. The syntax is:

SOLVETYPE surf, CODE, arg1, arg2, arg3, arg4

In this command, surf is the surface number to be set, and the range of which should be between 0 and
the maximum number of total surfaces. CODE is a mnemonic as listed in table 3.6-1. The arg1 - arg4
expressions evaluate to the first - fourth solve parameters. Please note that different solve type
requires different number and types of arguments.

Table 3.6-1 arguments used in keyword SOLVETYPE

Solve Type CODE arg1 arg2 arg3 arg4

Curvature: Fixed (turn

solve off)

CF

Curvature: Variable CV

Curvature: Marginal Ray CM Angle

Curvature: Chief Ray CC Angle

Curvature: Pickup CP Surface # Ratio Column #

Curvature: Marginal Ray

Normal

CN

Curvature: Chief Ray

Normal

CO

Curvature: Aplanatic CA

Curvature: Element

Power

CE Power

Curvature: Concentric

With Surface

CQ Concentri

c surface #

Curvature: Concentric

With Radius

CR Concentri

c with

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 88

radius

surface #

Curvature: F/# CG Paraxial

F/#

Curvature: ZPL Macro CZ Macro

name

Thickness: Fixed (turn

solve off)

TF

Thickness: Variable TV

Thickness: Marginal Ray

Height

TM Height Aperture area

Thickness: Chief Ray

Height

TC Height

Thickness: Edge

Thickness

TE Thickness Radical

height (0 for

diameter)

Thickness: Pickup TP Surface # Ratio Offset Column #

Thickness: Optical Path

Difference

TO Optical

Path

Difference

Aperture area

Thickness: Position TL Surface # Self defined

surface

length

Thickness: Compensator TX Surface # Total surface

thickness

Thickness: Center Of

Curvature

TY Surface #

at center

of

curvature

Thickness: Pupil Position TU

Thickness: ZPL Macro TZ Macro

name

Glass: Fixed (turn solve

off)

GF

Glass: Model GM D line

refractive

Abbe number

Vd

Partial

dispersion

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 89

index Nd ΔPg,F

Glass: Pickup GP Surface #

Glass: Substitute GS Catalog

name

Glass: Offset GO D line

refractive

index Nd

offset

Abbe number

Vd offset

Semi-Diameter:

Automatic

SA

Semi-Diameter: User

Defined

SU

Semi-Diameter: Pickup SP Surface # Ratio Column #

Semi-Diameter:

Maximum

SM

Semi-Diameter: ZPL

Macro

SZ Macro

name

Conic: Fixed (turn solve

off)

KF

Conic: Pickup KP Surface

number

Ratio Column #

Conic: ZPL Macro KZ Macro

name

Parameter: Fixed (turn

solve off). Replace “p”

with the parameter

number in the code.

PF_p

Parameter: Pickup.

Replace “p” with the

parameter number in the

code.

PP_p Surface # Ratio Offset Column #

Parameter: Chief Ray.

Replace “p” with the

parameter number in the

code.

PC_p Field # Wavelength

Parameter: ZPL Macro.

Replace “p” with the

PZ_p Macro

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 90

parameter number in the

code.

name

Thermal Coefficient of

Expansion: Fixed (turn

solve off)

HF

Thermal Coefficient of

Expansion: Pickup

HP

Extra Data Value: Fixed

(turn solve off). Replace

“e” with the extra data

number in the code.

EF_e

Extra Data Value: Pickup.

Replace “e” with the extra

data number in the code.

EP_e Surface # Ratio Offset Column #

Extra Data Value: ZPL

Macro. Replace “e” with

the extra data number in

the code.

EZ_e Macro

name

Non-Sequential

Component Pickup X, Y,

Z, Tilt-X, Tilt-Y, Tilt-Z,

Material. Replace “o”

with the object number in

the code.

NSC_PX_o,

NSC_PY_o,

NSC_PZ_o,

NSC_PTX_o,

NSC_PTY_o,

NSC_PTZ_o,

NSC_PMAT_o

Non-Sequential

Component Material is

fixed, model glass,

pick up, or offset. Replace

“o” with the object

number in the code.

NSC_MATF_o,

NSC_MATM_o,

NSC_MATP_o,

NSC_MOFF_o

Non-Sequential

Component ZPL Macro

solve on X, Y, Z, Tilt-X,

Tilt-Y, Tilt-Z. Replace

“o” with the object

number in the code.

NSC_ZX_o,

NSC_ZY_o,

NSC_ZZ_o,

NSC_ZTX_o,

NSC_ZTY_o,

NSC_ZTZ_o

Non-Sequential NSC_PP_o_p

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 91

Component Parameter

Pickup. Replace “o” with

the object number and “p”

with the parameter

number in the code.

Non-Sequential

Component ZPL Macro

solve. Replace “o” with

the object number and “p”

with the parameter

number in the code.

NSC_ZP_o_p

* In this table, column # is defined below:

0: current column;

1~4: radius, thickness, conic constant, semi-diameter;

5~17: parameters 1~12;

18~259: extra data 1~242.

Among the solve types listed above, ZPL macro is used in many places. This allows user to call self-

defined macros in solve. The only difference between this macro to other ZPL macros is that it requires

keyword SOLVERETURN to return the result to the editor that calls the macro. The syntax is:

SOLVERETURN value

where value is the return value.

When more than one keyword SOLVERETURN is used in the program, only the last SOLVERETURN

command will be executed, and all the other SOLVERETURN commands will be ignored. If there is error

in the program, the SOLVERETURN command will not be executed, that means there are issues in the

optical system.

We need to keep in mind that although solve with ZPL program is very flexible, it is also very easy to

cause infinite loops or abnormal interruptions. Therefore, we need to be cautious when using solve in

ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 92

Besides using keyword to set and modify solve parameters, ZPL also provides a function SOLV() to read

solve parameters. The syntax is:

returnValue = SOLV(surf, code, param)

In this function, surf is the surface number. Code is 0 for curvature, 1 for thickness, 2 for glass, 3 for
conic, 4 for semi-diameter, and 5 for thermal expansion coefficient TCE. For parameter data, the code is
100 plus the parameter number. For extra data, the code is 300 plus the extra data number. Param is an
integer between 0 and 4, inclusive. The return value is data about the solve type for the specified
surface and data. If param is zero, then an integer corresponding to the solve type is returned. For
param between 1 and 3, the data is the solve parameters. For param 4, the data is the pickup column
number. String values may be extracted using the $buffer() function after calling this function with a
code that returns string data.

We will give some examples below.

Example 3.6-1: set solve parameters. Assume we have constructed the doublet as discussed in example

3.4-1. In that system, the radius of surface 4 is -243, and the paraxial F/# is not quite equal to design

target 8. We can change the curvature of surface 4 using solve, and force the paraxial F/#

approximating 8 quickly. The program is shown below:

In this program, we set surface 4 as solve type “curvature: F/#”, and let F/# = 8. After running the

program, we can see that the radius of surface 4 in the lens data editor has been changed, and letter F

appears at right side of the radius value, as shown in figure 3.6-1:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 93

Fig. 3.6-1 Result of program ex30601.ZPL

Example 3.6-2: read solve parameters. Assume we need to read solve parameters from last example.

We can use function SOLV() to do so, as shown below:

Please note that code here is a numerical variable, whereas CODE$ in last example is a string variable.

The result is shown below:

Fig. 3.6-2 Result of program ex30602.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 94

It showed that the solve parameter we obtained in last example is F/# = 8.

Example 3.6-3: Application of ZPL solve. In example 3.6-1, we assumed the refractive index of air is 1,

and got radius of surface 4 as -242.910179. Now we want to use actual refractive index of air n = 1.0008

and relation n1C1 = n2C2 (n is refractive index, C is curvature) to fine tune the radius value to get a more

realistic result. We can use ZPL solve to realize this. The parameter setting program and solve program

is shown in ex30603.ZPL and ex30603M.ZPL, respectively:

Please note that in line 7 of program ex30603, we added a path name “\ch3\” in front of macro name

“ex30603M.zpl”. It is because when running program ex30603.zpl, Zemax only searches solve macro

under the macro folder. Any further directory structure in the macro folder needs to be specifically

called out.

We also need to note that the calculated value in program ex30603M is curvature. After returning this

curvature, Zemax will automatically calculate radius value.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 95

Also, line 13 and 14 don’t have any real meaning, and can be deleted from the program. We add them

in the program to demonstrate that if there are more than one keyword SOLVERETURN in the program,

only the last SOLVERETURN is valid.

The result of program ex30603 is shown below:

Fig. 3.6-3 Result of ex30603.ZPL

We can see that the new radius value of surface 4 is -243.104507, and letter Z appeared at the right side

of this value, indicating that the solve type is ZPL macro.

Similar to automatic solve, ZPL also provides a keyword QUICKFOCUS to quickly adjust the focus of the

optical system. The syntax is:

QUICKFOCUS mode, centroid

where mode is 0, 1, 2 or 3 for root mean square (RMS) beam radius, beam x value, beam y value and

wave front light path difference, centroid is 0 or 1 for RMS relative to chief ray or image center.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 96

3.7 Optimization

Optimization gives Zemax its great power in optical design. In this section we will discuss how to use

optimization commands in ZPL. For general optimization in Zemax, please refer to Zemax User’s Manual.

We all know that optimizing an optical system in Zemax is essentially setting certain lens parameters as

variables and allowing Zemax to automatically change the value of the variables to minimize the merit

function. To do this in ZPL, a keyword SETVAR is provided to set and change variables for optimization.

The syntax is:

SETVAR surf, code, status, objectNum

or

SETVAR config, M, status, operand

where surf is the lens surface order number, config is the configuration order number in the multi-

configuration editor, code is one of the strings listed in table 3.7-1. If the value of status is 0, then the

variable status is removed, otherwise the value associated with code is made variable. If the code is Nn

or On, the object number must be provided, otherwise it should be omitted. If the code is M, then the

syntax for this command is as shown above as the multi-configuration one, and the operand needs to be

provided.

Table 3.7-1: Code associated to keyword SETVAR

Code Description

R radius of curvature

T thickness

C conic

G glass

I glass index

J glass Abbe

K glass dpgf

Pn parameter n

D thermal coefficient of expansion

En extra data value n

M multi-configuration data

Nn non-sequential component position data, 1-6 for x, y, z, tx, ty, tz

On non-sequential component parameter data, where n is the parameter number

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 97

If we want to remove all the variables, we can use keyword REMOVEVARIABLES to change all the

variables as fixed value.

If we want to read a variable we set, we can use keyword GETVARDATA. The syntax is:

GETVARDATA vector

where vector = 1~4 is one of the 4 vector array variables provided by ZPL (either VEC1, VEC2, VEC3 or

VEC4). The data is stored in the specified VECn array variable in the format described in table 3.7-2.

Table 3.7-2: Storage format of data obtained with keyword GETVARDATA

Array Position Description

0 n, the number of variables

1 The type code for the first variable

2 Surface number for the first variable

3 Parameter number for the first variable

4 Object number for the first variable

5 The value of the first variable

5*q-4 The type code for the qth variable

5*q-3 Surface number for the qth variable

5*q-2 Parameter number for the qth variable

5*q-1 Object number for the qth variable

5*q The value of the qth variable

The type code for variables is as described in the following table. The surface number, parameter

number, and object number may or may not have meaning depending upon the type of variable.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 98

Table 3.7-3: GETVARDATA type and ID codes

Variable type Type Code Surface Parameter Object

Curvature 1 surface # - -

Thickness 2 surface # - -

Conic 3 surface # - -

Index Nd 4 surface # - -

Abbe Vd 5 surface # - -

 6 surface # - -

TCE 7 surface # - -

Parameter Values 8 surface # parameter # -

Extra Data Values 9 surface # extra data # -

Multi-configuration Operand Values 10 oper # config # -

Non-Sequential Object Position X 11 surface # - object #

Non-Sequential Object Position Y 12 surface # - object #

Non-Sequential Object Position Z 13 surface # - object #

Non-Sequential Object Tilt X 14 surface # - object #

Non-Sequential Object Tilt Y 15 surface # - object #

Non-Sequential Object Tilt Z 16 surface # - object #

Non-Sequential Object Parameters 17 surface # parameter # object #

Example 3.7-1 gives an example of setting and reading variables in ZPL. In this example, we assume the

optical system is the doublet defined in ex30401.ZPL. We will set the curvature radius and thickness of

surface 4 as variables, and read back the value of the variables. The program is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 99

After running the program, we can see that, in the lens data editor, letter “V” appears after the values of

radius and thickness of surface 4. It means that the two parameters are set as variables. Also, we can

see the read out values of the variables in the text window, as shown in figure 3.7-1.

Fig. 3.7-1 Result of program ex30701.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 100

We notice that the value of variable 1 is the curvature of surface 4, which is a reciprocal of the radius

value shown in the lens data editor.

After we set the variable and merit function, it’s straightforward to do the optimization using keywords

OPTIMIZE and HAMMER provided by ZPL. The syntax is:

OPTIMIZE

OPTIMIZE number_of_cycles

OPTIMIZE number_of_cycles, algorithm

and

HAMMER

HAMMER number_of_cycles

HAMMER number_of_cycles, algorithm

The argument number_of_cycles is an integer between 1 and 99 for the number of cycles the
optimization algorithm will run. For the Optimize command, if number_of_cycles evaluates to zero, or
there is no argument, then the optimization runs in “Automatic” mode, stopping when the algorithm
detects the process has converged. For the Hammer command, if there is no argument provided, then
the Hammer optimization runs 1 cycle using Damped Least Squares. For the algorithm argument, use 0
for Damped Least Squares (the default) and 1 for Orthogonal Descent.

Sometimes if we want to directly calculate the values of certain operand variables without putting them

in the merit function, we can use functions OPEV or OPEW provided by ZPL. The two functions are

similar, but have different arguments. The syntax is:

OPEV(code, int1, int2, data1, data2, data3, data4)

and

OPEW(code, int1, int2, data1, data2, data3, data4, data5, data6)

where code is the optimization operand code, int1~int2 and data1-data4 are the defining values for the
operand. In general, the operand code is returned by function OCOD(A$), where A$ is the string
associated to the optimization operand, such as “EFFL”, etc.

Example 3.7-2 gives an example of optimization in ZPL. In this example, we assume the optical system is
the doublet defined in program ex30401.ZPL, the variables are set as in program ex30701.ZPL, and the

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 101

merit function is set as in program ex30501.ZPL. Our target is to optimize this optical system, and
calculate the effective focal length of the system. The program is shown below:

In the program, we use function OCOD() to read out the code of the operand for effective focal length

“EFFL”, and directly calculate the effective focal length. We also use keyword OPTIMIZE to optimize the

system, and compare the values of effective focal length before and after optimization. The result is

shown below:

Fig. 3.7-2 Result of program ex30702.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 102

ZPL also provided a keyword similar to automatic optimization: TESTPLATEFIT. This keyword can be

used in optical design to call the test plate fitting routine to fit the test plate library provided by lens

vendors. The syntax is:

TESTPLATEFIT tpd_file, log_file, method, number_cycles

where tpd_file is the test plate data file, log_file is the name of a file for the output log, method is an

integer between 0 and 4, inclusive, for try all methods, best to worst, worst to best, long to short, and

short to long, respectively. The integer number_cycles is 0 for automatic or the maximum number of

optimization cycles to execute. Note the tpd_file name should NOT include the path, since all test plate

files are in a fixed folder, while the path should be included for the log file.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 103

3.8 Ray Tracing

Most of Zemax calculations are based on ray tracing. Therefore, ray tracing is a key function in Zemax.

ZPL provided two keywords RAYTRACE and RAYTRACEX to support ray tracing in sequential systems. As

for ray tracing in non-sequential systems, we will discuss in section 10.

Keyword RAYTRACE calls the Zemax ray tracing routines to trace a particular ray through the current

system. The syntax is:

RAYTRACE hx, hy, px, py, wavelength

where hx and hy are normalized field coordinates with values between -1 and +1; px and py are

normalized pupil coordinates with values between -1 and +1; wavelength is optional working

wavelength, defaulting to the primary wavelength.

Keyword RAYTRACEX calls the Zemax ray tracing routines to trace a particular ray from any starting

surface through the current system. The syntax is:

RAYTRACEX x, y, z, l, m, n, surf, wavelength

where x, y, z are the input ray position in the local coordinates of the starting surface, l, m, n are
direction cosines in the local coordinates of the starting surface, surf is an integer between 0 and the
number of surfaces minus one, inclusive, and wavelength is optional working wavelength, defaulting to
the primary wavelength.

After ray tracing using keyword RAYTRACE or RAYTRACEX, the result can be read by various functions, as
shown in table 3.8-1:

Table 3.8-1: functions used to read back ray tracing result

Functions Description

RAYX(n), RAYY(n), RAYZ(n) The x-coordinate, y-coordinate, and z-coordinate of the ray

intercept. n is the surface number.

RAGX(n), RAGY(n), RAGZ(n) The global x, y and z coordinate of the ray intercept. n is the surface

number.

RAYL(n), RAYM(n), RAYN(n) The x-direction cosine, y-direction cosine, and z-direction cosine of

the ray following the surface. n is the surface number.

RANX(n), RANY(n), RANZ(n) The x-direction cosine, y-direction cosine, and z-direction cosine of

the surface normal. n is the surface number.

RAYT(n) The ray path length from the previous surface to the specified

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 104

surface. The path length may be negative. n is the surface number.

RAYO(n) The ray optical path length from the previous surface to the

specified surface. The optical path length is the path length times

the index of refraction, either or both of which may be negative. For

rays inside a non-sequential surface, RAYO returns the sum of the

path length times the index of refraction of all objects the ray

passed through. n is the surface number.

RAYV() 0 if ray was not vignetted, else vignetted surface number.

RAYE() The ray-trace error flag, 0 if no error.

Additionally, ZPL provided the following keywords related to ray tracing: SCATTER, SETAIM, and

SETAIMDATA.

SCATTER is used to control whether sequential surface scattering is done while tracing rays. The syntax

is:

SCATTER ON

or

 SCATTER OFF

The default condition at the start of a ZPL program is SCATTER OFF, and all rays will be traced

deterministically. If SCATTER ON is executed, sequential surface scattering will be enabled for all

subsequent RAYTRACE commands.

SETAIM is used to set the state of the ray aiming function. The syntax is:

SETAIM state

where state is 0 for ray aiming off and 1 for ray aiming on.

SETAIMDATA is used to set various data for the ray aiming function. The syntax is:

SETAIMDATA code, value

where code and value are used according to table 3.8-2.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 105

Table 3.8-2: code and value for keyword SETAIMDATA

Code Property

1 Sets "Use Ray Aiming Cache" to true if value is 1, or false if value is 0.

2 Sets "Robust Ray Aiming" to true if value is 1, or false if value is 0.

3 Sets "Scale Pupil Shift Factors by Field" to true if value is 1, or false if value is 0.

4, 5, 6 Sets the value of the x, y, and z pupil shift, respectively.

7, 8 Sets the value of the x and y pupil compress, respectively.

We will give an example of ray tracing in ZPL program. In this example, we assume the optical system is

the doublet defined in program ex30401.ZPL. We will trace a marginal ray, a chief ray and an arbitrary

ray, and read back the interception information of the rays and different surfaces. The program is

shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 106

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 107

In this program, we defined a marginal ray, a chief ray, and an arbitrary ray, traced the rays, and read

back ray tracing result with various functions. Please note that when we read the interception position

of rays and surfaces, for marginal ray, the coordinates we read are local ones relative to the surface

apex (line 17 in the program), and for chief ray, the coordinates are global ones (line 33 in the program).

The result of the program is shown below:

Fig. 3.8-1 Result of program ex30801.ZPL

Besides the ray tracing commands mentioned above, ZPL also provided two keywords POLDEFINE and

POLTRACE specifically for polarized light ray tracing. POLDEFINE is used to set initial polarization state,

and POLTRACE is used to do polarization ray tracing. The syntax for POLDEFINE is:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 108

POLDEFINE Jx, Jy, PhaX, PhaY

where Jx and Jy are Jones electric field magnitudes, PhaX and PhaY are phases in degrees. The input
values are automatically normalized to have unity magnitude. The default values are 0, 1, 0, and 0,
respectively. Once the polarization state is defined, it remains the same until changed.

The syntax for POLTRACE is:

POLTRACE Hx, Hy, Px, Py, wavelength, vec, surf

where Hx and Hy are normalized object coordinates with values between -1 and 1; Px and Py are pupil
coordinates with values also between -1 and 1; wavelength is the wavelength order number between 1
and the the maximum number of defined wavelengths; vec is an integer number between 1 and 4 for
the 4 default ZPL vector arrays; surf is the surface number between 1 and the number of total surfaces,
inclusive. The input polarization state of the ray is defined by the POLDEFINE keyword.

Once the ray is traced, the polarization data for the ray is placed in the vector variable specified by the
vec expression. The data storage format is shown in table 3.8-3:

Table 3.8-3: format of polarization ray tracing result storage

Array Position Description

0 n, the number of data entries in the vector. 0 means there is an error.

