

Lectures Notes on Optical Design using Zemax OpticStudio

# Lecture 6 Optimization



#### **Ahmet Bingül**

Gaziantep University Department of Optical Engineering

Feb 2024

# What is Optimization?

- Optimization is an operation to find minimum or maximum value of a function, F(x).
   Here, F(x) is called the merit function.
- F'(x) = 0 where F(x) is optimum.
   If F''(x) > 0 then F(x) min.
   If F''(x) < 0 then F(x) is max.</li>
- Function can have multivariable  $F = F(x_1, x_2, ...)$

To find optimum location of function we may use iterative techniques such as Newtonian Method:

$$\mathbf{x_{i+1}} = \mathbf{x_i} - \mathbf{H_i^{-1}} \nabla \mathbf{F_i}$$



## **Optimization in Zemax**

- In Zemax merit function (MF) is partially constructed by user.
- To determine new targets operands are used. The job of Zemax is to reach target values for each operand using numerical methods. So, the main goal is to minimize the MF.
- MF definition definition:

$$MF^{2} = \frac{\sum_{i=1}^{N} W_{i}(V_{i} - T_{i})^{2}}{\sum_{i=1}^{N} W_{i}}$$

- N = Number of operand
- $W_i$  = Weight of the operand
- $V_i$  = Current value of operand
- $T_i$  = Target value of operand

## **Merit Function Editor (MFE)**

- To setup MF, Merit Function Editor is used.
- Optimize -> Merit Function Editor (MFE).
- The usage is similar to LDE.

| _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|    | ■ Merit Function Editor ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
|    | ≉ 🔜 🖗 🍾 🗙 💿 🧲 💿 😫 ↔ 🛶 🔞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|    | Wizards and Operands     Image: Additional State Sta |  |  |  |  |  |  |  |  |  |  |  |
| ſ  | Type Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |
| lt | 1 BLNK -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |

# **List of Operands**

- Operands are strings made up of 4 letters.
- Using Help Menu, you can list all of the operands used in optimization:

#### **Optimization Operands (Alphabetically)**

This section provides a detailed description of each operand, listed alphabetically in a single table.

| NAME | Description                                                                                                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABCD | The ABCD values used by the grid distortion feature to compute generalized distortion. See "Grid Distortion". The re                                                       |
|      | defined by Ref Fld. The wavelength number is defined by Wave. Data is 0 for A, 1 for B, 2 for C, and 3 for D. See also                                                     |
| ABGT | Absolute value of operand greater than. This is used to make the absolute value of the operand defined by Op# grea                                                         |
| ABLT | Absolute value of operand less than. This is used to make the absolute value of the operand defined by Op# less tha                                                        |
| ABSO | Absolute value of the operand defined by Op#.                                                                                                                              |
| ACOS | Arc cosine of the value of the operand defined by Op#. If Flag is 0, then the units are radians, otherwise, degrees.                                                       |
| AMAG | Angular magnification. This is the ratio of the image to object space paraxial <u>chief ray</u> angles at the wavelength definon-paraxial systems.                         |
| ANAC | Angular aberration radial direction measured in image space with respect to the centroid at the wavelength defined defined as:<br>$\epsilon = SQRT[(I-I_c)^2 + (m-m_c)^2]$ |
|      | where I and m are the x and y direction cosines of the ray and the c subscript indicates the centroid. See "Hx, Hy, Px,                                                    |
|      | Angular aberration radius measured in image space at the wavelength defined by Wave with respect to the primary                                                            |
|      | quantity is defined as:                                                                                                                                                    |

### **Frequently used Operands**

| WFNO | <b>Working F-Number</b> operatörü kullanıldığı optimizasyonda sistemin f sayısını hedeflenen değere götürmeye<br>çalışır.                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| EFFL | <b>Effective Focal Length</b> operandı kullanıldığı optimizasyondaki optik sistemin odak uzaklığını hedeflenen<br>değere götürmeye çalışır.           |
| CTGT | <b>Center Thickness Greater Than</b> operandı ile seçilen bir yüzeyden sonraki merkez uzaklığını istenilen değerden büyük tutmaya çalışan operanddır. |
| CTVA | <b>Center Thickness Value</b> operandı tanımlanan yüzeyin anlık merkez uzaklığını belirlemek için kullanılır.                                         |
| OPLT | Operand Less Than komutu ile sistemde daha önce tanımlanan operandların değerleri ayarlanabilir.                                                      |
| OPGT | Operand Greater Than komutu ile sistemde daha önce tanımlanan operandların değerleri ayarlanabilir.                                                   |
| MXSD | Maximum SemiDiameter operandı ile bir yüzeyin alabileceği maksimum çap belirlenebilir.                                                                |
| MNSD | Minimum SemiDiameter operandı ile bir yüzeyin alabileceği minimum çap belirlenebilir.                                                                 |
| TOTR | Total Track (length) oprerandı ile sistemin boyu hedeflenen değere doğru zorlanabilir.                                                                |
| ABSO | Abosute Value bir operand değerlerinin mutlak değerlerinin hesaplanmasında kullanılır.                                                                |
| DIFF | Difference Iki operand değerinin farkının bulunmasında kullanılır.                                                                                    |
| SUMM | Sum of two operands Iki operand değerinin toplanmasında kullanılır.                                                                                   |

