

Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 9 Chomatic **Aberrations**

Ahmet Bingül

Gaziantep University **Department of Optical** Engineering

Mar 2024

Aberration Types

Content

- 1. What is Chromatic Aberration?
- 2. How to Correct Chromatic Aberration Achromatic Doublet Design
- **3**. Apochromatic Lenses
- 4. Spaced Doublets and Eyepieces
- 5. Cassegrain Design with Field Corrector Lenses

What is Chromatic Aberration?

- A lens will not focus different colors (wavelengths) at the same place on the optical axis since focal length depends on refractive index of the material.
- This color dependent deficiency is called the <u>chromatic aberration</u>.

Example 1: Demo for Chromatic Aberration

Aberration Plots

How to Correct Chromatic Aberration

- One way to minimize this aberration is to use glasses of different dispersion in a doublet or triplet. We will mostly investigate Achromatic Doublet.
- The use of a strong positive lens made from a low dispersion glass like crown glass (like BK7) coupled with a weaker high dispersion glass like flint glass (like SF2) can correct the chromatic aberration for two colors; e.g., red and blue.
- Such doublets are often cemented together and called <u>achromatic lens</u>.

Suggested Glass Pairs for Achoromatic Lens

<u>Glass1</u>	<u>Glass2</u>
BK7	SF2
PSK52	SSKN8
FK54	KF9
FK52	KZFS1

Ray Fan Plots fot Glass Pairs

Achromatic Doublet Design

- Consider two thin lenses cemented as shown.
- For d-line (λ = 587.6 nm) Let P₁, P₂, V₁ and V₂ be powers and Abbe values of glasses, repectively.

Best correction occurs

for the condition:

 $P_1 V_2 + P_2 V_1 = 0 \text{ here } P_i = 1/f_i$ $P_1 = P \frac{-V_1}{V_2 - V_1} \qquad P_2 = P \frac{V_2}{V_2 - V_1}$ $P = P_1 + P_2$ $K_1 = \frac{P_1}{n_1 - 1} \qquad K_2 = \frac{P_2}{n_2 - 1}$

Suggested of radius of curvatures:

 $r_{11} =$ system focal length / 2

$$r_{12} = -r_{11}$$
$$r_{21} = -r_{11}$$
$$r_{22} = \frac{r_{12}}{1 - K_2 r_{12}}$$

Download achromate.m in course web page for implementation of the solution.

Achromatic Doublet Design

Procedure to obtain best acromatic lens for F, d, C (visible) in Zemax.

- Determine the glass pairs.
- Calculate radii of curvatures of lenses to get their initial values using the equations in the previous page.
- Insert these radii to LDE in Zemax.
- Set one, two or all radius of curvatures as variable in LDE.
- In MFE, Set EFFL as desired for d-line. (if necessary set AXCL = 0 for F and C lines)
- Use Zemax Optimization Tool to get smallest RMS radius for d-line.
- Investigate the optical performance of your design.

Example 2: 300mm-Doublet Design

Design an achromatic doublet to satisfy the following specifications:

EFFL = 300 mm ENPD = 30 mm Wavelengths = F, d, C (visible) Lens1: N-BK7, ct = 4 mm Lens2: N-SF2, ct = 3 mm Optimize doublet to get minimum spot size and minimum axial color error in

the image plane. [Hint: start with $R_{11} = EFFL / 2 = 150 \text{ mm}$]

Using thin lens equations, we can obtain radii of curvatures as follows:

 $R_{11} = +150.000$ $R_{12} = -150.000$ $R_{21} = -150.000$ $R_{22} = -602.307$

Before optimization

📄 Lei	ns Data													-	
Upda	ate: All Wind	lows - C 🤇	🔊 🕂 🔮 🔟	½. <u>≁</u> , 4	≱ ∌ ‡	: 🟓 🤮	0 - 🛫	\$ (📄 💲 👐 📼	0				
💌 SI	urface 5 P	roperties 🔇						Cor	nfigu	uration 1/1					
	Surface	Туре	Comment	R	adius		Thickne	255		Materia	al (Coating	Clear Se	mi-Dia	Cł
0 0	BJE(Star	ndard 🕶			Infinity		Infi	nity						0.000	
1 ST	TOP Star	ndard 🔹			Infinity		0.	000					1	5.000	١
2 (a	per) Star	ndard 🔹	R1	1 1	50.000		4.	000		N-Bk	(7		1	5.000 U	
3 (a	per) Star	ndard 🔹	R12 & R2	1 -1	.50.000		3.	000		N-SI	-2		1	5.000 U	
4 (a	per) Star	ndard 🕶	R2.	2 -6	02.307	V	90.	000	V				1	5.000 U)
5 IN	/IAG Star	ndard 🔹			Infinity			-						9.896	
D M	erit Function	a Editor													
2 6		X & I	C 💿 😫 🕶	→ @											
	Vizarde and	Operande							M	arit Euroctions	0.91201	170515264			
	vizarus anu	operands							IVIE	ent runction:	9.01291	170313204			
	Туре	Wave1	Wave2	Zone						Target	Weigh	t	Value	% Cont	rib
1	DMFS -														
2	EFFL 🔻		2							300.000	1.0	00	274.636	80.6	560
3	AXCL -	1	3	0.000						0.000	1.0	00	0.880	0.0)97
4	BLNK 🕶	Operands	for field 1.												
5	TRCX -		1	0.000	0.000	0 336	0.000			0.000	0.2	91	2 21 2	0.4	100