1 The ray intensity after the surface

2 E-Field X component, real

3 E-Field Y component, real

4 E-Field Z component, real

5 E-Field X component, imaginary

6 E-Field Y component, imaginary

7 E-Field Z component, imaginary

8 S-Polarization field amplitude reflection, real

9 S-Polarization field amplitude reflection, imaginary

10 S-Polarization field amplitude transmission, real

11 S-Polarization field amplitude transmission, imaginary

12 P-Polarization field amplitude reflection, real

13 P-Polarization field amplitude reflection, imaginary

14 P-Polarization field amplitude transmission, real

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 109

15 P-Polarization field amplitude transmission, imaginary

16 E-Field X direction phase Px

17 E-Field Y direction phase Py

18 E-Field Z direction phase Pz

19 Major axis length of polarization ellipse

20 Minor axis length of polarization ellipse

21 Angle of polarization ellipse in radians

22 The surface number at which the ray was vignetted or zero if not vignetted

23 S-Polarization ray amplitude reflection, real

24 S-Polarization ray amplitude reflection, imaginary

25 S-Polarization ray amplitude transmission, real

26 S-Polarization ray amplitude transmission, imaginary

27 P-Polarization ray amplitude reflection, real

28 P-Polarization ray amplitude reflection, imaginary

29 P-Polarization ray amplitude transmission, real

30 P-Polarization ray amplitude transmission, imaginary

We now give an example to discuss the usage of POLDEFINE and POLTRACE in ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 110

Example 3.8-2: Polarization ray tracing

In this example, we assume the optical is the doublet defined in ex30401.ZPL. We first set the initial

polarization state (lines 6~10) and defined a chief ray (lines 13~16), selected default vector vec1 for data

storage, and then started polarization ray tracing. The result is shown below:

Fig. 3.8-2 Result of program ex30802.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 111

3.9 System Analysis

Zemax provided a lot of analysis tools to evaluate the performance of an optical system, with many of

them providing text output. For example, the menu option Wavefront Map in figure 3.9-1(a) can display

the wavefront map at a given surface, as shown in figure 3.9-1(b), as well as text information of the

wavefront map shown in figure 3.9-1(c). In this example we assume the optical system is the doublet

defined in example ex30401.ZPL.

(a) ZEMAX analysis tool menu option

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 112

(b) graphical output of the analysis result

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 113

(c) text output of the analysis result

Fig. 3.9-1: ZEMAX analysis options and different output of the result

For the text output, ZPL provided a keyword GETTEXTFILE to read related information and store the

result in a text file. The syntax is:

GETTEXTFILE textfilename$, type, settingsfilename$, flag

The textfilename argument is a string for the target file name, including the full path and extension of

the file name. The string function $TEMPFILENAME can be used to define a suitable temporary file

name. The type argument is a 3 character string code that indicates the type of analysis to be

performed, as shown in table 3.9-1. The string codes are identical to those used for the button bar in

Zemax. A list of string codes may be found on the “Buttons” tab of the File, Preferences dialog box. If no

type is provided or recognized, a standard ray trace will be generated.

The settingsfilename$ argument is a string for using or saving the settings, depending on the value of

the flag parameter. If the flag value is 0, then the default settings will be used. If the lens file has its own

default settings, then those will be used; these are the settings stored in the “lensfilename.cfg” file. If no

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 114

lens specific default settings exist, then the default settings for all Zemax files, stored in the file

“Zemax.CFG” will be used, if any. If no previous settings have been saved for this or any other lens, then

the default settings used are the “factory” defaults used by Zemax. If the flag value is 1, then the

settings provided in the settings file, if valid, will be used to generate the file. If the data in the settings

file is in anyway invalid, then the default settings will be used to generate the file. The only valid settings

files are those generated by Zemax, then renamed and saved to a new user defined file name. If the flag

value is 2, then the settings provided in the settings file, if valid, will be used and the settings box for the

requested feature will be displayed. After the user makes any changes to the settings the file will then

be generated using the new settings. The dialog boxes used to change the analysis settings use the data

from the lens currently in the Lens Data Editor.

No matter what the flag value is, if a valid file name is provided for the settingsfilename, the settings

used will be written to the settings file, overwriting any data in the file. To modify the settings defined

within an existing settings file, use keyword MODIFYSETTINGS.

Please note that only text, and not graphic files, are supported by GETTEXTFILE.

Table 3.9-1: type code used in keyword GETTEXTFILE

Code Description

Bfv Beam File Viewer

Caa Coating Abs. vs Angle

Car Cardinal Points

Caw Coating Abs. vs Wavelength

Cda Coating Diattenuation vs Angle

Cdw Coating Diatten. vs Wavelength

Cfs Chromatic Focal Shift

Chk System Check

Cls Coating List

Cna Coating Retardation vs Angle

Cnw Coating Retardation vs Waveleng

Con Conugate Surface Analysis

Cpa Coating Phase vs Angle

Cpw Coating Phase vs Wavelength

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 115

Cra Coating Refl. vs Angle

Crw Coating Refl. vs Wavelength

Cta Coating Tran. vs Angle

Ctw Coating Tran. vs Wavelength

Dim Diffraction Image Analysis

Dip Dipvergence/Convergence Data

Dis Dispersion Diagram

Enc Diff Encircled Energy

Fcd Field Curvature/ Distortion

Fcl Fiber Coupling

Fmm FFT MTF Map

Foa Foucault Analysis

Foo Footprint Analysis

Fps FFT PSF

Gbp Paraxial Gaussion Beam

Gbs Skew Gaussian Beam

Gee Geom Encircled Energy

Gip Grin Profile

Gmm Geometric MTF map

Gmp Glass Map

Gpr Gradium Profile

Grd Grid Distortion

Gtf Geometric MTF

Gvf Geometric MTF vs Field

Hcs Huygens PSF Cross Section

Hmf Huygens MTF

Hps Huygens PSF

Hsm Huygens Surface MTF

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 116

Htf Huygens Through Focus MTF

Ibm Geomatric Bitmap Ima. Analysis

Ilf Illumination Surface

Ils Illumination XY Scan

Ima Geometric Energy Analysis

Imv IMA/BIM File Viewer

Int Interferogram

Lat Lateral Color

Lin Geom Line/Edge Spread

Lon Longitudinal Aberration

Lsf FFT Line/Edge Spread

Mfl Merit Function List

Mtf FFT MTF

Mth FFT MTF vs field

Opd Opd Fan

Pab Pupil Aberration Fan

Pal Power Field Map

Pcs FFT PSF cross section

Pha Polarization Phase Abberation

Pmp Polarization Pupil Map

Pol Polarization Ray Trace

Pop Physical Optics Propagation

Ppm Power Pupil Map

Pre Prescription Data

Ptf Polarization Transmission Fan

Ray Ray Fan

Rel Relative Illumination

Rfm RMS Field Map

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 117

Rmf RMS vs. Focus

Rms RMS vs. Field

Rmw RMS vs. Wavelength

Rtr Ray Trace

Sag Sag Table

Sei Seidel Coefficients

Smf Surface MTF

Spt Spot Diagram

Srp Surface Phase

Srs Surface Sag

Sur Surface Data

Sys System Data

Tfg Geometric through focus MTF

Tfm FFT Through Focus MTF

Tls Tolerance List

Tpl Test Plate List

Tra Polarization Transmission Data

Trw Internal Transmission vs Lambda

Tsm Tolerance Data Summary

Uni Universal Plot – 1D

Un2 Universal Plot – 2D

Vig Vignetting Plot

Wfm Wavefront Map

Xdi Extended Diffra Image Analysis

Xse Extended source encircled energ

Yni YNI Contribution

Yyb Y-Ybar

Zat Zernike Annular Coefficients

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 118

Zfr Zernike Fringe Coefficients

Zst Zernike Standard Coefficients

In example 3.9-1, we will show how to get the analysis result as in figure 3.9-1(c).

In this program, we created a temporary file through function $TEMPFILENAME(), then used keyword

GETTEXTFILE to read out the analysis result of wavefront and save it to the temporary file. After that,

we only need to open the temporary file, read the content line by line and display it on the screen, and

we can get the text information of the wavefront as shown in figure 3.9-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 119

Fig. 3.9-2: The analysis result of wavefront read by ZPL program.

If we compare figure 3.9-1 and 3.9-2, we can find that they are actually the same.

When we use keyword GETTEXTFILE to analyze and read information, if we want to modify the setting

file, we can use keyword MODIFYSETTINGS. The syntax is:

MODIFYSETTINGS settingsfilename$, type, value

In this command, the settingsfilename must be in quotes, or be a string variable name, and include the

full path, name, and extension for the file to be modified. The type argument is a text mnemonic that

indicates which setting within the file is to be modified. The supported values for the type argument are

listed in the table below. Because there are many different types of analysis windows, and each has

many different settings available, the list of types does not include all possible settings. After the

command is executed, the old setting file will be updated.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 120

Table 3.9-2: type codes supported by MODIFYSETTINGS

Feature Available type codes

2D Layout LAY_RAYS: The number of rays.

Detector Viewer DVW_SURFACE: The surface number. Use 1 for Non-Sequential mode.

DVW_DETECTOR: The detector number.

DVW_SHOW: The “show as” setting. The meaning depends upon the type of

window displayed: For Graphics Windows: Use 0 for grey scale, 1 for inverted

grey scale, 2 for false color, 3 for inverted false color, 4 for cross section row,

and 5 for cross section column. For Text Windows: Use 0 for full pixel data, 1

for cross section row, and 2 for cross section column.

DVW_ROWCOL: The row or column number for cross section plots.

DVW_ZPLANE: The Z-Plane number for detector volumes.

DVW_SCALE: The scale mode. Use 0 for linear, 1 for Log -5, 2 for Log -10,

and 3 for Log - 15.

DVW_SMOOTHING: The integer smoothing value.

DVW_DATA: Use 0 for incoherent irradiance, 1 for coherent irradiance, 2 for

coherent phase, 3 for radiant intensity, 4 for radiance (position space), and 5 for

radiance (angle space).

DVW_ZRD: The ray data base name, or null for none.

DVW_FILTER: The filter string.

DVW_MAXPLOT: The maximum plot scale.

DVW_MINPLOT: The minimum plot scale.

DVW_OUTPUTFILE: The output file name.

Extended Diffraction

Image Analysis

EXD_DISPLAYSIZE: The display size.

EXD_FIELD: The field number.

EXD_FILESIZE: The file size.

EXD_WAVE: The wavelength number.

FFT Line/Edge Spread LSF_COHERENT: Use 0 for incoherent, 1 for coherent

LSF_TYPE: Use 0-9 for X-Linear, Y-Linear, X-Log, Y-Log, X-Phase, Y-

Phase, XReal, Y-Real, X-Imaginary, or Y-Imaginary, respectively.

LSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.

LSF_SPREAD: Use 0 for line, 1 for edge.

LSF_WAVE: The wavelength number, use 0 for polychromatic (incoherent

only)

LSF_FIELD: The field number.

LSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.

LSF_PLOTSCALE: The plot scale.

FFT PSF PSF_TYPE: Use 0-4 for Linear, Log, Phase, Real, or Imaginary, respectively.

PSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.

PSF_WAVE: The wavelength number, use 0 for polychromatic.

PSF_FIELD: The field number.

PSF_SURFACE: The surface number, use 0 for image.

PSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.

PSF_NORMALIZE: Use 0 for unnormalized, 1 for unity normalization.

PSF_IMAGEDELTA: The image point spacing in micrometers.

FFT PSF Cross PSF_TYPE: Use 0-9 for X-Linear, Y-Linear, X-Log, Y-Log, X-Phase, Y-Phase,

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 121

Section XReal, Y-Real, X-Imaginary, or Y-Imaginary, respectively.

PSF_ROW: The row number (if doing an X scan) or column number (if doing a

Y scan). Use 0 for center.

PSF_SAMP: The sampling, use 1 for 32 x 32, 2 for 64 x 32, etc.

PSF_WAVE: The wavelength number, use 0 for polychromatic.

PSF_FIELD: The field number.

PSF_POLARIZATION: Use 0 for unpolarized, 1 for polarized.

PSF_NORMALIZE: Use 0 for unnormalized, 1 for unity normalization.

PSF_PLOTSCALE: The plot scale.

Footprint Diagram FOO_RAYDENSITY: The ray density. Use 0 for ring, 1 for 10, 2 for 15, 3 for

20 etc.

FOO_SURFACE: The surface number.

FOO_FIELD: The field number.

FOO_WAVELENGTH: The wavelength number.

FOO_DELETEVIGNETTED: Delete vignetted, use 0 for no, 1 for yes.

Geometric Bitmap

Image Analysis

GBM_FIELDSIZE: The field Y size.

GBM_RAYS: The number of rays per source pixel.

GBM_XPIX: The number of X pixels.

GBM_YPIX: The number of Y pixels.

GBM_XSIZ: The X pixel size.

GBM_YSIZ: The Y pixel size.

GBM_INPUT: The input file name

GBM_OUTPUT: The output file name

GBM_SURFACE: The surface number

GBM_ROTATION: The rotation setting

Geometric Image

Analysis

IMA_FIELD: The field size.

IMA_IMAGESIZE: The image size.

IMA_IMANAME: The image file name.

IMA_KRAYS: The number of rays x 1000.

IMA_NA: The numerical aperture.

IMA_OUTNAME: The output file name.

IMA_SURFACE: The surface number.

IMA_PIXELS: The number of pixels.

FFT Through Focus

MTF

TFM_SAMP: The sampling. Use 1 for 32x32, 2 for 64x64, etc.

TFM_DELTAFOC: The delta focus.

TFM_FREQ: The spatial frequency for which the data is plotted.

TFM_STEPS: The number of focal plane steps.

TFM_WAVE: The wavelength number. Use 0 for all.

TFM_FIELD: The field number. Use 0 for all.

TFM_TYPE: The data type. Use 0 for modulation, 1 for real, 2 for imaginary, 3

for phase, or 4 for square wave.

TFM_POLAR: Use polarization. Use 0 for no, 1 for yes.

TFM_DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens MTF HMF_PUPILSAMP: The pupil sampling. Use 1 for 32x32, 2 for 64x64, etc.

HMF_IMAGESAMP: The image sampling. Use 1 for 32x32, 2 for 64x64, etc.

HMF_IMAGEDELTA: The image point spacing in micrometers.

HMF_CONFIG: The configuration number. Use 0 for all, 1 for current, etc.

HMF_WAVE: The wavelength number. Use 0 for polychromatic.

HMF_FIELD: The field number. Use 0 for all.

HMF_TYPE: The data type. Currently only modulation (0) is supported.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 122

HMF_MAXF: The maximum spatial frequency.

HMF_POLAR: Use polarization. Use 0 for no, 1 for yes.

HMF_DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens Through

Focus MTF

HTF_PUPILSAMP: The pupil sampling. Use 1 for 32x32, 2 for 64x64, etc.

HTF_IMAGESAMP: The image sampling. Use 1 for 32x32, 2 for 64x64, etc.

HTF_IMAGEDELTA: The image point spacing in micrometers.

HTF_CONFIG: The configuration number. Use 0 for all, 1 for current, etc.

HTF_FREQ: The spatial frequency for which data is plotted.

HTF_WAVE: The wavelength number. Use 0 for all.

HTF_FIELD: The field number. Use 0 for all.

HTF_TYPE: The data type. Currently only modulation (0) is supported.

HTF_DELTAFOC: The delta focus.

HTF_STEPS: The number of focal plane steps.

HTF_POLAR: Use polarization. Use 0 for no, 1 for yes.

HTF_DASH: Use dashes. Use 0 for no, 1 for yes.

Huygens MTF vs.

Field

HMH_SAMP: The sampling. Use 1 for 32x32, 2 for 64x64, etc.

HMH_SCANTYPE: The field scan type. Use 0 for +Y, 1 for +X, etc.

HMH_WAVE: The wavelength. Use 0 for all.

HMH_FIELDDENSITY: The field density.

HMH_FREQ1: Spatial frequency 1.

HMH_FREQ2: Spatial frequency 2.

HMH_FREQ3: Spatial frequency 3.

HMH_FREQ4: Spatial frequency 4.

HMH_FREQ5: Spatial frequency 5.

HMH_FREQ6: Spatial frequency 6.

HMH_POLAR: Use polarization. Use 0 for no, 1 for yes.

HMH_DASH: Use dashes. Use 0 for no, 1 for yes.

HMH_REMOVEVIGNETTING: Remove vignetting factors. Use 0 for no, 1 for

yes.

Huygens PSF HPS_PUPILSAMP: The pupil sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.

HPS_IMAGESAMP: The image sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.

HPS_WAVE: The wavelength number, use 0 for polychromatic.

HPS_FIELD: The field number.

HPS_IMAGEDELTA: The image point spacing in micrometers.

HPS_TYPE: The data type. Use 0-8 for Linear, Log -1, Log -2, Log -3, Log -4,

Log -5, Real, Imaginary, or Phase, respectively.

Huygens PSF Cross

Section

HPC_PUPILSAMP: The pupil sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.

HPC_IMAGESAMP: The image sampling, use 1 for 32 x 32, 2 for 64 x 64, etc.

HPC_WAVE: The wavelength number, use 0 for polychromatic.

HPC_FIELD: The field number.

HPC_IMAGEDELTA: The image point spacing in micrometers.

HPC_TYPE: The data type. Use 0-9 for X-Linear, X-Log, Y-Linear, Y-Log,

XReal, Y-Real, X-Imaginary, Y-Imaginary, X-Phase, or Y-Phase, respectively.

Illumination XY Scan ILL_SOURCE: The source size.

ILL_SMOOTH: The smoothing value to use.

ILL_DETSIZE: The detector size.

ILL_SURFACE: The surface number.

Image Simulation ISM_INPUTFILE: The input file name. This should be specified without a path.

ISM_FIELDHEIGHT: The Y field height.

ISM_OVERSAMPLING: Oversample value. Use 0 for none, 1 for 2X, 2 for 4x,

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 123

etc.

ISM_GUARDBAND: Guard band value. Use 0 for none, 1 for 2X, 2 for 4x, etc.

ISM_FLIP: Flip Source. Use 0 for none, 1 for TB, 2 for LR, 3 for TB&LR.

ISM_ROTATE: Rotate Source: Use 0 for none, 1 for 90, 2 for 180, 3 for 270.

ISM_WAVE: Wavelength. Use 0 for RGB, 1 for 1+2+3, 2 for wave #1, 3 for

wave #2, etc.

ISM_FIELD: Field number.

ISM_PSAMP: Pupil Sampling. Use 1 for 32x32, 2 for 64x64, etc.

ISM_ISAMP: Image Sampling. Use 1 for 32x32, 2 for 64x64, etc.

ISM_PSFX, ISM_PSFY: The number of PSF grid points.

ISM_ABERRATIONS: Use 0 for none, 1 for geometric, 2 for diffraction.

ISM_POLARIZATION: Use 0 for no, 1 for yes.

ISM_FIXEDAPERTURES: Use 0 for no, 1 for yes.

ISM_USERI: Use 0 for no, 1 for yes.

ISM_SHOWAS: Use 0 for Simulated Image, 1 for Source Bitmap, and 2 for

PSF Grid.

ISM_REFERENCE: Use 0 for chief ray, 1 for vertex, 2 for primary chief ray.

ISM_SUPPRESS: Use 0 for no, 1 for yes.

ISM_PIXELSIZE: Use 0 for default or the size in lens units.

ISM_XSIZE, ISM_YSIZE: Use 0 for default or the number of pixels.

ISM_FLIPIMAGE: Use 0 for none, 1 for top-bottom, etc.

ISM_OUTPUTFILE: The output file name or empty string for no output file.

MTF - FFT MTF_SAMP: The pupil sampling, use 1 for 32, 2 for 64, etc.

MTF_WAVE: The wavelength number, use 0 for all.

MTF_FIELD: The field number, use 0 for all.

MTF_TYPE: Use 0 for modulation, 1 for real, 2 for imaginary, 3 for phase, 4

for square wave.

MTF_SURF: The surface number, use 0 for image.

MTF_MAXF: The maximum frequency, use 0 for default.

MTF_SDLI: Show diffraction limit, 0 for no, 1 for yes.

MTF_POLAR: Polarization, 0 for no, 1 for yes.

MTF_DASH: Use dashes, 0 for no, 1 for yes.

NSC Object Viewer SHA_ROTX: The x rotation in degrees.

SHA_ROTY: The y rotation in degrees.

SHA_ROTZ: The z rotation in degrees.

NSC Shaded Model SHA_ROTX: The x rotation in degrees.

SHA_ROTY: The y rotation in degrees.

SHA_ROTZ: The z rotation in degrees.

Partially Coherent

Image Analysis

PCI_FIELD: The field number.

PCI_FILESIZE: The file size.

PCI_WAVE: The wavelength number.

PCI_RESAMPLE: The resample image setting, 0 for no 1 for yes.

PCI_RSNX: The resample number x

PCI_RSNY: The resample number y

PCI_RSDCX: The resample decenter x

PCI_RSDCY: The resample decenter y

PCI_RSDLX: The resample delta x

PCI_RSDLY: The resample delta y

Polarization Pupil Map PPM_SAMP: The sampling, use 0 for 3x3, 1 for 5x5, 2 for 7x7, etc.

PPM_FIELD: The field number.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 124

PPM_WAVE: The wavelength number.

PPM_SURFACE: The surface number.

PPM_JX: The Jx amplitude.

PPM_JY: The Jy amplitude.

PPM_PX: The Px phase.

PPM_PY: The Py phase.

PPM_ADDCONFIG: The add configs string.

PPM_SUBCONFIGS: The subtract configs string.

Physical Optics

Propagation - General

Tab

POP_END: The end surface.