#### **Merit Function Wizard**

- Easiest way to setup MF is to use Optimization Wizard
- It will be activated when you click on Apply or OK buttons.

| 🕞 Merit Function Edit                  | tor 🗙                                     |           |   |                  |          |             |           |                   |                |  |  |  |  |  |
|----------------------------------------|-------------------------------------------|-----------|---|------------------|----------|-------------|-----------|-------------------|----------------|--|--|--|--|--|
| 🗧 🔜 🕪 🔖 🛪 🖪                            | ) 🧲 💿 😫 🚧 🄿                               | 0         |   |                  |          |             |           |                   |                |  |  |  |  |  |
| <ul> <li>Wizards and Operan</li> </ul> | Wizards and Operands () Merit Function: 0 |           |   |                  |          |             |           |                   |                |  |  |  |  |  |
| Optimization Wizard                    | Optimization Functi                       | on        |   | - Pupil Integrat | ion      |             | Boundary  | /alues            |                |  |  |  |  |  |
| Current Operand (1)                    | Criterion:                                | Wavefront | ~ | Gaussian (       | Quadratu | ire         | Glass     | Min:              | 0              |  |  |  |  |  |
|                                        | Spatial Frequency:                        | 30        |   | O Rectangul      | ar Array |             |           | Max:              | 1e+03          |  |  |  |  |  |
|                                        | X Weight:                                 | 1         |   | Rings:           | 3        | ~           |           | Edge Thickness:   | 0              |  |  |  |  |  |
|                                        | Y Weight:                                 | 1         |   | Arms:            | 6        | ~           | Air       | Min:              | 0              |  |  |  |  |  |
|                                        | Туре:                                     | RMS       | ~ | Obscuration:     | 0        |             |           | Max:              | 1e+03          |  |  |  |  |  |
|                                        | Reference:                                | Centroid  | ~ |                  |          |             |           | Edge Thickness:   | 0              |  |  |  |  |  |
|                                        |                                           |           |   |                  |          |             |           |                   |                |  |  |  |  |  |
|                                        | Start At:                                 | 1         | ÷ | Configuration:   | All      | ~           | Assume A  | Axial Symmetry: 🛛 |                |  |  |  |  |  |
|                                        | Overall Weight: 1                         |           |   | Field:           | All      | ~           | Ignore La | teral Color:      | ]              |  |  |  |  |  |
|                                        |                                           |           |   |                  |          |             | Add Favo  | orite Operands:   | ]              |  |  |  |  |  |
|                                        | OK Apply                                  | Close     |   |                  |          | Save Settin | gs Lo     | oad Settings      | Reset Settings |  |  |  |  |  |

# **Pupil Sampling**

Pupil sampling defines the number and the distribution of the rays traced through the pupil and is critical for optimization.

Common pupil sampling methods:



Gaussian quadrature (GQ) sampling uses a very small number of skew rays at very specific pupil coordinates and weightings. GQ sampling returns a mathematically exact integral of the pupil with fewer rays and provides higher sampling near the edge. GQ is the fastest sampling for the majority of cases.

# **Local Optimization**

- This is the the simple optimization technique.
   The algorithm usually falls to a local minimum and stops quickly.
- To start Local Optimization, click on Optimize button under Optimization tab.

Local optimization uses gradient search to find the nearest merit function minimum and moves "downhill." Global optimization attempts to find the global minimum by allowing both uphill and downhill movement in the merit function. However, global optimization can require extensive computation time.





Parameter Space

### **Hammer Optimization**

- Hammer Current uses better algorithm to minimize MF.
- It allows you to change the glass type as well.
- It is useful for the complex optical system design.



#### **Global Search**

 Global Search, is an advanced search method to get global minimum of MF. See help.



### Variable Solves

- To minimize MF, optimization tool has to change value of radius or thickness. To do that, we need to define variables in Zemax.
- After you double click on any radius or thickness value, you can assign variable to this parameter. If a cell is assigned as variable you will see letter 'V' on the right.
- Keyboard short cut to set a cell as variable is CTRL + Z

| nt | Radiu    | IS | Thickness |   |  |  |  |  |  |
|----|----------|----|-----------|---|--|--|--|--|--|
|    | Infinity |    | Infinity  |   |  |  |  |  |  |
|    | 15,000   | ۷  | 20,000    | ۷ |  |  |  |  |  |
|    | Infinity |    | -         |   |  |  |  |  |  |

#### **Glass Selection**

- The material (glass) can also be variable. To to that, material on has to be assigned as Substitute. Glass is directly taken from Material Catolog.
- This option only works for Hammer Optimization.



| Thickness | Materi | al | Coating | C |
|-----------|--------|----|---------|---|
| Infinity  | BK7    | S  |         |   |
| 0,000     | LF7    | S  |         |   |
| -         |        |    |         |   |

#### **Basic Optimization Examples**

## **Example 1: Single Lens Design (via f/#)**

We will design and optimize an F/4 singlet lens made of N-BK7 glass.

The final design solution shall meet the following specifications and constraints:

| Specification                  | Constraint                         |
|--------------------------------|------------------------------------|
| Focal Length                   | 100 mm                             |
| Semi-Field of View<br>(SFOV)   | 5 degrees                          |
| Wavelength                     | 632.8 nm (HeNe)                    |
| Center Thickness of<br>singlet | Between 2 mm and 12 mm             |
| Edge Thickness of<br>singlet   | Larger than 2 mm                   |
| Optimization criteria          | RMS Spot Size averaged over<br>FOV |
| Object location                | At infinity                        |

Click on second surface of the lens and select **F Number**. Since f = 100 mm, Diameter (ENPD) is automatically computed as

#### D = f/(f/#) = 100/4 = 25 mm.

| ſ                  | 📄 Lens     | Data 🗙             |            |               |                 |                                                                                                                                                                                  |                                                                          |                |           |               |       |            |
|--------------------|------------|--------------------|------------|---------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|-----------|---------------|-------|------------|
| U                  | odate: All | Windows -          | : 🕲 🕂 🕲 📖  | <b>⅓ ⅓ \$</b> | ∌ ‡ 0· ⊻        | ( 🔍 🔊                                                                                                                                                                            | 🛾 😂 👐 e                                                                  | • 🕡            |           |               |       |            |
| •                  | Surface    | 2 Properties       |            |               |                 |                                                                                                                                                                                  | Configuration 1/1 <>                                                     |                |           |               |       |            |
|                    | Surf       | ace Type           | Comment    | Radius        | Thickness       | Material                                                                                                                                                                         | Coating                                                                  | Clear Semi-Dia | Chip Zone | Mech Semi-Dia | Conic | TCE x 1E-6 |
| 0                  | OBJECT     | Standard 🔻         | OBJECT     | Infinity      | Infinity        |                                                                                                                                                                                  |                                                                          | Infinity       | 0.000     | Infinity      | 0.000 | 0.000      |
| 1                  | STOP       | Standard $\bullet$ | LENS FRONT | Infinity      | 4.000           | N-BK7                                                                                                                                                                            |                                                                          | 12.500         | 0.000     | 12.730        | 0.000 | -          |
| 2                  |            | Standard 🔻         | LENS BACK  | Infinity      | 100.000         |                                                                                                                                                                                  |                                                                          | 12.730         | 0.000     | 12.730        | 0.000 | 0.000      |
| 3                  | IMAGE      | Standard 🔻         | IMAGE      | Infinity      | Curvature solve | on surface 2                                                                                                                                                                     |                                                                          | 21.479         | 0.000     | 21.479        | 0.000 | 0.000      |
| 3 IMAGE Standard • |            |                    |            |               | Solve Type:     | Fixed<br>Fixed<br>Variable<br>Marginal F<br>Chief Ray<br>Pickup<br>Marginal F<br>Chief Ray<br>Aplanatic<br>Element P<br>Concentric<br>Concentric<br><b>F</b> Number<br>ZPL Macro | Ray Angle<br>Angle<br>Ray Normal<br>Normal<br>ower<br>c Surf<br>c Radius | ~              |           |               |       |            |

Set Radius of first surface, center thickness and distance between image plane and last surface of the lens are variables.