POP_FIELD: The field number.

POP_START: The starting surface.

POP_WAVE: The wavelength number.

Physical Optics

Propagation - Beam

Definition Tab

POP_AUTO: Simulates the pressing of the “auto” button which chooses

appropriate X and Y beam widths based upon the sampling and other settings.

POP_BEAMTYPE: Selects the beam type. Use 0 for Gaussian Waist, 1 for

Gaussian Angle, 2 for Gaussian Size + Angle, 3 for Top Hat, 4 for File, 5 for

DLL and 6 for Multimode.

POP_PARAMn: Sets beam parameter n, for example, use POP_PARAM3 to set

parameter3.

POP_PEAKIRRAD: Sets the normalization by peak irradiance.

POP_POWER: Sets the normalization by total beam power.

POP_SAMPX: The X direction sampling, use 1 for 32, 2 for 64, etc.

POP_SAMPY: The Y direction sampling, use 1 for 32, 2 for 64, etc.

POP_SOURCEFILE: The file name if the starting beam is defined by a ZBF

file, DLL, or multimode file.

POP_WIDEX: The X direction width.

POP_WIDEY: The Y direction width.

Physical Optics

Propagation - Fiber

Data Tab

POP_COMPUTE: Use 1 to check the fiber coupling integral on, 0 to check it

off.

POP_FIBERFILE: The file name if the fiber mode is defined by a ZBF or DLL.

POP_FIBERTYPE: Use the same values as POP_BEAMTYPE above, except

for multimode which is not yet supported.

POP_FPARAMn: Sets fiber parameter n, for example, use POP_FPARAM3 to

set fiber parameter3.

POP_IGNOREPOL: Use 1 to ignore polarization, 0 to consider polarization.

POP_POSITION: Fiber position setting. Use 0 for chief ray, 1 for surface

vertex.

POP_TILTX: The X-Tilt.

POP_TILTY: The Y-Tilt.

Relative Illumination REL_RAYDENSITY: The number of rays.

REL_FIELDDENSITY: The number of field points.

REL_WAVE: The wavelength number, use 0 for all.

REL_POLAR: Use 1 to use polarization, 0 to ignore polarization

REL_LOG: Use 1 for a log scale, 0 for linear.

REL_REMOVEVIGNETTING: Use 1 to remove vignetting factors, otherwise

0.

REL_SCANTYPE: Use 0 for +y, 1 for +x, 2 for -y, or 3 for -x scan direction.

Shaded Model SHA_ROTX: The x rotation in degrees.

SHA_ROTY: The y rotation in degrees.

SHA_ROTZ: The z rotation in degrees.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 125

Spot Diagram SPT_RAYS: The ray density.

Surface Sag SRS_SAMP: The sampling. Use 1 for 33x33, 2 for 65x65, etc.

SRS_SURF: The surface number.

Universal Plot 1D UN1_CATEGORY: Use 0 for surface, 1 for system, 2 for config.

UN1_PARAMETER: Use 0 for first option, 1 for second option, etc.

UN1_SURFACE: The surface or configuration number.

UN1_STARTVAL: The start value for the independent variable.

UN1_STOPVAL: The stop value for the independent variable.

UN1_STEPS: The number of steps between start and stop.

UN1_OPERAND: The optimization operand name.

UN1_MFLINE: The optimization operand line number. Use 0 for MF value.

UN1_PAR1: Operand parameter 1.

UN1_PAR2: Operand parameter 2.

UN1_PAR3: Operand parameter 3.

UN1_PAR4: Operand parameter 4.

UN1_PAR5: Operand parameter 5.

UN1_PAR6: Operand parameter 6.

UN1_PAR7: Operand parameter 7.

UN1_PAR8: Operand parameter 8.

UN1_PLOTMIN: The minimum plot value for the dependent variable.

UN1_PLOTMAX: The maximum plot value for the dependent variable.

UN1_TITLE: The plot title.

Universal Plot 2D UN2_CATEGORYX: Use 0 for surface, 1 for system, 2 for config.

UN2_PARAMETERX: Use 0 for first option, 1 for second option, etc.

UN2_SURFACEX: The surface or configuration number.

UN2_STARTVALX: The start value for the independent variable.

UN2_STOPVALX: The stop value for the independent variable.

UN2_STEPSX: The number of steps between start and stop.

UN2_CATEGORYY: Use 0 for surface, 1 for system, 2 for config.

UN2_PARAMETERY: Use 0 for first option, 1 for second option, etc.

UN2_SURFACEY: The surface or configuration number.

UN2_STARTVALY: The start value for the independent variable.

UN2_STOPVALY: The stop value for the independent variable.

UN2_STEPSY: The number of steps between start and stop.

UN2_OPERAND: The optimization operand name.

UN2_MFLINE: The optimization operand line number. Use 0 for MF value.

UN2_PAR1: Operand parameter 1.

UN2_PAR2: Operand parameter 2.

UN2_PAR3: Operand parameter 3.

UN2_PAR4: Operand parameter 4.

UN2_PAR5: Operand parameter 5.

UN2_PAR6: Operand parameter 6.

UN2_PAR7: Operand parameter 7.

UN2_PAR8: Operand parameter 8.

UN2_SHOWAS: Data display. Use 0 for surface, 1 for contour, etc.

UN2_CONTOURFORMAT: Contour format string.

UN2_PLOTMIN: The minimum plot value for the dependent variable.

UN2_PLOTMAX: The maximum plot value for the dependent variable.

UN2_TITLE: The plot title.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 126

Wavefront Map WFM_SAMP: The sampling, use 1 for 32, 2 for 64, etc.

WFM_FIELD: The field number.

WFM_WAVE: The wavelength number.

WFM_SUBSR: The sub aperture radius.

WFM_SUBSX: The sub aperture X decenter.

WFM_SUBSY: The sub aperture Y decenter.

Example 3.9-2 shows how to modify settings using keyword MODIFYSETTINGS in the program. This

program is almost the same as example 3.9-1, with only lines to modify settings added at the very

beginning (lines 5 and 6), as shown below:

Please note that the parameter setting file is placed in the same folder as the lens file. In this program,

we set the wavefront sampling value as 3, i.e. 128x128. The result of the program is shown in figure 3.9-

3:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 127

Fig. 3.9-3: Analysis result of the wavefront read by ZPL program after changing setting.

If we compare this result to that shown in figure 3.9-2, we can see that the sampling value has been

changed to “Pupil grid size: 128 by 128”.

Besides the method discussed above, ZPL also provided many functions and keywords to read some

commonly used analysis information directly, such as IMAE(), OPDC(), OPTH(), GETLSF, GETMTF, GETPSF,

GETZERNIKE, POP, XDIFFIA, GETT(), etc.

Function IMAE(seed) is used to read the geometric image analysis efficiency. If seed is 0, each time

when the function is called, the same random number will be used, otherwise, a different random

number will be used.

Function OPDC() is used to calculate The optical path difference, and is only valid after executing

RAYTRACE command. OPDC will not return valid data if the chief ray cannot be traced. Please note that

no matter what the lens unit is, the returned unit from this function is always mm. An example is given

below for the application of this function.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 128

We assume the optical system is the doublet defined in program ex30401.ZPL. In this program, we first

defined an arbitrary ray. For the sake of discussion, we use marginal ray here. Then, we did ray tracing

using RAYTRACE command, and finally we called function OPDC() to compare the optical path difference

between the marginal ray and the chief ray. The result is shown below:

Fig. 3.9-5: Result of program ex30904.ZPL

Function OPTH(n) is used to calculate the total optical path length along the ray to the specified surface.

It considers the phase added by diffractive surfaces such as gratings, holograms, and binary optics. It is

valid only after a RAYTRACE call. OPTH will not return valid data if the chief ray cannot be traced. Please

note that different from function OPDC(), the unit of the return value of function OPTH(n) is current lens

unit. Example 3.9-5 shows how to use this function in ZPL program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 129

We assume the optical system is the doublet defined in program ex30401.ZPL. In this program, we first

defined an arbitrary ray (the marginal ray), then, we did ray tracing using RAYTRACE command, and

finally we called function OPTH() to calculate the total light path of the defined ray. In the program we

also used function UNIT() to read current lens unit. The result is shown below:

Fig. 3.9-6: result of program ex30905.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 130

Keyword GETLSF is used to calculate the geometric edge and line response functions. The syntax is:

GETLSF wave, field, sampling, vector, maxradius, use_polarization

Wave is an integer corresponding to the wavelength number to use for the calculation. A value of zero

indicates a polychromatic calculation. Field must be an integer between 1 and the maximum number of

fields. The value indicates which field position to use. Sampling may be 1 (32 x 32), 2 (64 x 64), 3 (128 x

128), etc... up to 2048 x 2048. The vector argument must be an integer value between 1 and 4, and

specifies which vector array the data should be placed in. The maxradius argument is the maximum

radial coordinate of the edge and line spread functions; this is the half-width of the data range. Use 0 for

a default width. If any of the arguments fall outside the valid ranges, then the nearest acceptable value

is used instead. The data is returned as an array of values in the specified vector. Vector position 0-3 will

hold the number of points "N", the starting x coordinate (this is the negative of the half width of the

data range), the delta coordinate, and the offset (defined below), respectively. The offset is the first

position in the vector that holds the edge or line spread data. Starting at the offset, the first N value are

the tangential LSF response. The next N values are the sagittal LSF response. The tangential and sagittal

ERF values are in the next two groups of N data values. If the current vector size is not large enough,

Zemax will automatically increase the size of the vectors to hold the LSF data in the manner described in

SETVECSIZE.

Example 3.9-6 shows how to use this keyword in ZPL program:

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the geometric

edge and line response functions of the system using keyword GETLSF, and displayed the result stored in

vector VEC1. The result is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 131

Fig. 3.9-7: result of program ex30906.ZPL

From the result we can see that the index of array VEC1 starts from 0, which is different from user

defined vector array that starts from 1. We have mentioned this before when we discuss array in last

chapter. VEC1(0) ~ VEC1(3) store number of data points N = 101, coordinate x = -10 of starting point,

step size 0.2 and offset 10. The actual data is determined by the offset. Starting from VEC1(10), the first

group of N = 101 data is the tangential LSF response, the next N values are the sagittal LSF response. The

tangential and sagittal ERF values are in the next two groups of N data values. The data ends at

VEC1(413), as shown in figure 3.9-7.

Keyword GETMTF is used to calculate tangential and sagittal MTF, real part, imaginary part, phase, or
square wave response data for the currently loaded lens file, and places the data in one of the vector
arrays (either VEC1, VEC2, VEC3, or VEC4). The syntax is:

GETMTF freq, wave, field, sampling, vector, type

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 132

The freq argument is the desired spatial frequency in MTF Units. If the frequency is less than zero, or

greater than the cutoff frequency, GETMTF returns zero. Wave is an integer corresponding to the

wavelength number to use for the calculation. A value of zero indicates a polychromatic calculation.

Field must be an integer between 1 and the maximum number of fields. The value indicates which field

position to use. Sampling may be 1 (32 x 32), 2 (64 x 64), 3 (128 x 128), etc... up to 2048 x 2048. The

vector argument must be an integer value between 1 and 4, and specifies which vector array the data

should be placed in. The type argument refers to the data type: 1 for MTF, 2 for real part, 3 for

imaginary part, 4 for phase in radians, 5 for square wave MTF. If any of the arguments fall outside the

valid ranges, then the nearest acceptable value is used instead. This calculation uses the FFT MTF

method. The data is returned in one of the vector arrays with the following format: Vector position 0:

tangential response; Vector position 1: sagittal response.

Example 3.9-7 shows how to use this keyword in ZPL program:

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the tangential

and sagittal MTF of the system using keyword GETMTF, and displayed the result stored in vector VEC1.

The result is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 133

Fig. 3.9-8: result of program ex30907.ZPL

Keyword GETPSF is used to calculate the diffraction point spread function (PSF) using the FFT algorithm

and places the data in one of the vector arrays (either VEC1, VEC2, VEC3, or VEC4). The syntax is:

GETPSF wave, field, sampling, vector, unnormalized, phaseflag, imagedelta

In this command, wave is an integer corresponding to the wavelength number to use for the calculation.

A value of zero indicates a polychromatic calculation. Field must be an integer between 1 and the

maximum number of fields. The value indicates which field position to use. Sampling may be 1 (32 x 32),

2 (64 x 64), 3 (128 x 128), etc... up to 2048 x 2048. The vector argument must be an integer value

between 1 and 4, and specifies which vector array the data should be placed in. The unnormalized flag is

zero if the data should be normalized to a peak of 1.0, if the unnormalized value is 1, then the data is

returned unnormalized. If phase flag is zero, the data returned is intensity, if 1, then the phase in

degrees is returned. The imagedelta value is the spacing between PSF points in micrometers; use zero

for the default spacing. The wavelength must be monochromatic to compute phase data. If any of the

arguments fall outside the valid ranges, then the nearest acceptable value is used instead. The data is

returned in one of the vector arrays with the following format:

Vector position 0: the total number of PSF data points in the vector array. Usually, this number will be

4*n*n where n is the sampling size (32, 64, etc.). For example, if the sampling density is 2, the pupil

sampling will be 64 x 64, and there will be 128 x 128 or 16,384 values in the array. This will require 8

bytes per number, or a total of 131 kb. A sampling density of 1024 will require at least 8 Mb just for the

array; another 64 Mb or more to compute the PSF. Position 0 also returns other values as error codes. If

position 0 is zero, then the computation was aborted. If -1, then the vector array is not large enough to

hold all the data. Use SETVECSIZE to make the array bigger. If -2, then there is not enough system RAM

to compute the PSF data. If -3, a general error occurred while computing the PSF.

Vector position 1 through 4*n*n holds the PSF data intensity. The first 2n values are the first row, going

left to right from -x to +x, then each subsequent block of 2n values is another row, going from -y to +y.

Vector position 4*n*n+1 holds the spacing between data values in micrometers.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 134

Example 3.9-8 shows how to use this keyword in ZPL program.

Assume the optical system is the doublet defined in program ex30401.ZPL. We calculated the

diffraction point spread function of the system using keyword GETPSF, and displayed the result stored in

vector VEC3. Please note that the default length of vector VEC3 is 1000, too small for the result, so the

return value of VEC3(0) is -1. We added a conditional statement in line 25. If result of -1 is detected,

then go to line 19 to increase the vector length, and redo the calculation, until positive result is obtained.

The result is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 135

Fig. 3.9-9: result of program ex30908.ZPL

Keyword GETZERNIKE is used to calculate Zernike Fringe, Standard, or Annular coefficients for the

currently loaded lens file, and places them in one of the vector arrays (either VEC1, VEC2, VEC3, or

VEC4). The syntax is:

GETZERNIKE maxorder, wave, field, sampling, vector, zerntype, epsilon, reference

The maxorder argument is any number between 1 and 37 for Fringe or between 1 and 231 for Standard

or Annular coefficients, and corresponds to the highest Zernike term desired. Wave and field are the

integer values for the wavelength and field number respectively. The value for sampling determines the

size of the grid used to fit the coefficients. Sampling may be 1 (32 x 32), 2 (64 x 64), etc.... up to 2048 x

2048. The vector argument must be an integer value between 1 and 4, and specifies which vector array

the data should be placed in. The zerntype is 0 for “fringe” Zernike terms, 1 for “Standard” Zernike terms,

and 2 for “Annular” Zernike terms. For Annular Zernike Coefficients epsilon is the annular ratio; this

value is ignored for other Zernike types. To reference the OPD to the chief ray, the reference value

should be zero or omitted; use 1 to reference to the surface vertex. If any of the arguments fall outside

the valid ranges, then the nearest acceptable value is used instead.

The data is returned in one of the vector arrays with the following format: Vector position 1: Peak to

valley in waves; Vector position 2: RMS to the zero OPD line in waves (this value is not physically

meaningful but is provided for reference); Vector position 3: RMS to the chief ray in waves; Vector

position 4: RMS to the image centroid in waves (this is the most physically meaningful number related to

image quality); Vector position 5: Variance in waves; Vector position 6: Strehl ratio; Vector position 7:

RMS fit error in waves; Vector position 8: Maximum fit error (at any one point) in waves. The remaining

vector positions contain the actual Zernike coefficient data. For example, Zernike term number 1 is in

vector position 9, Zernike term 2 is in position 10, and so on.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 136

Keyword POP is used to compute the Physical Optics Propagation (POP) of a beam through the optical

system and saves the surface by surface results to ZBF files. The syntax is:

POP outfilename$, lastsurface

This keyword requires the name of the output ZBF file, an expression that evaluates to the last surface

to propagate to, and optionally the name of a settings file. The filename must be enclosed in quotes if

any blank or other special characters are used. The created ZBF files will be placed in the <pop> folder.

No paths should be provided with the file names. The settings for the POP feature will be those settings

previously saved for the current lens, unless a settings file name is provided. The settings file name must

include the full path, name, and extension. To make adjustments to the settings, open a POP window,

choose the appropriate settings, then press “Save”. By default, all subsequent calls to POP within ZPL

will use the saved settings. The exceptions are the output file name, which is specified as the first

argument after the POP keyword, and the last surface number, which is optionally specified as the

second argument after the POP keyword.

We will discuss more on ZBF file related commands in section 14. Here we just give an example to show

how to use keyword POP in ZPL program. First we assume the optical system is the doublet defined in

program ex30401.ZPL, and also we assume the POP settings are as shown in figure 3.9-10:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 137

(a)

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 138

(b)

Fig. 3.9-10(a)(b): POP settings for program ex30910.ZPL

The program is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 139

In this program, we defined two different file names, and saved POP calculation results of surface 4 and

5 in those two files, respectively. Please note that there is no path name in the program, because all the

ZBF files will be stored in the folder “"…\POP\Beamfiles”. We will use those two files in section 14.

Keyword XDIFFIA is used to compute the Extended Diffraction Image Analysis feature and saves the

result to a ZBF file. The syntax is:

XDIFFIA outfilename$, infilename$

This keyword requires the name of the output ZBF file, and optionally, the name of the input IMA or BIM

file. If the extension to the outfilename is not provided, the extension ZBF will be appended. The

extension must be provided on the infilename. The filenames must be enclosed in quotes if any blank or

other special characters are used. The outfilename will be placed in the <pop> folder. The infilename

must be placed in the <data>\<images> folder. No paths should be provided with the file names.

The settings for the Extended Diffraction Image Analysis feature will be those settings previously saved

for the current lens. To make adjustments to the settings, open an Extended Diffraction Image Analysis

window, choose the appropriate settings, then press "Save". All subsequent calls to XDIFFIA will use the

saved settings. The exceptions are the output file name, which is specified as the first argument after

the XDIFFIA keyword, and the input source file, which is optionally specified as the second argument

after the XDIFFIA keyword.

Function GETT(window_num, line, column) is used to read the value defined by given line and colume of
any open text window defined by window_num. Each columns are delimited by spaces.

Please refer to Zemax User’s Manual for further discussion on system analysis related keywords and

functions.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 140

3.10 Non-Sequential Components

As we mentioned in Chapter 1, in many cases, the analysis of an optical system can only be done

through non-sequential model, such as illumination system analysis and stray light analysis. For this

reason, ZEMAX developed powerful non-sequential analysis tools, and ZPL also provided many related

keywords and functions to utilize those tools.

Non-Sequential Component Editor is an important place to define and modify non-sequential optical

system. We can add and delete various optical components and modify their parameters here.

If we want to add a component in the Non-Sequential Component Editor, we can use keyword

INSERTOBJECT. The syntax is:

INSERTOBJECT surf, object

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object

is the location of the new null object to be placed with value between 1 and current total number of

objects + 1, inclusive. If there are other objects after the new object, their object number will be re-

ordered.

If we want to delete a component from the Non-Sequential Component Editor, we can use keyword

DELETEOBJECT. The syntax is:

DELETEOBJECT surf, object

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object

is the location of the object to be deleted. If there are other objects after it, their object number will be

re-ordered.

Usually, after a new component is added, we need to define its space position and other properties. We

can use keyword SETNSCPOSITION, SETNSCPROPERTY and SETNSCPARAMETER to do so.

SETNSCPOSITION is used to define space position and tilt of a non-sequential object. The syntax is:

SETNSCPOSITION surface, object, code, value

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object

is the location of the object; code is 1 ~ 6 for x, y, z, tilt-x, tilt-y, and tilt-z, respectively; value is the new

value for the specified position.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 141

SETNSCPROPERTY is used to define properties of NSC objects. The syntax is:

SETNSCPROPERTY surface, object, code, face, value

where surf is the surface number of the non-sequential component, 1 for non-sequential mode; object

is the location of the object; code, as defined in the table below, is used to specify what property of the

object is being modified; face is the face number, 0 if not applicable; value is the new value of the

property.

Table 3.10-1 Code for keyword SETNSCPROPERTY

Code Property

The following codes set values on the NSC Editor.

1 Sets the object comment.

2 Sets the reference object number.

3 Sets the “inside of” object number.

4 Sets the object material.

The following codes set values on the Type tab of the Object Properties dialog.

0 Sets the object type. The value should be the name of the object, such as

“NSC_SLEN” for the standard lens. The names for each object type are listed in

the Prescription Report for each object type in the NSC editor. All NSC object

names start with “NSC_”.

13 Sets User Defined Aperture, use 1 for checked, 0 for unchecked.

14 Sets the User Defined Aperture file name.

15 Sets the “Use Global XYZ Rotation Order” checkbox, use 1 for checked, 0 for

unchecked.