| ſ                                                      | E Lens Data X                                  |             |            |                              |                |           |               |                |            |          |       |          |       |       |
|--------------------------------------------------------|------------------------------------------------|-------------|------------|------------------------------|----------------|-----------|---------------|----------------|------------|----------|-------|----------|-------|-------|
| U                                                      | pdate: All                                     | Windows 🕶 🚺 | : 🕲 🕂 🕘 📖  | <del>/</del> , -/ <b>↓</b> ₿ | ∌              | • # O     | • 🙎           | <u>(</u> 🔍 🔊 🗌 | \$ ** •    | ⇒ 😧      |       |          |       |       |
| •                                                      | Surface 0 Properties ( ) Configuration 1/1 ( ) |             |            |                              |                |           |               |                |            |          |       |          |       |       |
| Surface Type Comment Radius Thickness Material Coating |                                                |             |            |                              | Clear Semi-Dia | Chip Zone | Mech Semi-Dia | Conic          | TCE x 1E-6 |          |       |          |       |       |
| 0                                                      | OBJECT                                         | Standard 🔻  | OBJECT     | Infinity                     |                | Infinity  |               |                | g          | Infinity | 0.000 | Infinity | 0.000 | 0.000 |
| 1                                                      | STOP                                           | Standard 🔻  | LENS FRONT | Infinity                     | ٧              | 4.000     | V             | N-BK7          |            | 12.500   | 0.000 | 12.640   | 0.000 | -     |
| 2                                                      |                                                | Standard 🔻  | LENS BACK  | -51.509                      | F              | 94.864    | V             |                |            | 12.640   | 0.000 | 12.640   | 0.000 | 0.000 |
| 3                                                      | IMAGE                                          | Standard 🔻  | IMAGE      | Infinity                     |                | _         |               |                |            | 9.363    | 0.000 | 9.363    | 0.000 | 0.000 |

- In MFE, setup the following confiurations and click on Apply button.
- Then, press **Start** button to start local optimization. (Variables will be calculated automatically)

| 🔓 Merit Function Editor                    |                                         |            |                          |            |             |                   |                   |                | <b>▼</b> - □ × |  |  |
|--------------------------------------------|-----------------------------------------|------------|--------------------------|------------|-------------|-------------------|-------------------|----------------|----------------|--|--|
| 🗢 🔜 📦 🔖 🗙 🖪                                | 🧲 💿 😫 🚧 🤿                               | •          |                          |            |             |                   |                   |                |                |  |  |
| Wizards and Operan                         | ds < 🔊                                  |            |                          |            | Me          | erit Function     | : 0               |                |                |  |  |
| Optimization Wizard<br>Current Operand (1) | <ul> <li>Optimization Functi</li> </ul> | on         | Pupil Integration        |            |             | - Boundary Values |                   |                |                |  |  |
|                                            | Criterion:                              | Spot ~     | Gaussian                 | Quadrature |             | ✓ Glass           | Min:              | 2              |                |  |  |
|                                            | Spatial Frequency:                      | 30         | Rectangu                 | lar Array  | _           |                   | Max:              | 12             |                |  |  |
|                                            | X Weight:                               | 1          | Rings:                   | 3          | ~           |                   | Edge Thickness:   | 2              |                |  |  |
|                                            | Y Weight:                               | 1          | Arms:                    | 6          | ~           | 🗌 Air             | Min:              | 0              |                |  |  |
|                                            | Туре:                                   | RMS ~      | Obscuration:             | 0          |             |                   | Max:              | 100            |                |  |  |
|                                            | Reference:                              | Centroid ~ |                          |            |             |                   | Edge Thickness:   | 0              |                |  |  |
|                                            | Start At:<br>Overall Weight: 1          | 1 🗸        | Configuration:<br>Field: | 1<br>All   | <b>&gt;</b> | Assume A          | Axial Symmetry: 💽 | 2              |                |  |  |
|                                            | Add Favorite Operands:                  |            |                          |            |             |                   |                   |                |                |  |  |
|                                            | OK Apply                                | Close      |                          | Sav        | e Setting   | gs Lo             | oad Settings      | Reset Settings |                |  |  |
| Type Comment                               |                                         |            |                          |            |             |                   |                   |                |                |  |  |

## **Example 2: Single Lens Design (via EFFL)**

Using Zemax design the following singlet lens:

- Aperture D = 80 mm
- f/# = 4 (namely f/D = 4, or f = 320 mm)
- center thickness ct = 15 mm
- Glass is SF2
- λ = 632.8 nm (HeNe).
- Radius of curvature of the first surface is  $R_1 = +300 \text{ mm}$

Lens should be optimized for smallest RMS spot Radius averaged over the field of view at the given wavelength.

Determine the radius of curvature of the second surface ( $R_2 = ?$ ).

#### LDE and Layout (cross section)

| P | Lens Data                                     |             |                 |     |             |   |           |   |         |                |   | ▼ - □ ×   |  |  |  |
|---|-----------------------------------------------|-------------|-----------------|-----|-------------|---|-----------|---|---------|----------------|---|-----------|--|--|--|
| U | Ipdate: All Windows -                         | ; 🕲 🕂 🚭 🕅 🖯 | k -/∡   \$ ⊅ \$ | : 🟓 | e 😔 🔿 - 🗲 🥌 |   | 📃 😫 🕶 🔿 ( | ? |         |                |   |           |  |  |  |
| • | Surface 3 Properties     Surface 3 Properties |             |                 |     |             |   |           |   |         |                |   |           |  |  |  |
|   | Surface Type                                  | Comment     | Radius          |     | Thickness   |   | Material  |   | Coating | Clear Semi-Dia | 1 | Chip Zone |  |  |  |
| 0 | OBJECT Standard •                             |             | Infinity        |     | Infinity    |   |           |   |         | 0.000          |   | 0.000     |  |  |  |
| 1 | STOP Standard •                               |             | Infinity        |     | 10.000      |   |           |   |         | 40.000         |   | 0.000     |  |  |  |
| 2 | Standard 🔻                                    |             | 300.000         |     | 15.000      |   | SF2       |   |         | 40.000         |   | 0.000     |  |  |  |
| 3 | Standard 🔻                                    |             | Infinity        | V   | 500.000     | ۷ |           |   |         | 39.352         |   | 0.000     |  |  |  |
| 4 | IMAGE Standard •                              |             | Infinity        |     | -           |   |           |   |         | 3.963          |   | 0.000     |  |  |  |
| C |                                               | 4           |                 |     |             |   |           |   |         |                |   |           |  |  |  |
|   |                                               |             |                 |     |             |   |           |   |         |                |   |           |  |  |  |



#### In MFE'de, Select **Spot** for Image Quality.

| limit Function Editor                      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                        | ▼ - □ ×                                                                                    |  |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 🗢 🔜 📦 🔖 🛪 🚴                                |                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                                                        |                                                                                            |  |  |  |  |  |  |
| Wizards and Operat                         | nds < 🔊                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Merit Function: 0                                                                                                                                                                 |                                                                                                                                                                                                                        |                                                                                            |  |  |  |  |  |  |
| Optimization Wizard<br>Current Operand (1) | Optimization Function –<br>Image Quality:<br>Spatial Frequency:<br>X Weight:<br>Y Weight:<br>Type:<br>Reference:<br>Max Distortion (%):<br>Ignore Lateral Color<br>Optimization Goal<br>Best Nominal Perform | Spot   Spot  Solution  Spot  Solution  Solutio | Pupil Integration   Image: Gaussian Quadrature   Rectangular Array   Rings: Gaussian Quadrature   Arms: Gaussian Quadrature   Obscuration: O     Start At: 1    Overall Weight: 1 | Boundary Values         Glass       Min:         Max:       Edge Thickness:         Air       Min:         Max:       Edge Thickness:         Edge Thickness:       Image: Configuration:         All       Thickness: | 0<br>1e+03<br>0<br>0<br>1e+03<br>0<br>Assume Axial Symmetry: [<br>Add Favorite Operands: [ |  |  |  |  |  |  |
| Type Comm                                  | O Improve Manufacturin       Weight:       OK       Apply                                                                                                                                                    | Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   | Save Settings Load Settings                                                                                                                                                                                            | Reset Settings                                                                             |  |  |  |  |  |  |

- Set EFFL operand. Target = 360 (mm) ve Weight = 1.
- First click on **Optimize** then press **Start** buttons.