16 Sets the “Rays Ignore This Object” combo box, use 0 for Never, 1 for Always,

and 2 for On Launch.

17 Sets the “Object Is A Detector” checkbox, use 1 for checked, 0 for unchecked.

18 Sets the “Consider Objects” list. The argument should be a string listing the object

numbers to consider delimited by spaces, such as “2 5 14”.

19 Sets the “Ignore Objects” list. The argument should be a string listing the object

numbers to ignore delimited by spaces, such as “1 3 7”.

20 Sets the “Use Pixel Interpolation” checkbox, use 1 for checked, 0 for unchecked.

30 Sets the “Use Consider/Ignore Objects When Splitting” checkbox, use 1 for

checked, 0 for unchecked.

The following codes set values on the Coat/Scatter tab of the Object Properties dialog.
5 Sets the coating name for the specified face.

6 Sets the profile name for the specified face.

7 Sets the scatter mode for the specified face: 0 = none, 1 = Lambertian, 2 =

Gaussian, 3 = ABg, 4 = User Defined, 5 = BSDF, 6 = ABg File, 7 = IS Scatter

Catalog.

8 Sets the scatter fraction for the specified face.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 142

9 Sets the number of scatter rays for the specified face.

10 Sets the Gaussian sigma (Gaussian scatter model) or the sample orientation angle

(BSDF or IS Scatter Catalog scatter models) for the specified face.

11 Sets the reflect ABg data name for the specified face.

12 Sets the transmit ABg data name for the specified face.

27 Sets the name of the user defined scattering DLL.

21-26 Sets parameter values on the user defined scattering DLL.

28 Sets the name of the user defined scattering data file.

29 Sets the “Face Is” property for the specified face. Use 0 for “Object Default”, 1

for “Reflective”, and 2 for “Absorbing”.

31 Sets the reflect BSDF data file for the specified face. The value should be the

name of the BSDF file with no path (i.e. BrownVinyl.bsdf).

32 Sets the transmit BSDF data file for the specified face. The value should be the

name of the BSDF file with no path (i.e. BrownVinyl.bsdf).

33 Sets the reflect ABg File data file for the specified face. The value should be the

name of the ABGF file with no path (e.g. SampleABGF.abgf).

34 Sets the transmit ABg File data file for the specified face. The value should be the

name of the ABGF file with no path (e.g. SampleABGF.abgf).

35 Sets the reflect IS Scatter Catalog data file for the specified face. The value should

be the name of the ISX file with no path (e.g. BrownVinyl.ISX).

36 Sets the transmit IS Scatter Catalog data file for the specified face. The value

should be the name of the ISX file with no path (e.g. BrownVinyl.ISX).

37 Sets the Thin Window Scattering option for the specified face. Use 0 to turn the

option off (i.e. unchecked option in checkbox) and 1 to turn the option on (i.e.

checked option in checkbox).

38 Sets the sample side R for IS Scatter Catalog scattering. Use 0 for front and 1 for

back.

39 Sets the sample side T for IS Scatter Catalog scattering. Use 0 for front and 1 for

back.

40 Sets the sampling R for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2

degrees, and 2 for 1 degree.

41 Sets the sampling T for IS Scatter Catalog scattering. Use 0 for 5 degrees, 1 for 2

degrees, and 2 for 1 degree.

The following codes set values on the Bulk Scattering tab of the Object Properties dialog.
81 Sets the "Model" value on the bulk scattering tab. Use 0 for "No Bulk Scattering",

1 for "Angle Scattering", and 2 for "DLL Defined Scattering".

82 Sets the mean free path to use for bulk scattering.

83 Sets the angle to use for bulk scattering.

84 Sets the name of the DLL to use for bulk scattering.

85 Sets the parameter value to pass to the DLL, where the face value is used to

specify which parameter is being defined. The first parameter is 1, the second is 2,

etc.

86 Sets the wavelength shift string.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 143

The following codes set values on the Diffraction tab of the Object Properties dialog.

91 Sets the "Split" value on the diffraction tab. Use 0 for "Don’t Split By Order", 1

for "Split By Table Below", and 2 for "Split By DLL Function".

92 Sets the name of the DLL to use for diffraction splitting.

93 Sets the Start Order value.

94 Sets the Stop Order value.

95, 96 Sets the parameter values on the diffraction tab. These are the parameters passed

to the diffraction splitting DLL as well as the order efficiency values used by the

“split by table below” option. The face value is used to specify which parameter is

being defined. The first parameter is 1, the second is 2, etc. The code 95 is used

for reflection properties, and 96 for transmission.

The following codes set values on the Sources tab of the Object Properties dialog.
101 Sets the source object random polarization. Use 1 for checked, 0 for unchecked.

102 Sets the source object reverse rays option. Use 1 for checked, 0 for unchecked.

103 Sets the source object Jones X value.

104 Sets the source object Jones Y value.

105 Sets the source object Phase X value.

106 Sets the source object Phase Y value.

107 Sets the source object initial phase in degrees value.

108 Sets the source object coherence length value.

109 Sets the source object pre-propagation value.

110 Sets the source object sampling method; 0 for random, 1 for Sobol sampling.

111 Sets the source object bulk scatter method; 0 for many, 1 for once, 2 for never.

112 Sets the array mode; 0 for none, 1 for rectangular, 2 for circular, 3 for hexapolar,

and 4 for hexagonal.

113 Sets the source color mode. For a complete list of the available modes, see

“Defining the color and spectral content of sources” on page 403. The source

color modes are numbered starting with 0 for the System Wavelengths, and then

from 1 through the last model listed in the dialog box control.

114-116 Sets the number of spectrum steps, start wavelength, and end wavelength,

respectively.

117 Sets the name of the spectrum file.

161-162 Sets the array mode integer arguments 1 and 2.

165-166 Sets the array mode double precision arguments 1 and 2.

181-183 Sets the source color mode arguments, for example, the XYZ values of the

Tristimulus.

The following codes set values on the Grin tab of the Object Properties dialog.

121 The following codes set values on the Grin tab of the Object Properties dialog.

122 Sets the Maximum Step Size value.

123 Sets the DLL name.

124 Sets the Grin DLL parameters. These are the parameters passed to the DLL. The

face value is used to specify which parameter is being defined. The first parameter

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 144

is 1, the second is 2, etc.

The following codes set values on the Draw tab of the Object Properties dialog.
141 Sets the do not draw object checkbox. Use 1 for checked, 0 for unchecked.

142 Sets the object opacity. Use 0 for 100%, 1 for 90%, 2 for 80%, etc.

The following codes set values on the Scatter To tab of the Object Properties dialog.

151 Sets the scatter to method. Use 0 for scatter to list, and 1 for importance sampling.

152 Sets the Importance Sampling target data. The argument should be a string listing

the ray number, the object number, the size, and the limit value, all separated by

spaces.

153 Sets the “Scatter To List” values. The argument should be a string listing the

object numbers to scatter to delimited by spaces, such as “4 6 19".

The following codes set values on the Birefringence tab of the Object Properties dialog.

171 Sets the Birefringent Media checkbox. Use 0 for unchecked, and 1 for checked.

172 Sets the Birefringent Media Mode. Use 0 for Trace ordinary and extraordinary

rays, 1 for Trace only ordinary rays, 2 for Trace only extraordinary rays, and 3 for

Waveplate mode.

173 Sets the Birefringent Media Reflections status. Use 0 for Trace reflected and

refracted rays, 1 for Trace only refracted rays, and 2 for Trace only reflected rays.

174-176 Sets the Ax, Ay, and Az values.

177 Sets the Axis Length.

The following codes do not set values, but are included here to return values for the function
NPRO.

200 Used by function NPRO to determine the index of refraction of an object. The

syntax is NPRO(surface, object, 200, wavenumber)

201-203 Used by function NPRO to determine the nd (201), vd (202), and dpgf (203)

parameters of an object using a model glass. The syntax is

NPRO(surface, object, 201, 0)

SETNSCPARAMETER is used to set the parameter values of any object in the NSC editor. The syntax is:

SETNSCPARAMETER surface, object, parameter, value

This keyword requires 3 numeric expressions that evaluate to integers specifying the non-sequential

component’s surface number (1 for total non-sequential system), the object number, and the parameter

number. The fourth argument is the new value for the specified parameter.

ZPL also defined a series of functions to read various parameters of NSC components.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 145

If we want to know the total number of non-sequential components in a certain surface, we can use

function NOBJ(surface), where surface is the surface number. The return value is the total number of

NSC components in the given surface.

If we want to read the positon and tilt of a certain object in a surface, we can use function NPOS(surf,

object, code), where surface is the surface number, object is the object number, and code is 1~6 for x, y,

z, tilt x, tilt y, tilt z, respectively. The return value is the value responsible for the code.

Function NPRO(surf, object, code, face) is used to read the properties of a given NSC component, where

surf is the surface number, object is the object number, code is as described in table 3.10-1, face is the

face number on a component. The return value is the property associated to the code, and can be

either numerical value or string. If the return value is string, we can use function $buffer() to read the

string from the return value.

Function NPAR(surf, object, param) is used to read the parameter column value in the NSC editor, where

surf is the surface number, object is the object number, and param is the parameter number.

We will give some examples to show the applications of some keywords and functions discussed above.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 146

Example 3.10-1 shows how to add, delete object and set parameters in the NSC editor.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 147

In this example, we first cleared the NSC editor by deleting objects (lines 6~9). Please note that after

clearance, there is still a null object in the editor. Then we inserted two null objects in the editor (lines

13~14), so the total number of objects in the editor is 3. We then defined the first object as standard

lens (lines 17~22), set its position and tilt (lines 17~22), give the comment (line 33), and set the material

(line 36). We then set the parameters of the lens (lines 39~45), i.e. first surface curvature radius, first

surface effective half diameter, first surface edge half diameter, thickness, second surface curvature

radius, second surface effective half diameter, and second surface edge half diameter. Similarly, we

defined the second object (lines 47~67). In fact, after defining the object type, ZEMAX will automatically

generate some default properties, so we only need to modify those different from the default values.

For example, we only defined z position and y tilt of the second object, and omitted x position, y

position, x tilt, and z tilt. After we run program ex31001.ZPL, the content in the NSC editor will be

updated, as shown in figure 3.10-1:

Fig. 3.10-1: content of NSC editor after running program ex31001.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 148

If we open 3D Layout window, we can see the two lenses we defined. Their tilt is different, as shown in

figure 3.10-2:

Fig. 3.10-2: content of 3D Layout window after running program ex31001.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 149

Example 3.10-2 shows how to read parameters of NSC objects.

In this program, we assume the optical system is the two lens system defined in example 3.10-1. The

position and tilt of an object can be read through function NPOS(), as shown in lines 6~13 in the program.

Please note that we can either assign the return value to a middle variable, and use the variable when

needed, as shown in lines 6 and 8, or directly obtain the return value by calling the function, as shown in

lines 9~13. In the program, the object properties were also read through function NPRO(), and object

parameters were read through function NPAR(). Please note that when using function NPRO(), if the

return value is string, the result can be saved in a temporary variable (line 16), and then read out

through function $buffer() (line 17). The result of the program is shown in figure 3.10-3:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 150

Fig. 3.10-3: result of program ex31002.ZPL

In non-sequential system, light source and detector are two very important objects. Example 3.10-3

shows how to set source and detector in ZPL program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 151

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 152

In this program, we first cleared the NSC editor (lines 5~7), and inserted two null objects (lines 10~11),

so the total objects in the editor is 3. We set the first object as source ellipse (line 14). Its position is

default (0, 0, 0). We then defined its parameters (lines 20~25). After that, we set the second object as

standard lens (line 28), and defined its z position (line 31), material (line 34), and other parameters (lines

37~43). Similarly, we set the third object as detector and defined its properties and parameters (lines

46~58).

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 153

After running program ex31003.ZPL, if we open 3D Layout window, we can see the three objects defined

in the program, and can also see the display rays, as shown in figure 3.10-4:

Fig. 3.10-4: content of 3D Layout window after running program ex31003.ZPL

Sometimes after modifying and analyzing old NSC objects, we need to recover old objects. This can be

done with keyword RELOADOBJECTS. The syntax is:

RELOADOBJECTS surf, object

where surf is surface number, 1 for NSC mode; object is object number, 0 for reloading all objects.

Similar to sequential system, in non-sequential system, ray tracing is a very important function. ZPL

provided keyword NSTR and function NSDC() and NSDD() to perform ray tracing and read out detector

result.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 154

The syntax of keyword NSTR is:

NSTR surf, source, split, scatter, usepol, ignore_err, rand_seed, save, filename$, filter

where surf is surface number, 1 for NSC mode; source is the object number for the source used in ray

tracing, 0 for all the sources in the current system; split is non-zero for splitting on, 0 for off; scatter is

non-zero for scattering on, 0 for off; usepol is non-zero for polarization on, 0 for off; ignore_err is non-

zero for ignoring error, 0 for terminating ray-tracing and reporting error; rand_seed is non-zero integer

for seeding the random generator with the given integer each time, 0 for seeding the random generator

with a random number; save is zero for not saving the result, in which case the arguments after it can be

omitted, otherwise if save is non-zero, the ray-tracing result will be saved in a ZRD file in the same folder

as lens file, with name defined by filename$ (not including path) and extension name as ZRD; filter$ is

optional with different ray filters defined in table 3.10-2. In newer versions of ZEMAX, another

argument zrd_format is required after filter. Please refer to ZEMAX User Manual for details.

NSTR always calls UPDATE before tracing rays to make certain all objects are correctly loaded and

updated.

Table 3.10-2: Filter String Flags

Flag Description

n Filters that start with an underscore “” followed by an integer code are

defined and used by the Path Analysis feature;

~nnnmmm...[#] Ray path filter. This filter selects ray branches whose segments follow an

explicit path. The first object number defined is the source object, followed by

each object the rays interact with, in order. Each object number must be

defined by a three digit integer, with leading zeros added if required. A ray that

leaves source object 7, then hits objects 18 and then 9 and is then terminated or

hits no other object can be selected using the filter “~007018009”. Multiple

consecutive object numbers are not redundantly defined; for example, if a ray

hits the front

face of lens 9 and then hits the back face of the same object 9 need only be

listed as a single 009 in the filter definition. Optionally, the filter may be

terminated with the # symbol, which indicates any segment that initially

follows this path is selected. This allows rays which hit different objects, or no

objects at all, after the last object listed are still selected. The maximum

number of objects in any one filter is 50.

$nnmm...[#] Ray path filter alternate form. This is identical to the “~” filter above, except

two digit codes are used instead of three digit codes for the object numbers.

This is a more convenient form if the number of objects is less than 100.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 155

Bn Ray bulk scattered inside of object n. If the n value is 0, then bulk scattered

segments from any object will return true for this test.

Dn Ray diffracted after striking object n. See En.

En Diffracted from parent segment’s object n. This flag only gets set for ray

segments split from diffractive elements, for order numbers other than zero,

when ray splitting is on.

Fn Scattered from parent segment’s object n. This flag only gets set for ray

segments split from scattering surfaces when ray splitting is on. The specular

segment does not get this flag, only scattered segments. If the n value is 0, then

scattered segments from any object will return true for this test.

Gn Ghost reflected from parent segment’s object n. This flag only gets set for ray

segments reflected from refractive objects when ray splitting is on. If the n

value is 0, then ghost segments from any object will return true for this test.

Hn Ray hit object n. To test whether a ray hit an object, the flag is of the form Hn.

For example, to test if a ray hit object 5, the flag would be H5. See Ln.

Jn Similar to Gn, except that all segments prior to the ghost reflection point are

set to have zero intensity. This allows Detector Viewers to look only at ghost

energy, not direct incident energy, even if the ray later ghosted off another

object. The zero intensity values will only affect the Detector Viewer, not the

ray database viewer or layouts.

Ln Ray hit object n last. To test whether the last segment of a ray branch hit an

object, the flag is of the form Ln. For example, to test if the last segment of a

ray branch hit object 5, the flag would be L5. See Hn.

Mn Ray missed object n. To test whether a ray missed an object, the flag is of the

form Mn. For example, to test if a ray missed object 15, the flag would be

M15.

On Ray originated at source number n. O0 (that is "O" as in Origin and "0" as

number zero) will select all sources.

Rn Ray reflected after striking object n. The flag R7 would test if the ray reflected

after striking object 7. See Gn.

Sn Ray scattered after striking object n. This tests the “S” flag as listed in the ZRD

file, which refers to scattering at the point a ray strikes an object. See also Fn

and X_SCATTER.

Tn Ray transmitted (refracted) in to or out of object n. The flag T4 would test if

the ray refracted in or out of object 4 after striking the object.

Wn Ray uses wavelength n. If the n value is 0, then rays with any wavelength will

return true for this test. Note this filter only tests the initial wavelength for the

ray as it leaves the source. If wavelength shifting is used, the wavelength may

change during propagation.

X_AXYG(n,v) Ray has incident angle (in degrees) on object n in the local x-y plane greater

than v. The angle is measured with respect to the +y direction without regard to

the direction of propagation. If the ray never strikes object n, this flag is false.

X_AXYL(n,v) Ray has incident angle (in degrees) on object n in the local x-y plane less than

v. The angle is measured with respect to the +y direction without regard to the

direction of propagation. If the ray never strikes object n, this flag is false.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 156

X_AXZG(n,v) Ray has incident angle (in degrees) on object n in the local x-z plane greater

than v. The angle is measured with respect to the +z direction without regard to

the direction of propagation. If the ray never strikes object n, this flag is false.

X_AXZL(n,v) Ray has incident angle (in degrees) on object n in the local x-z plane less than

v. The angle is measured with respect to the +z direction without regard to the

direction of propagation. If the ray never strikes object n, this flag is false.

X_AYZG(n,v) Ray has incident angle (in degrees) on object n in the local y-z plane greater

than v. The angle is measured with respect to the +z direction without regard to

the direction of propagation. If the ray never strikes object n, this flag is false.

X_AYZL(n,v) Ray has incident angle (in degrees) on object n in the local y-z plane less than

v. The angle is measured with respect to the +z direction without regard to the

direction of propagation. If the ray never strikes object n, this flag is false.

X_EXT(n,b) Ray segment is an extraordinary ray generated from a birefringent interface

after the parent ray has hit object n exactly b times. To apply this filter, a

search is made for the parent segment that hit object n exactly b times, and

only the children of that particular parent segment are considered. If no parent

segment hit object n exactly b times, the filter returns false. See also X_ORD.

X_GHOST(n,b) Ray segment has ghosted exactly b times, and has hit object n at least once. If n

is zero, any ray segment that has ghosted b times will pass the test. For

example, to consider only all second generation ghosts (ghost rays from ghost

parents), use X_GHOST(0, 2). X_GHOST does not consider ghost ray

segments that end in a TIR condition; although rays that TIR are considered

ghosts. For example, if a third generation

ghost ray leaves one surface, strikes another surface, and then TIR’s from this

second surface, X_GHOST(0, 3) will not include this segment because the

segment ended in a TIR and not a ray termination (the ray reflected and

continued). This same segment will however be included in the filter

X_GHOST(0, 4) because the ray ghosted a fourth time (at the TIR point). This

is an artifact of how Zemax defines segments and counts ghost rays. In all

cases, all ghost rays can be found if sufficiently high values of b are tested.

Note rays which TIR from refractive surfaces are considered ghosts, but rays

reflected from

mirror surfaces are not. See also Gn.

X_HIT(n,b) Ray segment has hit object n exactly b times. See also Hn, X_HITS,

X_HITFACE, and X_HITFACE2.

X_HITS(n1,n2) If n2 is zero: Ray has n1 or more hits on any object(s). If n2 is not zero, then

Ray has between n1 and n2 hits, inclusive.

X_HITFACE(n,f) Ray segment has hit object n on face f. See also Hn, X_HIT, and

X_HITFACE2.

X_HITFACE(n,f) Ray segment has hit object n on face f. See also Hn, X_HIT, and

X_HITFACE2.

X_HITFACE2(n,f,b) Ray segment has hit object n on face f exactly b times. See also Hn and

X_HIT.

X_IAGT(n,v) Ray has absolute intensity greater than value v on object n. If the ray never

strikes object n, this flag is false.

X_IALT(n,v) Ray has absolute intensity less than value v on object n. If the ray never strikes

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 157

object n, this flag is false.

X_IRGT(n,v) Ray has intensity relative to initial intensity greater than value v on object n. If

the ray never strikes object n, this flag is false.

X_IRLT(n,v) Ray has intensity relative to initial intensity less than value v on object n. If the

ray never strikes object n, this flag is false.

X_LGT(n,v) Ray has local incident x ray direction cosine greater than value v at point on

object n. If the ray never strikes object n, this flag is false.

X_LLT(n,v) Ray has local incident x ray direction cosine less than value v at point on

object n. If the ray never strikes object n, this flag is false.

X_MGT(n,v) Ray has local incident y ray direction cosine greater than value v at point on

object n. If the ray never strikes object n, this flag is false.

X_MLT(n,v) Ray has local incident y ray direction cosine less than value v at point on

object n. If the ray never strikes object n, this flag is false.

X_NGT(n,v) Ray has local incident z ray direction cosine greater than value v at point on

object n. If the ray never strikes object n, this flag is false.

X_NLT(n,v) Ray has local incident z ray direction cosine less than value v at point on object

n. If the ray never strikes object n, this flag is false.