| Image: Second |    | Merit Functio | n Editor  |            |           |       |       |              |           |            |                             |               | ▼ - □ ×     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|-----------|------------|-----------|-------|-------|--------------|-----------|------------|-----------------------------|---------------|-------------|
| Wizards and Operands         Image: Second seco  | \$ | 🔒 🕪 🔖         | XX        | • Ϛ 🗉      | ) 💲 🕶     | -> 🕜  |       |              |           |            |                             |               |             |
| Type         Wave         Target         Weight         Value         % Contrib           1         DMFS •         0         360.000         1.000         465.987         99.790           3         BLNK •         No air or glass constraints.         360.000         0.000         465.987         99.790           3         BLNK •         Operands for field 1.         5         TRCX •         1         0.000         0.336         0.000         0.873         -1.253         0.012           6         TRCY •         1         0.000         0.000         0.873         -0.253         0.000           7         TRCX •         1         0.000         0.000         0.000         0.873         0.000         0.000           8         TRCY •         1         0.000         0.000         0.000         1.396         -2.710         0.091           8         TRCY •         1         0.000         0.000         0.94         Iocal Optimization         Iocal Optimizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •  | Wizards and   | d Operand | is 🔇       | >         |       |       | м            | lerit Fur | nction: 39 | .3141618004948              |               |             |
| 1       DMFS •       1       360.000       1.000       465.987       99.790         3       BLNK • No air or glass constraints.       4       BLNK • Operands for field 1.       5       TRCX •       1       0.000       0.336       0.000       0.000       0.873       -1.253       0.012         6       TRCY •       1       0.000       0.336       0.000       0.000       0.873       -0.000       0.000         7       TRCX •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         9       TRCX •       1       0.000       0.000       0.94       Local Optimization       Local Optimization       4       Algorithm:       Damped Least Squares •       # of Cores:         Targets:       7       Cycles:       Variables:       2       Status:       Initial Merit Function:       39.314161800       Execution Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | Туре          |           | Wave       |           |       |       |              |           | Target     | Weight                      | Value         | % Contrib   |
| 2       EFFL •       1       360.000       1.000       465.987       99.790         3       BLNK • No air or glass constraints.       4       BLNK • Operands for field 1.       5         5       TRCX •       1       0.000       0.336       0.000       0.000       0.873       -1.253       0.012         6       TRCY •       1       0.000       0.000       0.873       -0.000       0.000         7       TRCX •       1       0.000       0.000       0.000       0.873       -0.000       0.000         6       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       Inccal Optimization       Intraction       Intrac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1  | DMFS -        |           |            |           |       |       |              |           |            |                             |               |             |
| 3       BLNK • No air or glass constraints.         4       BLNK •       Operands for field 1.         5       TRCX •       1       0.000       0.336       0.000       0.000       0.873       -1.253       0.012         6       TRCY •       1       0.000       0.000       0.336       0.000       0.000       0.873       -0.000       0.000         7       TRCX •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.94       Local Optimization       Iocal Optimization       Iocal Optimization       Iocal Optimization         10       TRCY •       1       0.000       0.000       0.94       Iargets:       7       Cycles:         Variables:       2       Status:       Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Image:       Image:       Image:       Image:         I       Auto Update       St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2  | EFFL 🔻        |           | 1          |           |       |       |              |           | 360.000    | 1.000                       | 465.987       | 99.790      |
| 4       BLNK • Operands for field 1.         5       TRCX •       1       0.000       0.336       0.000       0.873       -1.253       0.012         6       TRCY •       1       0.000       0.336       0.000       0.000       0.873       0.000       0.000         7       TRCX •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.94       Local Optimization       Local Optimization         10       TRCY •       1       0.000       0.000       0.94       Local Optimization       Image: Targets:       7       Cycles:       Cycles:       Variables:       2       Status:       Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Image: Target Start       Stop       Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3  | BLNK 🔻        | No air o  | r glass c  | onstraint | s.    |       |              |           |            |                             |               |             |
| 5       TRCX •       1       0.000       0.336       0.000       0.000       0.873       -1.253       0.012         6       TRCY •       1       0.000       0.000       0.336       0.000       0.000       0.873       0.000       0.000         7       TRCX •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.94       Local Optimization       Image: Targets:       7       Cycles:         10       TRCY •       1       0.000       0.000       0.94       Image: Targets:       7       Cycles:       Variables:       2       Status:       Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Image: Targets:       7       Cycles:       Current Merit Function:       39.314161800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4  | BLNK 🕶        | Operand   | ds for fie | ld 1.     |       |       |              |           |            |                             |               |             |
| 6       TRCY •       1       0.000       0.336       0.000       0.000       0.873       0.000       0.000         7       TRCX •       1       0.000       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.94       Local Optimization       Image: Constant of the second of                                                                                                                                                                                                                                                                                                                                                                                                  | 5  | TRCX -        |           | 1          | 0.000     | 0.000 | 0.336 | 0.000        |           | 0.000      | 0.873                       | -1.253        | 0.012       |
| 7       IRCX •       1       0.000       0.707       0.000       1.396       -2.710       0.091         8       TRCY •       1       0.000       0.000       0.707       0.000       1.396       -2.710       0.091         9       TRCX •       1       0.000       0.000       0.94       Local Optimization         10       TRCY •       1       0.000       0.000       0.94         Algorithm:       Damped Least Squares •       # of Cores:         Targets:       7       Cycles:         Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Execution Time:         Auto Update       Start       Stop       Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  | TRCY -        |           | 1          | 0.000     | 0.000 | 0.336 | 0.000        |           | 0.000      | 0.873                       | 0.000         | 0.000       |
| B       TRCY •       1       0.000       0.000       0.70         9       TRCX •       1       0.000       0.000       0.94         10       TRCY •       1       0.000       0.000       0.94         Algorithm:       Damped Least Squares •       # of Cores:         Targets:       7       Cycles:         Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Execution Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7  | TRCX •        |           | 1          | 0.000     | 0.000 | 0.707 | 0.000        |           | 0.000      | 1.396                       | -2.710        | 0.091       |
| Image: start       Image: start <th< th=""><th>8</th><th>TRCY -</th><th></th><th>1</th><th>0.000</th><th>0.000</th><th>0.70</th><th>Local Optimi</th><th>zation</th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  | TRCY -        |           | 1          | 0.000     | 0.000 | 0.70  | Local Optimi | zation    |            |                             |               |             |
| Algorithm:       Damped Least Squares       # of Cores:         Targets:       7       Cycles:         Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Execution Time:         Auto Update       Start       Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9  |               |           | 1          | 0.000     | 0.000 | 0.94  |              |           |            |                             |               |             |
| Algorithm:       Damped Least Squares       # of Cores:         Targets:       7       Cycles:         Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Execution Time:         Auto Update       Start       Stop       Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | Ther -        |           | 1          | 0.000     | 0.000 | 0.54  |              |           | 0          |                             |               | ~           |
| Targets:       7       Cycles:         Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800       Execution Time:         Auto Update       Start       Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |               |           |            |           |       |       | Algorithm    | n:        | l          | Damped Least S              | quares • # of | Cores:      |
| Variables:       2       Status:         Initial Merit Function:       39.314161800       Execution Time:         Current Merit Function:       39.314161800         Auto Update       Start       Stop         Exit       Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |               |           |            |           |       |       | Targets:     |           |            | 7                           | Cycl          | es:         |
| Initial Merit Function: 39.314161800 Execution Time:<br>Current Merit Function: 39.314161800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |               |           |            |           |       |       | Variables    | :         |            | 2                           | Stat          | us:         |
| Current Merit Function: 39.314161800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |               |           |            |           |       |       | Initial Me   | rit Fun   | ction:     | 39.3 <mark>14161</mark> 800 | Exec          | ution Time: |
| Auto Update Start Stop Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |               |           |            |           |       |       | Current      | Aarit Eu  | Inction    | 20 21/161800                |               |             |
| Auto Update Start Stop Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |               |           |            |           |       |       | Current N    | nent ri   | unction.   | 55.514101000                |               |             |
| Auto Update Start Stop Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |               |           |            |           |       |       |              |           |            |                             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |               |           |            |           |       |       | Auto U       | pdate     | Star       | t Stop                      | Exit          |             |