X_ORD(n,b) Ray segment is an ordinary ray generated from a birefringent interface after the

parent ray has hit object n exactly b times. To apply this filter, a search is made

for the parent segment that hit object n exactly b times, and only the children of

that particular parent segment are considered. If no parent segment hit object n

exactly b times, the filter returns false. See also X_EXT.

X_SCATTER(n,b) Ray segment has scattered from parent exactly b times, and has hit object n at

least once. If n is zero, any child ray segment split off from the parent ray that

has scattered b times will pass the test. For example, to consider only first

generation scatter rays, use X_SCATTER(0, 1). This filter tests only the scatter

from parent or “F” flag as listed in the ZRD. See also Sn and X_SCATTERF.

X_SCATTERF(n,b) Ray segment has scattered from object n after the parent of the segment hit

object n exactly b times. To apply this filter, a search is made for the parent

segment that hit object n exactly b times, and only that particular parent

segment is considered. If no parent segment hit object n exactly b times, the

filter returns false. For example, to consider only scattered rays that branch off

from the parent ray after the third hit on object 5 (that is, the ray leaving the

source has twice before hit this same object), use X_SCATTERF(5, 3). See

also Fn and X_SCATTER.

X_SEGMENTS(n1,n2) If n2 is zero: Ray has n1 or more segments. If n2 is not zero, then Ray has

between n1 and n2 segments, inclusive.

X_WAVERANGE(n, a,

b)

Ray has hit object n and has a wavelength between a and b micrometers,

inclusive.

X_WAVESHIFT(i,j) Ray has wave shifted during a bulk scatter event from wavelength i to

wavelength j.

X_XGT(n,v) Ray has local x coordinate greater than value v at point on object n. If the ray

never strikes object n, this flag is false.

X_XLT(n,v) Ray has local x coordinate less than value v at point on object n. If the ray

never strikes object n, this flag is false.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 158

X_YGT(n,v) Ray has local y coordinate greater than value v at point on object n. If the ray

never strikes object n, this flag is false.

X_YLT(n,v) Ray has local y coordinate less than value v at point on object n. If the ray

never strikes object n, this flag is false.

X_ZGT(n,v) Ray has local z coordinate greater than value v at point on object n. If the ray

never strikes object n, this flag is false

X_ZLT(n,v) Ray has local z coordinate less than value v at point on object n. If the ray

never strikes object n, this flag is false.

Z Ray has fatal error.

The syntax of function NSDC() is:

returnValue = NSDC(surf, object, pixel, data)

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the detector;
pixel is the pixel number on the detector, 0 for the summation of all the pixels; data is 0 for real, 1 for
imaginary, 2 for the amplitude, and 3 for the coherent intensity. The returned result is saved in variable
returnValue.

The syntax of function NSDD () is:

returnValue = NSDD(surf, object, pixel, data)

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the detector;
pixel is the pixel number on the detector, 0 for the summation of all the pixels; data is 0 for flux, 1 for
flux/area, 2 for flux/solid angle pixel, and 3 for normalized flux. If the object number is zero, then all
detectors are cleared and the function returns zero. If the object number is less than zero, then the
detector defined by the absolute value of the object number is cleared and the function returns zero. If
the object number corresponds to a detector rectangle, surface, or volume object, then the incoherent
intensity data from the specified pixel is returned. For a full discussion of the pixel and data arguments,
please refer to Zemax User’s Manual.

Sometimes if we want to set or modify the coherent or incoherent intensity data of a pixel on a

rectangle detector, we can use keyword SETDETECTOR to realize. The syntax is:

SETDETECTOR surf, object, pixel, datatype, value

where surf is NSC surface number, 1 for total NSC mode; object is the object number of the rectangle
detector; pixel is the pixel number on the detector, between 1 and the maximum number of pixels;
Datatype is 0 for incoherent intensity, 1 for incoherent intensity in angle space, 2 for coherent real part,
3 for coherent imaginary part, and 4 for coherent amplitude 0; value is the value to be set.

Now let’s give some examples to show how to do non-sequential ray tracing in ZPL programs.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 159

Example 3.10-4: Ray tracing in non-sequential system

In this example, detector is cleaned in line 18, ray tracing is done in line 19, and light intensity on the

detector is read and printed out in line 22. The whole ray tracing process is this simple. However, it

needs to be noticed that if the previous values on the detector are not cleared, the new values on the

detector after ray tracing will include previous value. Lines 24~29 in the program compared the light

intensity value on the detector after ray tracing, without and with clearing the detector. The result of

the program is shown in figure 3.10-5:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 160

Fig. 3.10-5: Result of program ex31004.ZPL

If we open the detector viewer, we can see the light distribution on the detector, as shown in figure

3.10-6:

Fig. 3.10-6: Light intensity distribution seen on the detector after ray tracing.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 161

Example 3.10-5: Modify the values on the detector in a non-sequential system.

In this example, we assume the system is the same as previous two examples. The detector is cleared in

line 9, ray tracing is done in line 10. The reading on the detector is the same as that in example 3.10-4.

Then, we added a circular ring around the center of the detector by comparing the distance of each pixel

to the center. If a pixel is on the circumference of the ring, then its value is modified. The result of the

program is shown in figure 3.10-7:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 162

Figure 3.10-7: result of program ex31005.ZPL

The result shows that the values on the detector have been modified. If we open the detector viewer,

we can see the circle we added, as shown in figure 3.10-8:

Fig. 3.10-8: ：Light intensity distribution seen on the detector after modification.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 163

3.11 Multi-Configuration

In optical design, often times we will need to add, delete or modify some components or parameters

based on different working environment, such as designing focal length adjustable lenses, optimizing

optical system at different wavelengths, etc. Multi-configuration supported by ZEMAX can be widely

used in those cases. In this section, we will discuss multi-configuration related commands in ZPL. For

details on multi-configuration, please refer to Zemax User’s Manual.

We know that multi-configuration editor is the place to set and modify multi-configuration in Zemax. If

we want to add, delete or modify configurations or operands in multi-configuration editor, we can use

ZPL keywords INSERTCONFIG, INSERTMCO, DELETECONFIG, and DELETEMCO.

INSERTCONFIG is used to add a configuration in the multi-configuration editor. The syntax is:

INSERTCONFIG config

where config is an integer greater than 0 and smaller than or equal to the current number of

configurations plus 1.

INSERTMCO is used to insert a new multi-configuration operand in the multi-configuration editor. The

syntax is:

INSERTMCO row

where row is an integer greater than 0 and smaller than or equal to the current number of operands

plus 1.

DELETECONFIG is used to delete a configuration from current multi-configuration editor. The syntax is:

DELETECONFIG config

where config is an integer greater than 0 and smaller than or equal to the number of current

configurations.

DELETEMCO is used to delete an existing operand in the multi-configuration editor. The syntax is:

DELETEMCO row

where row is an integer greater than 0 and smaller than or equal to current number of operands.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 164

If we want to set or modify the parameters in the multi-configuration editor, we can use keyword

SETCONFIG and SETMCOPERAND.

SETCONFIG is used to set the current configuration for multi-configuration (zoom) systems. The syntax

is:

SETCONFIG config

where config is an integer greater than 0 and smaller than or equal to current number of configurations.

SETMCOPERAND is used to set any row or configuration of the Multi-Configuration Editor to any

numeric value. The syntax is:

SETMCOPERAND row, config, value, datatype

where row and config are used to specify the row and configuration of the Multi-Configuration Editor.

If the config number is 0, then the value is interpreted as follows:

datatype = 0, value is a string literal or variable that specifies the name of the operand.

datatype = 1, 2, or 3, value is the number 1, 2, or 3 value used as part of the multi-configuration

operand

definition.

If the config number corresponds to a defined configuration then the value is interpreted as follows:

datatype = 0, value is the value of the operand.

datatype = 1, value is the pickup offset of the operand.

datatype = 2, value is the pickup scale of the operand.

datatype = 3, value is the status of the operand, 0 for fixed, 1 for variable, 2 for pickup, 3 for

thermal pickup.

datatype = 4, value is the pickup configuration number.

datatype = 5, value is the pickup row number.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 165

The table below listed codes and arguments for various operands:

Table 3.11-1 SUMMARY OF MULTI-CONFIGURATION OPERANDS

Type Numbers 1,2,3 Description

AFOC Ignored Afocal Image Space mode.

AICN Surface, Object iPartFactory Number for the Autodesk Inventor part.

APDF Ignored System apodization factor. See also APDT.

APDT Ignored System apodization type. Use 0 for none, 1 for Gaussian, 2 for

cosine cubed. See also APDF.

APDX Surface # Surface aperture X- decenter. The surface must have a defined

aperture (NOT semi-diameter).

APDY Surface # Surface aperture Y- decenter. The surface must have a defined

aperture (NOT semi-diameter).

APER Ignored System aperture value. If the system aperture type is float by stop

size, this is the semi-diameter of the stop surface. See also SATP.

APMN Surface # Surface aperture minimum value. The surface must have a

defined aperture (NOT semi-diameter). This same operand also

works to control the first parameter of all surface aperture types,

such as the X-Half Width on rectangular and elliptical apertures.

APMX Surface # Surface aperture maximum value. The surface must have a

defined aperture (NOT semi-diameter). This same operand also

works to control the second parameter of all surface aperture

types, such as the Y-Half Width on rectangular and elliptical

apertures.

APTP Surface # Surface aperture type. The integer values indicating the aperture

type are 0-10 for none, circular aperture, circular obscuration,

spider, rectangular aperture, rectangular obscuration, elliptical

aperture, elliptical obscuration, user aperture, user obscuration,

and floating aperture; respectively.

CADX Surface # Surface Tilt/Decenter after surface decenter x.

CADY Surface # Surface Tilt/Decenter after surface decenter y.

CATX Surface # Surface Tilt/Decenter after surface tilt x.

CATY Surface # Surface Tilt/Decenter after surface tilt y.

CATZ Surface # Surface Tilt/Decenter after surface tilt z.

CAOR Surface # Surface Tilt/Decenter after surface order. Use 0 for Decenter then

Tilt, or 1 for Tilt then Decenter.

CBDX Surface # Surface Tilt/Decenter before surface decenter x.

CBDY Surface # Surface Tilt/Decenter before surface decenter y.

CBTX Surface # Surface Tilt/Decenter before surface tilt x.

CBTY Surface # Surface Tilt/Decenter before surface tilt y.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 166

CBTZ Surface # Surface Tilt/Decenter before surface tilt z.

CBOR Surface # Surface Tilt/Decenter before surface order. Use 0 for Decenter

then Tilt, or 1 for Tilt then Decenter.

CONN Surface # Conic constant.

COTN Surface # The name of the coating, if any, to be applied to the surface.

CPCN Surface, Object Family Table Instance Number for the Creo Parametric part.

CROR Surface # Coordinate Return Orientation. Use 0 for none, 1 for Orientation

only, 2 for Orientation XY, and 3 for Orientation XYZ.

CRSR Surface # Coordinate Return Surface.

CRVT Surface # Curvature of surface.

CSP1 Surface # Curvature solve parameter 1.

CSP2 Surface # Curvature solve parameter 2.

CWGT Ignored The overall weight for the configuration. This number only has

meaning relative to the weights in other configurations.

EDVA Surface, Extra

Data Number

The EDVA operand is used to assign multiple values to the extra

data values. This operand requires 2 numerical arguments: the

surface number and the extra data value number.

FLTP Ignored Field type. Use 0 for angle in degrees, 1 for object height, 2 for

paraxial image height, 3 for real image height.

FLWT Field # Field weight.

FVAN Field # Vignetting factor VAN.

FVCX Field # Vignetting factor VCX.

FVCY Field # Vignetting factor VCY.

FVDX Field # Vignetting factor VDX.

FVDY Field # Vignetting factor VDY.

GCRS Ignored The global coordinate reference surface.

GLSS Surface # Glass.

GPEX,

GPEY

obsolete obsolete

GPJX Ignored Global Jones polarization vector component Jx.

GPJY Ignored Global Jones polarization vector component Jy.

GPIU Ignored Global polarization state "is unpolarized", 1 if polarization state is

unpolarized, otherwise state is polarized.

GPPX Ignored Global polarization state phase x.

GPPY Ignored Global polarization state phase y.

 G

QPO

Ignored Obscuration value used for Gaussian Quadrature pupil sampling

in the default merit function.

HOLD Ignored Holds data in the multi-configuration buffer, but has no other

effect. Useful for temporarily turning off one operand without

losing the associated data.

IGNR Surface # Ignore This Surface status. Use 0 to consider the surface, and 1 to

ignore the surface. If IGNR

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 167

and IGNM operands are defined for the same surface, the one

listed second will take precedence.

IGNM First Surface,

Last Surface

Sets Ignore This Surface status on a range of surfaces. Use 0 to

consider the surfaces, and 1 to ignore the surfaces. If IGNR and

IGNM operands are defined for the same surface, the one listed

second will take precedence.

LTTL Ignored Lens title. The string length is limited to 32 characters.

MABB Surface # Model glass Abbe.

MCOM Surface # Surface comment.

MDPG Surface # Model glass dPgF.

MIND Surface # Model glass index.

MOFF Ignored An unused operand, may be used for entering comments.

MTFU Ignored MTF units. Use 0 for cycles/millimeter or 1 for

cycles/milliradian.

NCOM Surface, Object Modifies the comment for non-sequential objects in the NSC

Editor. The string value is limited to 32 characters.

NCOT Surface, Object,

Face #

Modifies the coating on each face for non-sequential objects in

the NSC Editor.

NGLS Surface, Object The material type for non-sequential objects in the NSC Editor.

NPAR Surface, Object,

Parameter

Modifies the parameter columns for non-sequential objects in the

NSC Editor.

NPOS Surface, Object,

Position

Modifies the x, y, z, tilt x, tilt y, and tilt z position values for

nonsequential objects in the NSC Editor. The position flag is an

integer between 1 and 6 for x, y, z, tilt x, tilt y, and tilt z,

respectively.

NPRO Surface, Object,

Property

Modifies various properties of NSC objects. Property is an integer

value indicating what data is controlled:

1 - Inside of object number

2 - Reference object number

3 - Do Not Draw Object (0 = no, 1 = yes)

4 - Rays Ignore Object (0 = never, 1 = always, 2 = on launch)

5 - Use Pixel Interpolation (0 = no, 1 = yes)

201-212 - User defined gradient index parameters

301-312 - User defined diffraction parameters for reflection

351-362 - User defined diffraction parameters for transmission

401-416 - User defined bulk scatter parameters

481, 482 - Bulk scatter mean free path and angle arguments.

500 - Media is birefringent. Use 0 for false and 1 for true,

501 - Birefringent mode. use 0-3 for ordinary and extraordinary

rays, ordinary rays only, extraordinary rays only, and waveplate

mode, respectively.

502 - Birefringent Reflections. Use 0 for refracted and reflected

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 168

rays, 1 for refracted rays only, and 2 for reflected rays only.

503-505 - Birefringent crystal axis orientation x, y, and z.

PAR1 Surface # Parameter 1. Obsolete, use PRAM instead.

PAR2 Surface # Parameter 2. Obsolete, use PRAM instead.

PAR3 Surface # Parameter 3. Obsolete, use PRAM instead.

PAR4 Surface # Parameter 4. Obsolete, use PRAM instead.

PAR5 Surface # Parameter 5. Obsolete, use PRAM instead.

PAR6 Surface # Parameter 6. Obsolete, use PRAM instead.

PAR7 Surface # Parameter 7. Obsolete, use PRAM instead.

PAR8 Surface # Parameter 8. Obsolete, use PRAM instead.

PRAM Surface,

Parameter

Parameter value. This operand controls any of the parameters.

PRES Ignored Air pressure in atmospheres. Zero means vacuum, 1 means

normal air pressure.

PRWV Ignored Primary wavelength number.

PSCX Ignored X Pupil Compress. Used for ray aiming.

PSCY Ignored Y Pupil Compress. Used for ray aiming.

PSHX Ignored X Pupil Shift. Used for ray aiming.

PSHY Ignored Y Pupil Shift. Used for ray aiming.

PSHZ Ignored Z Pupil Shift. Used for ray aiming.

PSP1 Surface # Parameter solve parameter 1 (the pickup surface). This operand

requires 2 numerical arguments: the surface number and the

parameter number.

PSP2 Surface # Parameter solve parameter 2 (the scale factor).This operand

requires 2 numerical arguments: the surface number and the

parameter number.

PSP3 Surface # Parameter solve parameter 3 (the offset).This operand requires 2

numerical arguments: the surface number and the parameter

number.

PUCN Ignored Used for picking up a range of values from a previous

configuration. If a positive integer configuration number is

provided, then all values below the PUCN operand will be picked

up from the configuration number specified. If the configuration

value is negative, then a negative pickup while be used. If the

configuration number is zero,

then the values below the PUCN operand will not have pickup

solves applied. Note two PUCN operands can be used to define

the beginning and end of a range of values to be picked up. All

specified configuration numbers must be less than the

configuration the PUCN

data is provided for.

PXAR Surface # Physical optics setting "Use X-axis Reference". Use 0 for no, 1

for yes.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 169

RAAM Ignored Ray aiming. Use 0 for off, 1 for paraxial, and 2 for real.

SATP Ignored System aperture type. Use 0 for Entrance Pupil Diameter, 1 for

Image Space F/#, 2 for Object Space NA, 3 for Float By Stop

Size, 4 for Paraxial Working F/#, 5 Object Cone Angle. See also

APER.

SDIA Surface # Semi-diameter.

SDRW Surface # Modifies the do not draw this surface flag. Use 0 to draw and 1 to

not draw.

STPS Ignored Stop surface number. The stop can be moved to any valid surface

number (excluding the object and image surfaces) by specifying

an integer argument for each configuration.

SWCN Surface, Object Configuration number for the SolidWorks part.

TCEX Surface # Thermal coefficient of expansion.

TELE Ignored Telecentric in object space, 0 for no, 1 for yes.

TEMP Ignored Temperature in degrees Celsius.

THIC Surface # Thickness of surface.

TSP1 Surface # Thickness solve parameter 1.

TSP2 Surface # Thickness solve parameter 2.

TSP3 Surface # Thickness solve parameter 3.

UDAF Surface # User defined aperture file. Surface must use either a user defined

aperture or user defined obscuration aperture type.

WAVE Wave # Wavelength.

WLWT Wave # Wavelength weight.

XFIE Field # X-field value.

YFIE Field # Y-field value.

Now we will give some examples to show how to define and modify multi-configurations in ZPL program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 170

Example 3.11-1: Define and modify multi-configuration system.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 171

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 172

In this example, we want to build a multi-configuration system from scratch, so we need first create a

new lens system from Zemax main window file menu. In the new system, we can see three surfaces in

the lens editor. 5 more surfaces are inserted in lines 6 ~ 8 of the program, so there are total 8 surfaces,

including object and image surfaces. Lines 11 ~ 28 set some basic system parameters, including lens unit

(line 11), entrance pupil type and size (lines 12 and 13), wavelength number and value (lines 15 and 16),

and object field (lines 18 ~ 28). Lines 31 ~ 48 define parameters of each surface, line 51 defines the stop

surface. After basic optical system is set up, lines 54 ~ 56 insert 4 configurations in the multi-

configuration editor, so there are total 5 configurations. Lines 59 ~ 61 insert 4 operand rows in the

multi-configuration editor, so there are total 5 rows. Lines 64 ~ 79 define the type of each operand in

the multi-configuration editor, and lines 82 ~ 106 set the value of each operand in different

configurations. The last line in the program updates the optical system using keyword UPDATE to assure

each parameter of the system is the newest value.

After running program ex31101.ZPL, if we open multi-configuration editor, the content can be seen as

shown in figure 3.11-1:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 173

Fig. 3.11-1: Content in the multi-configuration editor after running program ex31101.ZPL

If we open 3D Layout window, we can see each configuration as shown in figure 3.11-2:

Fig. 3.11-2: Content of the 3D Layout window after running program ex31101.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 174

Of course, this multi-configuration system is not optimized yet. If needed, we can choose proper

variables and merit function to further optimize this system, depending on the design target.

Besides setting parameters of multi-configuration system, we can also read various parameters through

ZPL functions such as NCON(), CONF(), MCOP(), MCON(), etc.

Function NCON() is used to read the number of configurations. The syntax is:

returnValue = NCON()

Function CONF() is used to read the current configuration number. The syntax is:

returnValue = CONF ()

Function MCOP() is used to read the data of given row (operand) in the given configuration. The syntax

is:

returnValue = MCOP(row, config)

where row is the row number of the operand, config is the configuration number. If config is 0, then the

current configuration is chosen.

Function MCON () is used to extract data from any row and configuration of the Multi-Configuration

Editor. This function is similar to MCOP with extended capabilities for extracting data. The syntax is:

MCON(row, config, data)

where row is the row number (operand number), config is the configuration number, and data is the

data value to extract from the Multi-Configuration Editor. If the row and config number are both zero,

MCON returns either the number of operands, the number of configurations, or the active configuration

number for data = 0, 1, and 2, respectively. If the row number is between 1 and the number of multi-

config operands, and the config number is zero, MCON returns the operand type, integer 1, integer 2,

integer 3, and string flag for that specified row, for data = 0 through 4, respectively. The 3 integer values

are used for various purposes for different operands, such as surface and wavelength numbers. The

string flag is 1 if the operand data is a string value, such as a glass name, or 0 for numerical data. If the

row number is between 1 and the number of multi-config operands, and the config number is valid,

MCON returns either the numerical value or the string data for that operand.

Note that all string data returned by MCON must be extracted with the $buffer command after the call

to MCON. For example, the following code will place the name of the operand on row 1 in a$:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 175

dummy = MCON(1, 0, 0)

a$ = $buffer()

Example 3.11-2: Extract data from multi-configuration system.

In this example, we assume the multi-configuration system is the one defined in example 3.11-1. Line 7

reads the total number of configurations with function NCON(); line 8 read the current configuration

number through function CONF(); lines 12 and 13 read data of row 2 in configuration 3 and row 2 of

current configuration, respectively, through function MCOP; lines 17 ~ 37 read various data through

function MCOP, such as total number of operands (line 17), total number of configurations (line 18),

current configuration number (line 19), type of operand in row 2 of multi-configuration editor (lines 21 ~

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 176

24) and its corresponding 1st, 2nd and 3rd parameters (lines 25 ~ 27). In line 28, the type of the operand

data is first determined to be string or value. If it is string, then the buffer string function is used to

extract the data (lines 29 ~ 32), otherwise the value is directly read (line 36). The result of the program

is shown in figure 3.11-3.

Fig. 3.11-3: result of program ex31102.ZPL

From the result we can see that both function MCOP() and function MCON() can be used to read the

same data, such as total number of configurations (line 7 and line 18), current configuration number

(line 8 and line 19), or data of the given row in the given configuration (line 12 and line 36), and the

results are the same. However, function MCON() can be used to extract more data, such as operand

type (lines 21 ~ 24) and parameters (lines 25 ~ 27), etc. In this example, since the operand only has one

parameter, the return values of the second and third parameters are 0. Please also note that when

using function MCON() to read the operand value, if the type of the return value is unknown, we can

read the string flag to determine the type, and then read the data properly, as shown in lines 28 ~ 37.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 177

3.12 Display

Screen is the most common terminal device in a computer system. ZPL provided a lot of keywords and

functions to control and read/write screen information. Actually, we have already introduced some

keywords and functions related to screen and other terminals, such as INPUT for allowing user to input

numerical or string information through keyboard, OUTPUT for allowing user to output result to

windows or files, FORMAT for controlling the format of numerical values, PRINT for allowing user to

display result to text windows on the screen or output to a file, etc. In this section, we will continue to

introduce some other commands, focusing on graphic display on the screen. Please remember that

Zemax continuously adds new commands, so we suggest users to refer to Zemax User’s Manual for the

update.

In chapter 1 we mentioned that graphic window is a very important tool for Zemax to output data. ZPL

provided a keyword GRAPHICS to open a standard graphic window to allow designers to draw their own

graphs. The syntax of GRAPHICS is:

GRAPHICS

GRAPHICS NOFRAME

GRAPHICS OFF

If GRAPHICS is specified alone, then a standard Zemax graphics window will be created. If the optional

argument NOFRAME is supplied, then the standard frame for the graph title will be suppressed. All

subsequent graphics commands will be sent to this newly created window. GRAPHICS OFF will close any

existing open graphics windows, and then display the closed window.

If we want to add a title in the graphics window, we can use keyword GTITLE. The syntax is:

GTITLE user_title$

where user_title$ is the title string user defined, and the text will appear centered in the title bar on the
graphics display.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 178

If we want to display string at given location and orientation in the graphics window, we can use

keyword GTEXT. The syntax is:

GTEXT x, y, angle, user_text$

where x, y are the coordinates refer to the left edge of where the text string user_text will appear.
"user_text" may be either a constant string in quotes or a string variable name. Angle specifies how the
text is rotated with respect to the graphics frame, and defaults to 0 degrees (horizontal).

If we want to display centered string in the graphics windows, we can use keyword GTEXTCENT. The

syntax is:

GTEXTCENT y, user_text$

where the coordinate y refers to the vertical position of the text string user_text.

When displaying string, we can also use keyword SETTEXTSIZE to set its size. The syntax is:

SETTEXTSIZE xsize, ysize

where the arguments refer to the fraction of the graphic screen width that each character represents.
For example, the default text size is 70 40. This means each character is 1/70 of the graphic screen width,
and 1/40 of the screen height. An argument of zero restores the text size to the default.

Also current date can be displayed in the graphics windows with keyword GDATE, and the format is

determined by the Zemax main menu File Preference option.

Some versions of Zemax can display the title of the lens file on the graphics window using keyword

GLENSNAME so the graphics window user created looks like other Zemax windows. But in general the

standard graphics windows created with GRAPHICS already include this content. Please refer to Zemax

User’s Manual for details.

In the graphics window user created, user can use keywords LINE and PIXEL to draw line segments and

pixels.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 179

The syntax of keyword LINE is:

LINE oldx, oldy, newx, newy

where oldx and oldy are the coordinates of the starting point of the line segment, newx and newy are
those of the end point of the line segment. They should be contained within the current graphics frame
defined by XMIN, YMIN, XMAX, and YMAX. The coordinates can be real values, but Zemax will round
them to the nearest integers.

The syntax of keyword PIXEL is:

PIXEL xcoord, ycoord

where xcoord and ycoord are the coordinates of the pixel in the current graphics window.

Keyword COLOR can be used to control the color of the pen when drawing text, pixels or line segments.

The syntax is:

COLOR n

The value n is an integer between 0 ~ 24 for different colors. 0 is for black, and the other colors are as

defined in Zemax main menu File Preferences option.

In ZPL display, functions XMIN(), XMAX(), YMIN() and YMAX() are often used to read the minimum and

maximum coordinates of the current graphics window. Please note that the origin of the coordinates is

located at the upper left corner of the graphics window, with x increases from left to right, and y

increases from up to down. Also, the height-width ratio of current graphics device can be read through

function ASPR(). The functions mentioned here don’t need any arguments.

We can lock an opened window with keyword LOCKWINDOW. The syntax is:

LOCKWINDOW winnum

where winnum is the window number. If winnum is 0, then all the windows will be locked, and if it is -1,

then the current window will be locked after the program is executed.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 180

If we want to unlock a window, we can use keyword UNLOCKWINDOW. The syntax is:

UNLOCKWINDOW winnum

where winnum is the window number. If winnum is 0, then all the windows will be unlocked, and if it is

-1, then the current window will be unlocked after the program is executed.

If we want to close a window, we can use keyword CLOSEWINDOW. The syntax is:

CLOSEWINDOW

or

CLOSEWINDOW winnum

If CLOSEWINDOW is used alone with no argument "n" provided, it will run the ZPL macro in "quiet"

mode. The text window normally displayed at the end of the macro execution will not be displayed if the

CLOSEWINDOW keyword is included at any line in the macro. CLOSEWINDOW has no other effect on

macro execution.

If CLOSEWINDOW is used with an integer argument "n" provided, it will close analysis window number n.

When we discuss keywords PRINT and OUTPUT in section 2.7, we mentioned that we can output the

result to a file using keyword OUTPUT. But how do we display the result saved to the file? We can do it

with keyword SHOWFILE. The syntax is:

SHOWFILE filename$, saveflag

It displays a text file to the screen using the Zemax file viewer. The filename must be a valid file name.

The file must be a text file (as would be created by OUTPUT and PRINT commands in ZPL) and must be in

the current folder (determined by Zemax main menu File Preferences Directories option). Once

the file is displayed, it may be scrolled up and down and printed like any other text file. The ability to

scroll and print the data is the primary advantage of using OUTPUT and SHOWFILE instead of PRINT

commands. SHOWFILE also closes the file if no CLOSE command has been executed. If the saveflag is

zero or omitted, then the file is erased when the window is closed. If saveflag is any value other than

zero, then the file remains even after the window is closed.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 181

Besides displaying text files, ZPL can also display image files. For example, with keyword IMASHOW,

image files with IMA or BIM format can be displayed in a graphics window. The syntax is:

IMASHOW filename$

This keyword requires the name of the IMA or BIM file. The extension must be included. The filename

may be enclosed in quotes if any blank or other special characters are used. The file must be located in

the <data>\<images> folder. This command will open a new window to display the file.

Now let’s give an example to show how to use the functions and keywords related to screen display.

Example 3.12-1: Screen display

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 182

In this program, we first open a graphics window using keyword GRAPHICS, and then read the basic

coordinates of the window (lines 8 ~ 11). After that, we defined the coordinates of 4 corners and draw a

rectangle (lines 12 ~ 23), and then output some text information (lines 26 ~ 34). In the text output, we

set the size (lines 26, 28, 30, 32), center (line 29), rotation (line 33), and output the date (line 34). After

that, we draw a spiral curve in the graphics window (lines 37 ~ 44) with color control (line 42). At the

end of the program, we add a title to the graphics window (lines 47 ~ 49). Although we add a print

command on line 51, the result will not be seen because we choose to run the program in “quiet” mode,

and the window used to display the text message is closed.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 183

After program is executed, the graphical result is seen as in figure 3.12-1:

Fig. 3.12-1: result of program ex31201.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 184

3.13 File Operation

During optical design with Zemax, file operations are often needed. We discussed some basic file

operation commands in section 7 of chapter 2. In this section, we will continue to discuss more file

operation commands.

When we do optical design, often times we don’t need to start from scratch. Instead, we can load

existing lens files, or re-load lens files when running ZPL programs. ZPL provided a keyword LOADLENS

to do this. The syntax is:

LOADLENS filename$, appendflag, session

where filename$ is the lens file. If the filename contains the complete path, then the specified file will

be loaded. If the path is left off, then the default folder for lenses defined by Zemax main menu File

Preferences Directories will be used. If the appendflag is zero or absent, then LOADLENS loads the

file. If the appendflag is greater than zero, then the file is appended to the current lens starting at the

surface specified by the value of the appendflag. The appendflag should only be used when appending

one sequential system to another. Appending non-sequential systems isn’t currently supported. If the

session flag is non-zero, any associated session file will be loaded with the lens and all windows will be

updated, otherwise, the lens session file is ignored.

When lenses are loaded, any associated glass catalogs and data files, including the COATING.DAT file,

are automatically loaded if they are not already loaded. However, if these catalogs have been modified,

then the LOADCATALOG keyword may be used to force a reload of the catalogs. Use of this keyword is

not required unless the COATING.DAT or glass AGF catalog files have been modified since the start of

the current Zemax session. When using this keyword, no arguments are needed.

If we want to re-load merit function file, we can use keyword LOADMERIT. The syntax is:

LOADMERIT filename$

where filename$ is the merit function file. If the filename contains the complete path, then the

specified file will be loaded. If the path is left off, then the default folder defined by Zemax main menu

File Preferences Directories will be used.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 185

A similar keyword IMPORTEXTRADATA can be used to import data into the extra data editor from a file.

The syntax is:

IMPORTEXTRADATA surface, filename$

where surface is the surface number, filename$ is the extra data file to be loaded. Filename should

include full path.

Opposite to loading lens files, if we want to save a lens file currently in memory, we can use keyword

SAVELENS. The syntax is:

SAVELENS filename$, session

This command will save the current lens file to the specified file name. The name of the current lens in

memory will also be changed. If the file name is absent, then the lens data is stored in the current file

name. If the session argument evaluates to anything other than zero, the session file will also be saved.

If we want to save current merit function, we can use keyword SAVEMERIT. The syntax is:

SAVEMERIT filename$

This command will save the current merit function to a file. If the filename contains the complete path,

then the specified path will be used. If the path is left off, then the default folder defined by Zemax main

menu File Preferences Directories will be used.

Another keyword to save file is SAVEWINDOW. It is used to save the text from any text window to a file.

The syntax is:

SAVEWINDOW winnum, filename$

where winnum is the text window number that should be saved to a file, and filename$ is the target file

name that may include a full path name or use the default path. Zemax numbers windows sequentially

as they are opened, starting with 1. Any closed windows are deleted from the window list, without

renumbering the windows which remain. Any windows opened after another window has been closed

will use the lowest window number available.

File operation often requires to copy, rename, delete and search a file. ZPL provided keywords

COPYFILE, RENAMEFILE, DELETEFILE and FINDFILE for this.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 186

Keyword COPYFILE is used to copy a source file to a target file. The syntax is:

COPYFILE sourcefilename$, newfilename$

where sourcefilename$ is the source file name, and newfilename$ is the target file name. The file

names can include path, otherwise the default path will be used. If the target file exists, it will be

overwritten.

Keyword RENAMEFILE is used to modify the name of a file. The syntax is:

RENAMEFILE oldfilename$, newfilename$

Keyword DELETEFILE is used to delete a file. The syntax is:

DELETEFILE filename$

Keyword FINDFILE is used to find names of files. The syntax is:

FINDFILE TEMPNAME$, FILTER$

This keyword requires two expressions, one to specify the string variable name to store the file name in,

and another string variable which contains a "filter" string. The filter string usually specifies a path name

and wildcards appropriate to the desired file type.

FINDFILE is useful for listing all files of a certain type in a folder, or for analyzing large numbers of similar

lens files. To reset FINDFILE back to the first file of any type, just call FINDFILE with a different filter, then

call FINDFILE again with the original filter name. Each time FINDFILE is called with a new filter, it resets

back to the first file that meets the filter specifications.

We will now give some examples to show how to use the commands we discussed above. Before doing

that, we assume the lens file and the related session file already exist, and they are “ex31301.ZMX” and

“ex31301.SES”, respectively. If the two files don’t exist, we can run program “ex30401.ZPL” in Zemax,

then save current optical system to a file, and name it as “ex31301”.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 187

Example 3.13-1: File operation

In this program, line 6 loads existing lens file, line 7 re-loads the same file and appends it to the current

optical system. Line 9 saves the new current lens system to files “temp.ZMX” and “temp.SES”, and line

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 188

10 saves current merit function to file “temp.MF”. Line 13 outputs a text message to a text window, line

14 saves the content of the text window to file “tempWin.txt” (assume the number of the text window

is 1). Lines 16 ~ 18 copy files, line 20 renames a file. Lines 22 ~ 23 set the search condition, line 26 does

the first search, line 28 evaluate the search result, if not empty then print file name (line 29), line 30

searches again, and go back to loop for evaluation, until all the files meeting the search condition are

printed out. Line 34 sets a new search condition for line 35 to do the search again, in order to re-locate

the first search file. Lines 36 ~ 43 actually repeat the same search as in lines 22 ~ 32, and delete the

searched files. The result is shown in figure 3.13-1:

Fig. 3.13-1: result of ex31301.ZPL

We can see that a series of files were generated during the execution of the program, however, all those

files are deleted at last, so if we try to use windows explorer to view those files after running the

program, the files cannot be found.

The function PRINT we discussed before actually outputs the result to either the screen or a file.

However, if we want to output the result to a printer, we can use keyword PRINTFILE or PRINTWINDOW.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 189

Keyword PRINTFILE is used to print a text file to the printer. The syntax is:

PRINTFILE filename$

where filename$ is the file name that may include path name or use the current path. The file should be
a text file. PRINTFILE also closes the file if no CLOSE command has been executed.

Keyword PRINTWINDOW is used to output any open graphic or text window to the printer. The syntax is:

PRINTWINDOW winnum

where winnum is the window number.

If we want to save the content of a graphic window to a file, depending on the file format, we can use

keyword EXPORTBMP, EXPORTJPG, or EXPORTWMF.

Keyword EXPORTBMP is used to save a graphic window to a BMP file. The syntax is:

EXPORTBMP winnum, filename$, delay

In this command, the integer winnum corresponds to the graphic window number that should be saved
to a file, the filename is the full file name including the path, but with no extension. Zemax will
automatically add the BMP extension. The optional delay parameter specifies a time delay in
milliseconds. For some complex graphics, a delay is required to allow the graphic to be completely
redrawn and the screen capture to complete. If the BMP files appear incomplete, try a delay value of
500 ~ 2500 milliseconds. It needs to be pointed out that the content of the graphic window is obtained
by screen capture. If Zemax is running in the background (e.g. other programs overlap Zemax graphic
window), the result of the output file may not be as desired.

Keyword EXPORTJPG is used to save a graphic window to a JPG file. The syntax is:

EXPORTJPG winnum, filename$, delay

where winnum is the graphic window number, filename$ is the target file name including the path but

no extension, and delay is in the unit of milliseconds.

Keyword EXPORTWMF is used to save a graphic window to a WMF file. The syntax is:

EXPORTWMF winnum, filename$

where winnum is the graphic window number, filename$ is the target file name including the path.

Different from EXPORTBMP and EXPORTJPG, extension should be included in the file name.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 190

Besides outputting graphic window to a file, ZPL can also export the whole lens system to IGES, STEP,

SAT or STL format file for other CAD software to use. Keyword EXPORTCAD is designed to do so. The

syntax is:

EXPORTCAD filename$

where filename$ is the target file name including the path. The format of the file is determined by a

series of parameters that are put in the default vector VEC1. The details of the elements in the vector is

listed in table 3.13-1:

Table 3.13-1 Parameters of EXPORTCAD output file

Element Description

VEC1(1) The File type. Use 0 for IGES, 1 for STEP, 2 for SAT, 3 for STL.

VEC1(2) The number of spline points to use (if required on certain entity types). Use 16, 32, 64,

128, 256, or 512.

VEC1(3) The First surface to export. In NSC Mode, this is the first object to export.

VEC1(4) The last surface to export. In NSC Mode, this is the last object to export.

VEC1(5) The layer to place ray data on.

VEC1(6) The layer to place lens data on.

VEC1(7) Use 1 to export dummy surfaces, otherwise use 0.

VEC1(8) Use 1 to export surfaces as solids, otherwise use 0.

VEC1(9) Ray pattern. Use 0 for XY, 1 for X, 2 for Y, 3 for ring, 4 for list, 5 for none, 6 for grid,

and 7 for solid beams.

VEC1(10) The number of rays.

VEC1(11) The wave number. Use 0 for all.

VEC1(12) The field number. Use 0 for all.

VEC1(13) Use 1 to delete vignetted rays, otherwise use 0.

VEC1(14) The dummy surface thickness in lens units.

VEC1(15) Use 1 to split rays from NSC sources, otherwise use 0.

VEC1(16) Use 1 to scatter rays from NSC sources, otherwise use 0.

VEC1(17) Use 1 to use polarization when tracing NSC rays, otherwise use 0. Polarization is

automatically selected if splitting is specified.

VEC1(18) Use 0 for the current configuration, 1 to n for a specific configuration where n is the

total number of configurations, n+1 to export “All By File”, n+2 to export “All By

Layer”, and n+3 for “All At Once”.

VEC1(19) Tolerance setting. Use 0 for 1.0E-4, 2 for 1.0E-05, 3 for 1.0E-06, and 4 for 1.0E-07.

VEC1(20) ~

VEC1(21)

If the program mode is sequential, and the range of surfaces includes a non-sequential

components surface, these values allow a range of objects to be exported. VEC1(20) is

the first object to export, and VEC1(21) is the last object to export. If both values are

zero or out of range all objects are exported.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 191

Example 3.13-2 shows how to use EXPORTCAD:

The program assumes the current optical system is defined in example 3.13-1, and the goal is to export

the doublet defined between surface 1 ~ surface 5 to a STEP file. After running the program, a file

“ex31302.stp” is generated. If we use a CAD program to open this file, we can see the double as shown

in figure 3.13-2:

Fig. 3.13-2: the doublet exported by program ex31302.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 192

3.14 ZBF File

In section 9 of this chapter, we discussed keyword POP for analyzing physical optics propagation. Zemax

beam file (ZBF) is used to save the analysis result. Since ZBF is very important to physical optics

propagation analysis, ZPL provided a series of related keywords, including ZBFCLR, ZBFMULT,

ZBFPROPERTIES, ZBFREAD, ZBFRESAMPLE, ZBFSHOW, ZBFSUM, ZBFTILT, ZBFWRITE, etc. We will discuss

them in details in this section. Please note that Zemax saves all the ZBF files into the folder

““…\POP\Beamfiles\”. Although the extension name can be anything, we suggest use “.ZBF” for

consistency and clarification.

Keyword ZBFCLR is used to clear the complex amplitude data in a ZBF file. The syntax is:

ZBFCLR filename$

where filename$ is the file name.

Keyword ZBFMULT is used to multiply the complex amplitude data in a ZBF file by a complex factor. The

syntax is:

ZBFMULT filename$, Ax, Bx, Ay, By

where filename$ is the name of the ZBF file, A and B are the real part and imaginary part of the complex

number to multiply every point in the ZBF file by, x and y are different polarized light directions. The

resulting data is written back to the same file name.

Keyword ZBFPROPERTIES is used to open the specified ZBF file and place various data about the beam in

a vector variable. The syntax is:

ZBFPROPERTIES filename$, vector

where filename$ is the name of the ZBF file, and vector is 1~4 for the 4 default vectors provided by

Zemax. After this command executes, the following beam data will be placed in the specified vector: nx,

ny, dx, dy, waist_x, waist_y, position_x, position_y, rayleigh_x, rayleigh_y, wavelength (in lens units),

total power, peak irradiance (power per area), the is_polarized flag (0 for no, 1 for yes), and the media

index; the values are placed in vector positions 1 through 15.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 193

Keyword ZBFREAD is used to open ZBF file and place the electric field and beam property data in two

user-defined array variables. The syntax is:

ZBFREAD filename$, beamname, propertyname

where filename$ is the ZBF file name, beamname is a 3 dimensional array of minimum size (nx, ny, 2) for

an unpolarized beam and minimum size (nx, ny, 4) for a polarized beam, propertyname is a one

dimensional array of minimum size 14. After this command executes, the following beam data will be

placed in the specified propertyname array: nx, ny, dx, dy, waist_x, waist_y, position_x, position_y,

rayleigh_x, rayleigh_y, wavelength (in lens units), total power, peak irradiance (power per area), the

is_polarized flag (0 for no, 1 for yes), and the media index; the values are placed in array positions 1

through 15. The electric field data will be placed in the beamname array. The third dimension of the

beamname array is 1 for Ex Real, 2 for Ex Imaginary, and if the beam is polarized, 3 for Ey Real, and 4 for

Ey Imaginary.