At the end of optimization we have R<sub>2</sub> ≈ -999 mm. Investigate the performace plots (spot, OPD, etc).

| Lens Data                                                       |                                                                                                                                       | <b>→</b> – □ ×                 |                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Update: All Windows 🗸 🕐 🚱 🚻 🦂 🤸 🋊 🏦 🏝 🌐 🏶 🥮 🔿 🛛 ≰ 🤝 💿 🗐 😂 🖘 🔿 🔞 |                                                                                                                                       |                                |                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Surface 3 Properties                                            | < >                                                                                                                                   |                                |                                                                                                                                                                                                                                                                                                                                                  | Configuration 1/1 <>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Surface Type                                                    | Comment                                                                                                                               | Radius                         | Tł                                                                                                                                                                                                                                                                                                                                               | nickness                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coating                                                                                                   | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ear Semi-Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chip Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| OBJECT Standard -                                               |                                                                                                                                       | Infinity                       |                                                                                                                                                                                                                                                                                                                                                  | Infinity                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| STOP Standard •                                                 |                                                                                                                                       | Infinity                       |                                                                                                                                                                                                                                                                                                                                                  | 10.000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Standard 🔻                                                      |                                                                                                                                       | 300.000                        |                                                                                                                                                                                                                                                                                                                                                  | 15.000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Standard 🔻                                                      |                                                                                                                                       | -999.037                       | V                                                                                                                                                                                                                                                                                                                                                | 350.413                               | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| IMAGE Standard -                                                |                                                                                                                                       | Infinity                       |                                                                                                                                                                                                                                                                                                                                                  | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                 | ٠ [                                                                                                                                   |                                |                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                 | date: All Windows •<br>Surface 3 Properties<br>Surface Type<br>OBJECT Standard •<br>STOP Standard •<br>Standard •<br>IMAGE Standard • | Lens Data<br>date: All Windows | Lens Data         date: All Windows ▼       ① ②        ① ③        ↓ ↓ ↓ ②        ②          Surface 3 Properties       ③ ○       ○       ○         Surface Type       Comment       Radius         OBJECT Standard ▼       Infinity         STOP       Standard ▼       300.000         Standard ▼       -999.037         IMAGE       Standard ▼ | Lens Data         date: All Windows ▼ | Lens Data         date: All Windows ▼       ⑦       ②       Image: Second seco | Lens Data         date: All Windows ▼       ①       ②       +       ②       >       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       ●       < | Infinity Infinity   Infinity Infinity   Standard • 300.000   Standard • -999.037   V 350.413   V Infinity | Lens Data         date: All Windows ▼       C       C       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       < | Lens Data         date: All Windows •       ①       ①       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       < | Surface Type       Comment       Radius       Thickness       Material       Coating       Clear Semi-Dia         OBJECT Standard ▼       Infinity       Infinity       Infinity       0.000       40.000       40.000       140.000       10.000       15.000       SF2       40.000       40.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10.000       10 |  |  |  |  |