Keyword ZBFRESAMPLE is used to re-sample a ZBF file to a new width and point spacing. The syntax is:

ZBFRESAMPLE filename$, nx, ny, wx, wy, decenterx, decentery

where filename$ is the name of the ZBF file. The beam will be resampled and interpolated as required to

create a new beam file with nx and ny points, of total width wx and wy, in the x and y directions,

respectively. The nx and ny values must be powers of 2, such as 32, 64, 128, etc. The decenterx and

decentery values may be provided to optionally decenter the new beam relative to the old beam. If

either nx or ny is zero, no change is made to the existing beam sampling. If either wx or wy is zero, no

change is made to the existing beam width. The length units in the ZBF file are converted automatically

to the current lens units. The resulting data is written back to the same file name.

Keyword ZBFSHOW is used to display a ZBF file in a viewer window. The syntax is:

ZBFSHOW filename$

where filename$ is the ZBF file name. This command will open a new viewer window, and display the

ZBF file.

Keyword ZBFSUM is used to sum either coherently or incoherently the data in two ZBF files and places

the resulting data in a third ZBF file. The syntax is:

ZBFSUM coherent, filename1$, filename2$, outfilename$

where coherent is 0 for incoherent or other integer for coherent summation, filename1$, filename2$,

outfilename$ are the names of two source files and the target file. If an incoherent sum is performed,

the output data will be real valued only. If the two source files do not have the same number of data

points, point spacing, and reference radii in both x and y directions, then the second source file listed is

first scaled and interpolated, and the reference radii is adjusted to match the first file before the

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 194

summation is performed. The length units in the ZBF files are converted automatically to the current

lens units. The outfilename may be the same as one of the source file names, in which case the original

file is overwritten.

Keyword ZBFTILT is used to multiply the data in a ZBF file by a complex phase factor to introduce phase

tilt to the beam. The syntax is:

ZBFTILT filename$, cx, cy, tx, ty

where filename$ is the ZBF file name, cs and cy are the center of the phase tilt, tx and ty are the slopes
of the tilt in units of radians per lens unit length. The coordinates x and y refer to positions within the
beam file, with the center coordinate (x = 0, y = 0) being at the point (nx/2 + 1, ny/2 + 1) where nx and
ny are the number of points in the x and y directions. The length units in the ZBF file are converted
automatically to the current lens units. The resulting data is written back to the same file name.

Keyword ZBFWRITE is used to write electric field and beam property data arrays to a ZBF file. The syntax

is:

ZBFWRITE filename$, beamname, propertyname

where filename$ is the ZBF file name, beamname and propertyname are two arrays defined by a

previous call to DECLARE. The beamname must be a 3 dimensional array, of minimum size (nx, ny, 2) for

an unpolarized beam and minimum size (nx, ny, 4) for a polarized beam. The propertyname array must

be a one dimensional array of minimum size 14. The following beam data must be placed in the

specified propertyname array: nx, ny, dx, dy, waist_x, waist_y, position_x, position_y, rayleigh_x,

rayleigh_y, wavelength (in lens units), total power, peak irradiance (power per area), the is_polarized

flag (0 for no, 1 for yes), and the media index. The values are placed in array positions 1 through 15. The

electric field data must be placed in the beamname array. The third dimension of the beamname array is

1 for Ex Real, 2 for Ex Imaginary, and if the beam is polarized, 3 for Ey Real, and 4 for Ey Imaginary.

Now we will show how to use ZBF related commands in ZPL with an example. Assume the optical

system is the doublet defined in example 3.04-1, as shown in figure 3.14-1. Since we will use previously

save file in this example, we don’t have any special requirements to the optical system.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 195

Fig. 3.14-1: Optical system associated to file “ex30910b.ZBF”

When we discuss POP in section 9 of this chapter, we saved file “ex30910b.ZBF”. The data saved are the

beam data of the 0 degree incident light when it reaches the last surface. The example below will use

this file. Please note that the ZBF file was saved in folder “…\POP\Beamfiles”.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 196

Example 3.14-1: Usage of ZBF related keywords.

In this program, we use keyword ZBFPROPERTIES to read the beam properties in the source file, and

defined two arrays beamArray and propertyArray (lines 11 ~ 19). Line 21 reads the beam data in the

source file, lines 22 and 23 save the data into two new files for later use. After that, we use keyword

ZBFRESAMPLE to shift original beam in Y direction for 0.015 lens unit (lines 26 ~ 28), then do the

coherent summation (line 31) and incoherent summation (line 34) using the two beams, and save the

result into two different files. We also use keyword ZBFSHOW to open a viewer window to view

different files. The results are shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 197

(a) (b)

(c) (d)

Fig. 3.14-2: The content in the viewer window after program execution.

(a) ~ (d) are original beam, shifted beam, coherent sum beam, and incoherent sum beam.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 198

Chapter 4

ZPL Application Examples

In this chapter, we will give some ZPL examples for real applications. From these examples we can see

that with the aid of ZPL, a lot of tedious routine work can be finished by computer, and our work

efficiency can be greatly improved. As an optical engineer, if one can master the tool of ZPL, he can do

his design much faster and more flexible.

4.1 Sequential Optical Systems

The examples given in this section involve only sequential optical system.

Example 4.1-1: Basic ray-tracing parameters.

In this example, we will let the user input Hx, Hy, Px, Py to define a light ray, and calculate the

coordinates, incident angle and exit angle at the intersection point of the light ray and each surface in

the optical system. The program is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 199

In this program, lines 5 ~ 8 ask the user to define the light ray, line 19 traces the ray, lines 22 ~ 32

calculate the parameters of each intersection points, wherein line 23 calculates the normal direction of

each surface, line 24 calculates the ray direction before it hits each surface, and line 26 calculates the

ray direction after it leaves each surface.

This program is a general program and works for different optical systems. If we assume the optical

system is the doublet defined in example 3.4-1, and the user-defined ray is Hx = 0, Hy = 1, Px = 0, and Py

= 0, then the result after execution is:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 200

Fig. 4.1-1: Result of program ex40101.ZPL

Example 4.1-2: Light spot near focal plan.

In this example, we move the image plan around the focal plan by changing the thickness of the surface

just before the image surface, and observe the change of the size of the light spot on the image plan.

The program is shown below:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 201

This program is also a general program. As an illustration, we assume the optical is the doublet defined

in example 3.4-1. Before running the program, open the Spot Diagram window in Zemax, and set the

system according to figure 4.1-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 202

Fig. 4.1-2: Spot Diagram settings

In this program, the user is first asked to input the range and step number of the image plan shift (lines

12 ~ 18), and then the program will evaluate the user input, requiring shift range be positive but not

larger than the thickness of the surface just before the image plan, and step number be positive, too. If

the input cannot meet the requirement, then the user will be asked to input again. Line 20 assures the

step number is a positive integer. After that, the program calculates the starting and stopping Z

coordinates and the step size (lines 22 ~ 24), and in each loop, generates a new file name based on the

shift value of the image plan (line 32), modifies the image plan position (line 34), updates the Spot

Diagram window (line 35), and outputs the content of the window to the target file (line 36). Lines 39 ~

41 restore the original image plan location to assure the original optical system is not impacted by the

program.

During the execution of the program, we can see that the light spot size in the Spot Diagram is changed.

After the execution, the following files are generated in the given folder (assume our inputs are shift = 5,

step = 10):

ex40102 shift -5.0.BMP

ex40102 shift -4.0.BMP

ex40102 shift -3.0.BMP

ex40102 shift -2.0.BMP

ex40102 shift -1.0.BMP

ex40102 shift 0.0.BMP

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 203

ex40102 shift 1.0.BMP

ex40102 shift 2.0.BMP

ex40102 shift 3.0.BMP

ex40102 shift 4.0.BMP

ex40102 shift 5.0.BMP

wherein the content of the 1st, 3rd and 6th file is shown in figure 4.1-3:

Fig. 4.1-3: Content of some of the files generated from program ex40102.ZPL

With the files generated from this program, it’s not hard to make an animation to demonstrate how the

light spot size on the image plan changes with the shift of the plan.

Example 4.1-3: Geometrical beam and Gaussian beam comparison

In this example, we will discuss how to read Zemax analysis data by comparing the beam size at each

surface (Y coordinate of the intersection of the light ray and the surface) obtained from geometrical

beam method and Gaussian beam method. Assume the optical system is the doublet defined in

example 3.4-1. Since Zemax has a default beam waist radius of 0.05 lens unit when calculating Gaussian

beam, we need to modify this number according to our system. Create a new lens file in Zemax, run

program EX30401.ZPL, and open a paraxial Gaussian beam analysis window from menu Analysis

Physical Optics Paraxial Gaussian Beam, press the right button of the mouse to pop out the setting

dialog, change the beam waist size to be 25, as shown in figure 4.1-4, and then save the settings.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 204

Fig. 4.1-3: Paraxial Gaussian Beam Settings for example Ex4.1-3

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 205

In this program, line 14 does the ray-tracing to obtain the geometrical beam size, i.e. the Y coordinate of

the intersection of the marginal ray and the surface. Lines 17 ~ 34 obtain the Gaussian beam data,

wherein line 17 generates a temporary file, line 18 stores the content of the paraxial Gaussian beam

analysis window into the temporary file, line 19 opens the temporary file to read the data, and line 25

reads a whole line in the file. Since the file format is fixed, and we know the 28th line in the file is the

data of the first surface, so if the line number is smaller than 28, the program jumps back to label 1 to

continue to read next line, until it reaches line 28. Lines 29 and 30 of the program convert the 2nd string

(Gaussian beam radius) into a number, and store it in the default vector VEC1. Lines 31 and 32 evaluate

the first string of the read data and see if it is “IMA”, if yes, it means the data of the last surface has

been reached, otherwise the program goes back to label 1 and continues to read next line. After the

data of the last surface is read, line 33 closes the temporary file, and line 34 deletes the file.

Lines 37 ~ 48 display the result on the screen, wherein function RAGY() is the result of the geometrical

ray tracing, and array VEC1() is the Gaussian beam result read from the temporary file.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 206

The result of the program is shown in figure 4.1-5:

Fig. 4.1-5: Result of program ex40103.ZPL

Example 4.1-4: Comparison of transmission property of different glass materials

In optical design, sometimes we need to search for glass materials with special transmission properties.

For example, we may want to find glass that has highest transmission in the visible wavelength range

(400nm ~ 700nm), but has biggest absorption at UV and infrared wavelengths. In this example, we will

search for such glass material among the thousands of glasses in Zemax database. Assume our

interested wavelength range is 380 ~ 1000nm, and we hope to get lowest transmission in 380 ~ 400nm

and 700 ~ 1000nm range, but highest transmission in 400 ~ 700nm range. We will set the thickness of

the glass to be 1mm, calculate transmission at different wavelength, convert the transmission value to

absorption value in the range of 380 ~ 400nm and 700 ~ 1000nm, and define a merit value as the root

mean square of all those values across the whole interested wavelength range. Each glass material will

have one merit value. After sorting all the merit values, we can choose those with highest merit values

as our candidates.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 207

Lines 1 ~ 20 is the main program, wherein lines 7 ~ 10 define some basic parameters, and line 12 gives

the output file name. We will use the default Zemax vectors to store glass data. Since the total number

of glasses is bigger than 1000, line 14 increases the vector size to 10000. Line 16 calls sub-program

“calculate” to calculate merit value of each glass material, line 17 calls sub-program “sortResult” to sort

the merit values, and line 18 calls sub-program “reportResult” to output the final result.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 208

Lines 23 ~ 56 is the sub-program “calculate” used to calculate the merit value of a glass material. Since

we need to change the first wavelength value in the system settings, we save the original wavelength

value in line 25, and after calculation, we restore the original wavelength value in line 54, so the original

optical system remains impacted. The loop in lines 27 ~ 52 evaluates total 16 glass catalogs, wherein

line 28 calls sub-program “getCatalog” to load glass catalogs in serial, and the loop in lines 32 ~ 41

calculates transmission or absorption at each wavelength, and calculates the merit value (note the

square root hasn’t been calculated yet). We found that in the glass catalog data provided by Zemax,

sometimes the transmission coefficient alpha is positive, and sometimes negative, so we change them

to be positive in line 37, and calculate the transmission based on positive coefficient in line 38. Line 39

evaluates the wavelength, and if it is out of visible range, then use absorption instead of transmission to

calculate the merit value. After finish calculating the merit value of a glass type, line 42 increases the

total glass number, and lines 43 ~ 45 store the corresponding catalog number, glass number in the

catalog, and merit value into default vectors VEC2, VEC3 and VEC4, respectively. Since the calculation

needs some time, lines 46 ~ 48 display the current progress on the screen. Keyword REWIND is used to

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 209

assure the display is always on the same line. Figure 4.1-6 shows the screen content at a certain

moment during the program execution. After that, line 49 increases the glass number in the catalog by

1, line 50 reads the new glass parameters, line 51 evaluates if the glass is valid (We use the method of

judging the code of dispersion equation type. The code is a positive integer for a valid glass type, 0 for

an invalid glass type), if yes then program jumps to label 1 to process the new glass, otherwise, the end

of a catalog is reached, so the program proceeds to the next glass catalog in the loop.

Fig. 4.1-6 The progress shown on the screen during the execution of ex40104.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 210

Lines 58 ~ 80 is the sub-program “getCatalog”. Its function is to assign the glass catalog name according

to the catalog number, and load the catalog.

Lines 83 ~ 106 is the sub-program “sortResult”. Its function is to sort the glasses stored in the default

vectors according to the merit values stored in VEC4 using a common bubble sorting method. Similarly,

lines 101 ~ 103 displays the progress during sorting, as shown in figure 4.1-7.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 211

Fig. 4.1-7 Progress display during sorting of glasses.

Lines 109 ~ 132 is sub-program “reportResult”. It’s used to output calculation result. In this sub-

program, lines 113 ~ 116 display a table head on the screen, 118 ~ 125 use a FOR loop to print all the

sorted glass catalog names, glass names and merit values. Since we only know the glass number, in

order to print the glass name, we need to insert a temporary surface (line 111) in the lens data editor,

set the surface material type as the glass with known number, and read back the glass name using

function $GLASS() in line 123. After all the glasses are displayed, line 127 deletes the temporary surface,

and restore the original optical system. Line 130 saves the content displayed in the text viewer window

to a target file.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 212

Figure 4.1-8 shows partial of the result of the program displayed in the text viewer window. It needs to

be pointed out that our program assumes the data in Zemax glass catalogs are all correct. Sometimes

this assumption may not be true, and the designer needs to make his or her own judgement on the

result of the program.

Fig. 4.1-8 Partial content of the result of program ex40104.ZPL

displayed in the text viewer window

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 213

Finally, as a verification, we compare three glasses CF6, BK3 and SF5 in the sorting list with merit value

from high to low, and display their transmission curves in figure 4.1-9. From the plot we can see that

our sorting result is reasonable. The transmission data shown in figure 4.1-9 come from Zemax glass

catalog. We will describe how to get those data in next example.

Fig. 4.1-9 Comparison of internal transmission of 1mm-thick glass plate

A question to readers: in real application, it might be better to combine two different glasses to get

desired transmission property. So how to do it in ZPL program?

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 214

Example 4.1-5: Read refractive index and transmission data of catalog glass.

Zemax catalogs provides many glass property data such as refractive index, transmission, etc, and they

can be very helpful in real applications. We wrote this simple program to show that we can easily get

those data through ZPL program.

Lines 8 ~ 12 of the program ask the user to input the glass material name, thickness, start wavelength,

stop wavelength, and step number. Line 15 set wavelength 1 as the primary wavelength, so line 26 can

read the refractive index of that wavelength. In the loop of lines 21 ~ 34, line 22 calculates each

wavelength value, line 23 sets the glass material of surface 1 as the user defined glass, line 24 sets

wavelength 1 (i.e. the primary wavelength) as the calculation wavelength, line 25 updates the system

settings, line 26 reads the refractive index associated to the primary wavelength, lines 27 ~ 29 read the

transmission coefficient of glass, and as in last example, line 30 evaluates the coefficient, and treat it as

a positive value, and then line 31 calculates the transmission of the given thickness glass, line 33 displays

the result to the screen as a table. Finally, line 36 saves the content of the text viewer window to a

target file. In figure 4.1-9 of last example, the data we displayed were read with this program.

Before we run this program, we can create a new lens file, and we don’t need to save the lens file after

we run the program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 215

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 216

4.2 Non-Sequential Optical System

The examples given in this section involve only non-sequential optical system.

Example 4.2-1: Light Pipe.

In optical design, we often use light pipe to guide the light. The simplest light pipe is a cylinder that is

made of glass or plastic. Light can enter from one end of the pipe, and come out from the other end.

The cross section of the light pipe can be round or other shape such as triangle, rectangle or hexagon,

etc. When designing light pipe with different lengths and different cross sections, we need to consider

light coupling ratio, light spot uniformity, and other factors. In this example, we will compare the

maximum output light intensity, total flux and spot uniformity of light pipes with different length and

shape.

First, we assume the light source is a circular disk with Lambertian light distribution. The location of the

light source is at the origin, the normal of the source is along +Z direction, and the size is smaller than

the light pipe cross section. We also assume the area of the cross section of the light pipe is fixed, the

shape can be equilateral polygon with 3 to 8 sides, and the length can be 10, 40, 160 or 640 lens unit.

The light pipe also starts at origin Z = 0, with its length along +Z direction. The material of the pipe is

Acrylic. Finally, we assume a rectangular detector is put at the end of the light pipe to collect the output

light from the pipe. The size of the detector is slightly larger than the circumcircle of the light pipe. The

whole system is shown in figure 4.2-1:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 217

Fig. 4.2-1: the optical system in example ex40201.ZPL

Since this optical system is very simple, we can easily construct the whole system from scratch in the ZPL

program, change the system parameters in a loop, and do the ray tracing to get the final result.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 218

Lines 1 ~ 39 are the main program. Among them, lines 6 ~ 13 define some basic constants and

parameters, lines 16 ~ 19 define a 3 dimensional array to store the calculation result. After that, line 22

calls sub-program “prepareEditor” to set the non-sequential component editor, line 25 calls sub-

program “defineSource” to set up the light source, lines 28 ~ 34 form a loop to do ray tracing and

analysis by varying the side number of the polygon of the light pipe cross section and the length of the

pipe. Particularly, line 30 calls sub-program “createPolygon” to set up the light pipe, line 31 calls sub-

program “createDetector” to set up the detector, and line 32 calls sub-program “analyze” to trace rays

and analyze result. After that, line 37 calls sub-program “reportResult” to output result to the screen.

In this program, we use modularized code design, and put detailed settings into various sub-programs.

This gives us a simple and clear main program, and makes the whole program easier to understand and

to debug.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 219

Lines 42 ~ 53 are the sub-program “prepareEditor”. Its function is to first delete all the objects in the

non-sequential component editor (leaves only a null object at last), and then insert two more null

objects so there are total 3 null objects in the editor. In line 53, we add the name of the sub-program

“prepareEditor” in order to make the code clearer and easier to read. In fact, Zemax treats the RETURN

command the same with or without the name of the sub-program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 220

Lines 56 ~ 72 are the sub-program “defineSource”. Its function is to define the first object in the non-

sequential component editor as a circular source, and set it up.

Lines 75 ~ 108 are sub-program “createPolygon”. Its function is to define the second object in the non-

sequential component editor as a polygon light pipe, and set it up. The method we choose to create a

polygon light pipe is to use Extruded type object in Zemax, generate equilateral polygon through user-

defined aperture (UDA) file, and extrude it to a light pipe. In the program, line 78 calculates the radius

of the inscribed circle of the polygon, line 79 calculates the radius of the circumcircle of the polygon,

lines 82 ~ 89 define the UDA file. Please note that line 82 sets the output to a file, line 89 sets the

output back to the screen, so it is guaranteed that the output in the rest of the program uses the default

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 221

setting, i.e. the screen. Line 92 sets up the object type, line 95 defines the UDA file name, where the

path name is not needed, and the file should be stored in the objects folder (defined by Zemax main

menu, File Preferences Directories), which is “D:\My Macros\ch4” in this example. Lines 98 ~ 106

set up the material and other parameters.

Lines 111 ~ 127 are the sub-program “createDetector”, defining the type, position, size and pixel

numbers.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 222

Lines 130 ~ 155 are sub-program “analyze”. Line 132 clears the detector, line 133 does the ray-tracing,

lines 139 ~ 147 read the light flux on each pixel (line 140), evaluate if the light flux value on the current

pixel is larger than the maximum flux value (line 141), if yes then replace the max flux value with the

current pixel flux value. The goal is the find out the maximum flux value of all the pixels. Also, if the

current pixel flux value is larger than 0 (line 142), then add it into the total light flux “sumFlux” and

summation of square of the light flux “sumSquare”, and increase effective pixel number by 1 (lines 143 ~

145). In this sub-program, we need to calculate the following values, and save the result to the array

“result”: maximum light intensity on a single pixel, i.e. the maximum light flux on a single pixel divided

by the area of each pixel (line 151); total light flux (line 152); ripple or non-uniformity (line 150), defined

as the root mean square of the difference of light flux on each pixel and the maximum light flux

“maxFlux”, using the relation of i(pFluxi-maxFlux)2 = i(pFluxi)2 – 2*i(pFluxi)* maxFlux+ i(maxFlux)2 =

sumSquare – 2*sumFlux*maxFlux+totalCount*sumSquare.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 223

Lines 158 ~ 174 are sub-program “reportResult”. Its function is to output the result stored in array

“result” to the screen.

The final result of the whole program is as shown in figure 4.2-2:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 224

Fig. 4.2-2: Result of program ex40201.ZPL

Please note that when the light pipe is long, the number of total internal reflections of each ray in the

pipe is large. Therefore, the setting of “Maximum Intersections Per Ray” and “Maximum Segments Per

Ray” in Zemax (System General Non-Sequential) might need to be adjusted, otherwise many rays

will be lost due to surpassing the maximum limit, and the proper result cannot be obtained.

From the result shown in figure 4.2-2, when the light pipe is long enough, its output light flux becomes

stable. This is easy to understand, because the transmission of light in the pipe is through total internal

reflection, so the loss is negligible.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 225

People also investigated the relation between cross section of the light pipe and the output uniformity,

and believe that if the total plan can be covered by multiple cross section shape (such as hexagon), the

output light uniformity will be better. The worst uniformity comes from round cross section light pipe.

This is beyond our discussion in this book. Interested readers may want to investigate it further.

If we modify the program a little bit, we can also output to the screen the shape of the light spot seen

on the detector, as shown in figure 4.2-3. We will skip the details here.

Fig. 4.2-3: The light spot seen on the detector after running program ex40201.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 226

Example 4.2-2：Cosine Fourth Rule.

We know in an optical system, even the exit pupil is uniformly illuminated and there is no vignetting, the

illuminance between the center and the edge of the image plan is different, and it follows the cosine

fourth rule, i.e. point H on the image plan with an off-axis angle Ө has only an illuminance of cos4(Ө)

compared to that of a point A on the axis, as shown in figure 4.2-4:

Fig. 4.2-4: optical system following cosine fourth rule

In this example, we use a round Lambertian light source to simulate the exit pupil with uniform

illumination, and put a rectangular detector on the image plan, with its Y coordinate determined by

angle Ө. We will invesitgate the variation of light flux at point H by changing angle Ө.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 227

Create a new non-sequential optical system, and open a new Non-Sequential Component (NSC) editor.

Line 13 inserts a null object, so there are totally two null objects in the system. Lines 16 ~ 22 set the first

object as a round light source, and lines 25 ~ 30 set the second object as a rectangular detector. We

assume the sizes of the light source and the detector are far smaller than the distance between them.

Lines 33 ~ 42 modify the value of angle theta, and thus change the Y position of the detector, trace the

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 228

rays, read the total light flux on the detector and output to the screen. At the end of the program, save

the result displayed on the screen (assume text window 1) to a target file. Figure 4.2-5 shows the

content of the saved file.

Fig. 4.2-5: The content of the saved file after running program ex40202.ZPL

The saved file is a text file so it’s easy to further process it with other software. Figure 4.2-6 shows the

normalized result comparing to cos4(Ө). It’s clear to see that the simulated result follows the cosine

fourth rule. When the distance between the light source and the detector is short, such relation may

not be true. Readers can investigate further by themselves.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 229

Fig. 4.2-6: Comparison of the result of program ex40202.ZPL and the cosine fourth function.

Example 4.2-3: Importance sampling.

When doing scattering analysis, we often face such a problem: the sample scatters light towards all the

directions in the space, so the detector can only collect a very small part of the scattered light. In such a

case, if we want to do ray-tracing analysis, we need to trace huge amount of rays, and this is usually

unrealistic. In order to solve this problem, Zemax provided an importance sampling method to increase

the number of rays scattered towards the target without impacing the actual light energy distribution in

the space. This greatly increased the efficiency of the analysis, and is often used in optical system design.

We will discuss in detail the programming of importance sampling in this example.

As shown in figure 4.2-7, assume a collimated light beam is sent from the light source onto a Lambertian

sample, and the sample scatters incident light towards different directions in the space. We put 8

different detectors on the same plan in the space to measure the intensity of the scattered light. The

distance between the sample and each detector is the same. We want to investigate how the light

intensity varies on each detector when the sample tilts.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 230

Fig. 4.2-7: Optical system in program ex40203.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 231

Lines 1 ~ 40 are the main program. Among them, lines 6 ~ 13 defins a two-dimensional array to save the

result; line 21 calls sub-program “prepareEditor” to clear NSC editor, and adds total 10 null objects; line

24 calls sub-program “defineSource” to set the first object as the light source; line 27 calls sub-program

“defineSample” to set the second object as the Lambertian sample; line 30 calls sub-program

“defineDetectors” to set the 3rd to 10th object as detectors; lines 33 ~ 35 modify the tilt angle of the

sample, and call sub-program “analyze” to set importance sampling, do ray-tracing, and analyze the

result; at last, line 38 calls sub-program “reportResult” to output result.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 232

Lines 43 ~ 55 are sub-program “prepareEditor”. It’s used to clear NSC editor and add total 10 null

objects.

Lines 58 ~ 75 are sub-program “defineSource”. It’s used to set the first object as a round light source.

Particularly, line 73 sets the light beam from the source as collimated light.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 233

Lines 78 ~ 95 are sub-program “defineSample”. It’s used to set the 2nd object as a Lambertian scattering

sample, and set the scatter fraction as 1 (line 84), the total ray number as 1 (line 85).

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 234

Lines 98 ~ 120 are sub-program “defineDetectors”. It’s used to set 3rd ~ 10th object as detectors. Since

we only need to read the total light intensity on the detector, we set the pixel number of each detector

as 1 (lines 116 and 117).

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 235

Lines 123 ~ 147 are sub-program “analyze”. It’s used to define the tilt angle of the sample (line 126), set

importance sampling, and do ray-tracing and analysis. Among them, line 130 sets the scattering mode

as importance sampling, lines 131 ~ 135 generate the target data string based on different detector, line

136 sets importance sampling target data, line 139 clears the detector, line 140 does the ray-tracing, line

141 reads the values on the detector to the “result” array, and line 145 restores the original sample

rotation angle.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 236

Lines 150 ~ 168 are sub-program “reportResult”. It’s used to output result to the screen, and save the

content of the Text Viewer window to the target file. Please note that there is a comma at the end of

line 157 and also line 160, meaning no line change after printing, and line 161 evaluates if all the

detector values have be printed, then print a space and change to a new line. Further, since we only

want to know the relative readings on the detectors, the result printed by line 160 is the ratio between

the current value on the detector and the value on the detector with 0 tilt angle.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 237

Fig. 4.2-8: Result of program ex40203.ZPL

The result saved in the target file can be processed by other software such as Excel, and we can get the

final result as shown in figure 4.2-9. It can be seen that when the sample is tilted, the value on each

detector will change accordingly, and the result follows a cosine function.

Fig. 4.2-9: Relation between detector reading and sample tilt angle from program ex40203.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 238

Example 4.2-4: Interference fringes.

The rectangular detector provided in ZEMAX non-sequential mode is very useful. It not only can detect

light flux, but also can be used to do interference analysis. In this example, we will discuss the simplest

interference system, and observe interference fringes using rectangular detector.

As shown in figure 4.2-10, assume a collimated laser beam was sent onto a glass plate, so the reflected

light from top and bottom surfaces will interfere with each other. If the bottom surface of the glass

plate is a standard plan, and the top surface has a small curvature, we can then see interference fringes

on the detector. Here we assume the size of the detector is smaller than the cross section of the light

beam, so the impact from the edge of the beam can be neglected.

Fig. 4.2-10: Interference between light reflected from the top

and the bottom surface of the glass plate.

Program ex40203.ZPL is used to change the curvature of the top surface of the glass plate, observe the

change of the interference fringes accordingly, and output the result to a series of files.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 239

Before running the program, we need to do some preparation. First, create a new lens file under non-

sequential mode. Set the default null object in the NSC editor as type “Detector Rect”, and open a

detector viewer, change its show data type to “Coherent Irradiance”, as shown in figure 4.2-11:

Fig. 4.2-11: set the Show Data type of the Detector Viewer as “Coherent Irradiance”

After setting the detector viewer, the following program can be executed. Lines 1 ~ 34 are the main

program, wherein line 6 ~ 17 define some parameters needed in the program, line 20 calls sub-program

“prepareEditor” to insert two more null objects, line 23 calls sub-program “defineSource” to set the first

object as the light source, line 26 calls sub-program “defineGlassPlate” to set the second object as the

glass plate, line 29 calls sub-program “defineDetector” to set the third object as the rectangular detector,

line 32 calls sub-program “analyze” to do the ray-tracing and output the interference fringes on the

detector to a series of files.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 240

The following are the sub-programs.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 241

Lines 37 ~ 44 are the sub-program “prepareEditor”. It’s used to insert two null objects.

Lines 47 ~ 65 are the sub-program “defineSource”. It’s used to set the first object as a collimated light

source.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 242

Lines 68 ~ 86 are the sub-program “defineGlassPlate”. It’s used to set the second object as a glass plate.

The type of the glass plate is set as standard lens, so the curvature of its top surface can be easily

modified.

Lines 89 ~ 105 are the sub-program “defineDetector”. It’s used to set the third object as a rectangular

detector.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 243

Lines 108 ~ 122 are the sub-program “analyze”. It’s used to modify the curvature of the top surface of

the glass plate, do ray-tracing, generate file names according to the curvature of the top surface of the

glass plate, and output the content of the detector viewer to the target files.

After running the program, we can see the following files are added in the target folder:

ex40204 R101.BMP

ex40204 R102.BMP

ex40204 R104.BMP

ex40204 R108.BMP

ex40204 R116.BMP

ex40204 R132.BMP

ex40204 R164.BMP

ex40204 R228.BMP

ex40204 R356.BMP

ex40204 R612.BMP

Among them, the content of the 1st, 5th, and 9th files are shown below in figure 4.2-12:

Fig. 4.2-12: The content of some files generated from program ex40204.ZPL.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 244

Example 4.2-5: Impact of entrance size and detector size to the efficiency of the integrating sphere.

Integrating sphere is a common device used in optical measurement. One type of structure has two

perpendicular ports on the sphere, one for light source, and the other for detector, as shown in figure

4.2-13. As we know, both the size of the light entrance port and the size of the detector have impact on

the integrating efficiency, because light can get lost from those two places. In this program, we will

change the size of the light source and the detector, and investigate its impact on the integrating

efficiency.

First, we will use the sphere object in Zemax to simulate an integrating sphere. Assume the radius is 1

(we are only interested in the relative value, not the absolute value). We then put a round light source

at location Z = 1, and put a round detector at location Y = 1. The actual locations require some simple

calculation to assure they are tangent to the sphere. Further, to assure there is no overlapping during

ray-tracing, we move the light source and the detector slightly towards the sphere center. We set the

detector material as “ABSORB” to simulate the loss of light when entering it. Since we cannot set the

light source as absorbing material, we put another round disk with the same size of the light source

between the light source and the sphere vertex, close to the light source. This is to simulate the light

loss when it comes back to the entrance port.

Fig. 4.2-13: Diagram of a common integrating sphere.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 245

Create a new lens file in Zemax, and then we can run our program shown below.

Lines 1 ~ 43 are the main program, wherein lines 5 ~ 15 set the parameters needed in the program, line

18 is used to define a two dimensional array to store the result, and the rest is similar to the examples

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 246

we discussed before, i.e. calling different sub-programs to set up system, do the ray-tracing and analysis,

and output the result. In this example, we will use nested sub-programs, i.e. calling other sub-programs

from a sub-program.

Lines 46 ~ 57 are sub-program “prepareEditor”. It’s used to create total 3 objects in the NSC editor, and

set the maximum interesction per ray, maximum segments per ray and minimum relative energy.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 247

Lines 60~ 79 are sub-program “defineSource”. It’s used to set up the light source. Among them, line 67

calculates the Z position of the light source, line 68 sets the light source position with a small shift. In

this sub-program, the radius of the light source “sourceR” is not fixed, and it needs to be determined

before calling this sub-program. This allows us the easily analyze different size light sources.

Lines 82~ 95 are sub-program “defineSphere”. It’s used to set up the integrating sphere. We set the

sphere object type as a shell (line 93), and its optical property as Lambertian scattering (lines 86 ~ 89).

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 248

Lines 98~ 114 are sub-program “defineDetector”. It’s used to set up the round detector. Just like the

light source, the size of the detector is not fixed, and it needs to be determined before calling this sub-

program. The position of the detector also needs to be calculated (line 105).

Lines 117~ 132 are sub-program “defineOutputPort”. It’s used to put an absorbing object after the light

source, and simulate the light loss from here. Similarly, its size and position need to be calculated.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 249

Lines 135~ 159 are sub-program “analyze”. It’s used to modify the size of the light source and the

detector, do ray-tracing, and record the result. In this sub-program, we list result of each ray-tracing on

the screen in a table, and save the result into array “result”. Line 138 calls another sub-program

“printHeader” to print table header on the screen. The outer loop in lines 141 ~ 157 modifies the size of

the light source, the inner loop in lines 145 ~ 155 modifies the size of the detector. Lines 142 and 146

calculate the size of the light source and the detector, respectively, lines 147, 148 and 149 call different

sub-programs to set the light source, the detector, and the absorber alongside the light source, and then

do the ray-tracing, record and output data. Please note that we can call the same sub-programs from

either the main program or from this sub-program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 250

Lines 162~ 184 are sub-program “printHeader”. It’s used to print the table header. We use the default

output target screen here.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 251

Lines 188~ 215 are sub-program “exportToFile”. It’s used to output the result stored in array “result” to

the target file with given format. Of course we can directly output the table printed on the screen to the

target file, as we did in example 4.2-3, but here we show a different output method.

After running the program, we can see on the screen the result shown in figure 4.2-14:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 252

Fig. 4.2-14: Result shown on the screen after running program ex40205.ZPL

In the mean time, in the target folder given in the program, we can see a target file with content shown

in figure 4.2-15:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 253

Fig. 4.2-15: The content of the target file saved after running program ex40205.ZPL

The result saved in the text file can be easily processed with other software. Shown in figure 4.2-16 is

the relation between the integrating efficiency and the size of the light source and the detector,

processed in Excel.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 254

Fig. 4.2-16：Integrating efficiency obtained from the result of program ex40205.ZPL

Example 4.2-6: Three-dimensional light intensity distribution obtained with volume detector.

Detector Volume is a powerful tool Zemax provided. It is a rectangular volume with an arbitrary number

of voxels. Voxels is a name derived from "volume pixels". A voxel is a 3D rectangle block that defines

some portion of the total volume occupied by imported solids. The detector volume may be nested

within or straddle any other object. Multiple detector volumes may also be superimposed and all will be

illuminated by rays passing through the individual voxels. With the help of Detector Volume we can

easily obtain the intensity distribution of incident light or absorbed light in 3-D space.

In this example, we will discuss how to obtain the 3-D intensity distribution of incident light, and display

this distribution in 3-D plot. The optical system is an LED model provided by Zemax, and can be

obtained from Zemax installation folder (default as “C:\Program Files\ZEMAX\Samples\Non-

sequential\Sources\”), file name “led_model.ZMX”. We resave the file to “ex40206.ZMX”. In this

optical system, there is a simple LED model, as well as a plan detector, as shown in figure 4.2-17:

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 255

Fig. 4.2-17: Diagram of optical system ex40206.ZMX

We will slightly modify this system, delete the plan detector, and add a volume detector, as shown in

figure 4.2-18. We can do this either directly in the NSC editor, or with ZPL program. In this example we

will do it with ZPL program.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 256

Fig. 4.2-18: Diagram of modified optical system ex40206.ZMX.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 257

Lines 1 ~ 33 are the main program, wherein lines 6 ~ 11 define the size of the volume detector and the

number of voxels, line 13 defines a one dimensional array “intensity” to store the incident light intensity,

line 14 defines a one dimensional array “voxelColor” to store the color group of each voxel (determined

by the relative light intensity on the voxel), line 15 ~ 19 define the light intensity throshold, line 22 calls

sub-program “changeModel” to slightly modify the optical system, i.e. delete the plan detector and add

the volume detector as mentioned before, line 25 calls sub-program “recordLight” to do the ray-tracing

and record the incident light intensity of each voxel, line 28 calls sub-program “setColor” to normalize

the light intensity of each voxel, and assign different color number according to the intensity value, and

finally, line 31 calls sub-program “visulize” to create a 3-D model of colors to represent the light intensity

distribution in the space, and import the 3-D objects to the current optical system.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 258

Lines 36 ~ 59 are sub-program “”. It’s used to modify original optical system, i.e. delete the plan

detector, and add a volume detector. Lines 40 ~ 44 check each object, and delete it if its type is plan

detector (NSC_DETE). Lines 46 ~ 55 insert a new object, define its type and other parameters. Line 57

updates the system.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 259

Lines 62 ~ 81 are sub-program “recordLight”. It’s used to do the ray-tracing and record the intensity of

the light incident to each voxel of the volume detector. Particularly, line 64 clears the detector, line 68

does the ray-tracing, lines 71 ~ 79 use a loop to record the light intensity of each pixel, find the maimum

value, and store the value in variable Imax.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 260

Lines 84 ~ 107 are sub-program “setColor”. It’s used to normalize the light intensity on each voxel, and

assign each voxel to different color group according to the threshold. The basic idea is to set the voxels

with highest intensity as red, then yellow, then green, and then blue. If the light intensity is smaller than

then minimum threshold, it will be omitted.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 261

Lines 110 ~ 123 are sub-program “visulize”. It’s used to create 3-D model of the voxels in each color

group, i.e. use a small cube to represent each voxel, and load the 3-D model of each color group into the

current optical system. Line 112 and 113 read the current object path name and lens file name,

respectively. The loop in lines 115 ~ 117 calls sub-program “createObj” to create a 3-D object for each

color group. Finally, the loop in lines 119 ~ 121 calls sub-program “import” to import the 3-D object in

each color group to the current optical system.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 262

Lines 126 ~ 167 are sub-program “createObj”. It’s used to create 3-D model for the voxels in each color

group. Among them, line 128 reads the total number of objects in the current system, save it as

objTotal; line 129 assign the number to variable objNum; lines 131 ~ 157 check each voxel with a loop,

and if a voxel belongs to a particular color group (line 132), then insert a new object (line 138) at the end

of the NSC editor (determined by the value of objNum+1), and set corresponding parameters (lines 139

~ 145); lines 147 ~ 152 calculate the position of each voxel; lines 153 ~ 155 set the voxel position

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 263

accordingly; line 161 updates the current system after finishing the loop of each color group; lines 163 ~

165 indicate the start number and stop number of each new object in the NSC editor, and call sub-

program “export” to export those objects to the target file.

Lines 170 ~ 207 are sub-program “export”. It’s used to export the objects to a target CAD file. Lines 173

~ 190 define some parameters related to exporting file (some default values don’t need to be specified

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 264

in the program). We choose the export file type as STL (line 173). The range of the objects to be

exported is determined by exportStartNum and exportStopNum (lines 175 and 176), and the objects are

exported as solids (line 180). Lines 192 ~ 195 generate the target file name according to the color group,

line 199 exports the object to the target file, and lines 201 ~ 205 delete all the exported objects from the

NSC editor.

Lines 210 ~ 235 are sub-program “import”. It’s used to import the solid model of each color group to

the current optical system for visulization. Among them, lines 212 ~ 214 generate file name according

to the color group value, and please note no path name is included here, so the file must be put in the

default object folder; line 221 inserts a null object at the end of the NSC editor; line 222 sets the object

type; line 223 adds the comment, representing the import file name; lines 224 ~ 228 set the parameters

of the imported object; and finally, line 230 updates the current optical system.

Since the running time of this program is long, we added some prompt messages in the Text Viewer

window on the screen to indicate the progress of the program, as shown in line 67, lines 134 ~ 136, lines

159 ~ 160, lines 197 ~ 198, and lines 202 ~ 203. Figure 4.2-19 shows some prompt messages during the

program execution.

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 265

(a)

(b)

Fig. 4.2-19: Prompt messages shown in the Text Viewer when running program ex40206.ZPL

Application of Zemax Programming Language Open Source Photonics

 osphotonics.wordpress.com 266

After finish running the program, we can set the properties such as opacity and color of the imported

solid model that represents the light intensity distribution in the space. This can help to visualize the

distribution. Since the solid models are saved in related files, we can also import the models into other

CAD software for further process. Figure 4.2-20 are the distribution of light intensity observed in other

CAD software. For the purpose of publication, only gray-level graphs are plotted. It will be clearer if

color is added.

(a) (b)

(c) (d)

Fig. 4.2-20: Light intensity distribution in the space obtained from program ex40206.ZPL.

(a) ~ (d) Intensity from high to low.