# **Example 3: Simple Concave Mirror Design**

Using Zemax design the following mirror:

- Aperture D = 100 mm
- *f* = 150 mm

(a) Determine the Radius of Curvature [Ans:for mirrors: R = 2f = 300 mm]

(b) Find distance between mirror and the image plane where we have the smallest spot size.



# Optimization

Optimization can be performed as in the previous in example. (Set EFFL=150 mm).

After optimization:

| e                                                                 | 🖹 Lens Data 📃 👻 – 🗆 🗧 |         |          |            |          |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------|---------|----------|------------|----------|--|--|--|--|--|--|--|--|
| Update: All Windows - 🛛 🐨 🕂 🔮 💹 🦟 🤸 🋊 🛊 🛊 🏚 🏶 🚳 🔿 - ≰ 🥥 🗐 🚍 端 🛶 🔞 |                       |         |          |            |          |  |  |  |  |  |  |  |  |
| Surface 1 Properties < > Configuration 1/1 < >                    |                       |         |          |            |          |  |  |  |  |  |  |  |  |
|                                                                   | Surface Type          | Comment | Radius   | Thickness  | Material |  |  |  |  |  |  |  |  |
| 0                                                                 | OBJECT Standard •     |         | Infinity | Infinity   |          |  |  |  |  |  |  |  |  |
| 1                                                                 | STOP Standard •       |         | Infinity | 250.000    |          |  |  |  |  |  |  |  |  |
| 2                                                                 | Standard 🔻            |         | -300.000 | -148.579 V | MIRROR   |  |  |  |  |  |  |  |  |
| 3                                                                 | IMAGE Standard •      |         | Infinity |            |          |  |  |  |  |  |  |  |  |
|                                                                   |                       | 4       |          |            |          |  |  |  |  |  |  |  |  |
|                                                                   |                       | ×       |          |            |          |  |  |  |  |  |  |  |  |

The smallest spot (best focus) is obtained at 148.579 mm from the mirror. (Not 150 mm). Please compare standart spot diagrams.

# **Parabolic Mirror**

Spherical mirrors results in spherical aberrations. Only parabolic surfaces can focus parallel rays to single point. We can change the surface of a spherical mirror to a parabolic one by putting **-1** for conic constant. *(We will see the meaning of -1 later)*.

| Lens Data<br>Update: All Windows • 🛈        | @+• ¥   | : 🔸 😫 🕈 🛱 🗯 | 🍪 O- <u> </u> 🔊 | □ \$ @   | )      |          |      |     | ▼ - □ 3 |
|---------------------------------------------|---------|-------------|-----------------|----------|--------|----------|------|-----|---------|
| Surface 3 Properties      Configuration 1/1 |         |             |                 |          |        |          |      |     |         |
| Surface Type                                | Comment | Radius      | Thickness       | Material | Coatin | Clear Se | Chij | Me  | Conic   |
| OBJECT Standard ▼                           |         | Infinity    | Infinity        |          |        | 0.000    | 0.0  | 0.0 | 0.000   |
| L STOP Standard -                           |         | Infinity    | 250.000         |          |        | 50.0     | 0.0  | 50  | 0.000   |
| 2 Standard 🔻                                |         | -300.000    | -150.000        | MIRROR   |        | 50.0     | 0.0  | 50  | -1.000  |
| B IMAGE Standard ▼                          |         | Infinity    | -               |          |        | 2.84     | 0.0  | 2.8 | 0.000   |
|                                             | 4       |             |                 |          |        |          |      |     |         |

Sayfa 27