After optimization

📄 Lens Data						* -	Ξ×
Update: All Windows •	' 🕲 🕂 🔮 💷 🕂	' →∡ # 🕏 🗘 🗯	오 😒 🕒 🛞	● 📄 😫 🕶 🔿 (0		
Surface 5 Properties	< >>		Co	nfiguration 1/1 🔇	>		
Surface Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia	Ch
0 OBJE(Standard •		Infinity	Infinity			0.000	
1 STOP Standard •		Infinity	0.000			15.000	
2 (aper) Standard •	R11	150.000	4.000	N-BK7		15.000 U	
3 (aper) Standard ▼	R12 & R21	-150.000	3.000	N-SF2		15.000 U	
4 (aper) Standard •	R22	-848.745 V	295.845	V		15.000 U	
5 IMAG Standard -		Infinity	-			6.105E-03	

🕞 N	Aerit Functior	n Editor										
2	🗔 🕪 🍾	🗙 🖻 🔇	• • 🗧 👁	-> 🕜								
\odot	Wizards and	Operands	< >					Me	rit Function:	0.0843456571	358175	
	Туре		Wave	Нх	Ну	Px	Ру		Target	Weight	Value	% Contrib
1	DMFS -											-
2	EFFL 🔻		2						300.000	1.000	300.007	0.076
3	AXCL -	1	3	0.000					0.000	1.000	0.243	99.857
4	BLNK 🕶	Operands	for field 1.									
5	TRCX -		1	0.000	0.000	0 336	0.000		0.000	0 291	-1 021F-04	5 143E-06

Graph

Text

Configuration 1 of 1

Sayfa 16

Apochromatic Lenses (Triplet)

If we use thin lenses, Achromatic Doublet must satisfy:

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{f}$$
$$f_1 V_1 + f_2 V_2 = 0$$

In order to achieve Apochromatic Correction, a lens system with <u>three elements</u> and overall focal length of f must satisfy the following conditions chromatic lens must satisfy:

- P is partial dispersion and it is a linear function of Abbe Value: P = aV + b
- Suggested sturcture: PNP
- Suggested glasses: (PK51, KZFS4, SF15) (PK51, LAF21, SF15)

Spaced Doublet

Another method of making a system achromatic is to use two positive lenses made of <u>same type</u> of glass. Doublet must be separated by a distance equal to one-half the sum of their focal lengths.

$$d = \frac{f_1 + f_2}{2}$$

Effective focal length (f) of the lens system can be found by:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

Subsituting first equation into second one yields:

$$\frac{2}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

The spaced doublets are mostly used in eyepieces.

Eyepieces

Eyepieces are used in microscpoes, telescopes, and binoculars. There are simple designs known as Huygenian and Ramsden. Both designs use two plano-convex lenses.

In Ramsden design, the following relation is suggested:

$$f_1 = \frac{3f_2}{2}$$

Final equations for each focal length become:

$$f_1 = \frac{5f}{4}$$
 $f_2 = \frac{5f}{6}$

where *f* is the eyepiece focal length.

Eyepieces

• Reticle:

is a pattern of fine markings built into the eyepiece.

• Eye relief (Göz konumu): is exit pupil position where you observe full FOV.

Example 3: Ramsden Eyepiece Design

We want to design f = 28 mm Ramsden Eyepiece using N-BK7 glasses. ENPD = 3.5 mm, λ = F,d,C, FOV = 10°, ER = 12 mm, TOTR < 60 mm.

Starting point is to use thin lens equations:

 $f_1 = 5f/4 = 35.0 \text{ mm}$ $f_2 = 5f/6 = 23.3 \text{ mm}$

If the lenses are plano-convex, then radius of curvatures for n = 1.52 are as follows:

 $|R_1| = (n-1)f_1 = 18.2 \text{ mm}$

$$|R_2| = (n-1)f_2 = 12.1 \text{ mm}$$

Distance between lenses:

$$d = (f_1 + f_2)/2 = 15.2 \text{ mm}$$

Before Optimization:

B	Lens Data	L					.	- 0	X
U	pdate: All \	Windows • 🕐 🔇	+ 🔮 💷 🤸	- <u>/</u> k 😪 餐 🦆	🗦 # 🗯 🍪 🕻	D- 🐔 🧲 💿	📃 😫 🕶 🔿	?	
•	Surface	6 Properties <			Configuration 1	/1 🔇 🔊 👘			
	Su	rface Type	Comment	Radius	Thickness	Material	Clear Semi-D	Dia	C
0	OBJECT	Standard 🔻		Infinity	Infinity	Eve	reliet		
1	STOP	Standard 🔻		Infinity	12.000	<,<	1.750		
2	(aper)	Standard 🔻		Infinity	7.000 V	N-BK7	8.000	U	
3	(aper)	Standard 🔻		-18.200 V	15.200 V		8.000	U	
4	(aper)	Standard 🔻		12.100 V	7.000 V	N-BK7	10.000	U	
5	(aper)	Standard 🔻		Infinity	5.000		10.000	U	
6	IMAGE	Standard 🔻		Infinity	-		1.810		
			<				-		>
			Ret	icle positic	n				

Optimization:

Merit Function E	ditor	•> @							• -
Wizards and O	perands ()	•••••		Merit	Function: 1.66852	8391 <mark>4</mark> 8697			
ptimization Wiza	ard Optimization	n Function		Pupil Integration		Boundary	/alues		
Current Operand	(2) Image Quali	ity: S	pot	 Gaussian Quadrature 	L.	Glass	Min:	5	
	Spatial Freq	uency: 30)	Rectangular Array			Max:	9	
	X Weight:	1		Rings: 3	~		Edge Thicknes	is: 1	
	Y Weight:	1		Arms: 6	~	Air	Min:	10	
	Type:	R	MS	 Obscuration: 			Max:	40	
	Reference:	C	entroid	¥			Edge Thicknes	is: 1	1
	Max Dist	tortion (%):							
	Ignore L	ateral Color							
	Optimization	n Goal		Start At:	7 🗢 Cont	figuration: Al	×	Assume Axial S	ymmetry
	Best Nor	minal Performa Manufacturing	Nield	Overall Weight: 1	Field	I: AI	۲. v	Add Favorite O	perands:
	Weight	1	There						
	OK	Apply	loca		C at	ua Sattinar	Load Setti	Parat S	attings
Merit Func	tion Editor	C D S		0				▼ - 0	I X
Wizards a	and Operands	< >		Merit Fu	unction: 1.66	852839148	697		
Туре	Surf1	Surf2			Target	Weight	Value	% Contrib	
EFFL	•	2			28.000	1.000	18.985	76.433	^
AXCL	• 1	3	0.000		0.000	1.000	0.211	0.042	
LACL	• 1	3			0.000	1.000	0.025	5.742E-04	
TOTR	•				0.000	0.000	46.200	0.000	
OPLT ·	• 4				60.000	1.000	60.000	0.000	
DMFS ·	•								
BLNK 1	 Sequential 	merit fun	ction: RM	S spot x+y centroid X	Wgt = 1.0000	YWgt =	1.0000 GC	2 3 rings 6 ar	
					-	-		-	

After Optimization:

After Optimization:

Cassegrain Design with Field Corrector Lenses

The typical Cassegrain design is known for its excellent on-axis optical performance but tends to perform poorly in off-axis applications.

For parabolic mirror, third order angular aberration is given by:

 $AA3 = 3a_1y^2\theta/R^2 + 2a_2y\theta^2/R + a_3\theta^3$ coma + asti + dist

E.g. Cassegrain design with f/10, D= 120 mm, and FOV = 1° .

Cassegrain Design with Field Corrector Lenses

To improve off-axis performance usually a field corrector lens system is added to the mirror system before image sensor.

Note:

If we want to design Cassegrain Telescope whose target (final) focal length F with a corrector lens,

- 1. Design Cassegrain mirror system with focal length a bit grater or smaller than the target F. Namely, two-mirror focal length should be: $F' = F + \Delta F$ or $F' = F - \Delta F$
- 2. Add corrector lenses and optimize full system to reach target focal length, F.

Int J Nano Rech 2019 V2:1, ISSN: 2581-6608

Example 4: Cassegrain Telescope with Corrector Design

Design a Cassegrain Telescope with corrector to satisfy the following specifications:

- EFFL = 1000 mm
- F/# = 10
- WAVE = F, d, C (visible)
- $FOV = 1^{\circ}$
- TOTR < 300 mm

Step 1: Design Cassegrain mirrors such that system focal length is F' = 1200 mm as follows:

_								-		
	Surf	ace Type	Comn	Radius	Thickness	Material	Semi-Diame	Chip Zone	Mech Semi-Dia	Conic
0	OBJECT	Standard •		Infinity	Infinity		Infinity	0.000	Infinity	0.000
1	STOP	Standard •		Infinity	250.000		60.000	0.000	60.000	0.000
2	(aper)	Standard •		-666.667	-250.000	MIRROR	62.156	0.000	62.156	-1.000
3		Standard •		-230.769	300.000	MIRROR	17.782	0.000	17.782	-3.130
4	IMAGE	Standard 🔻		Infinity	-		10.528	0.000	10.528	0.000

Step2: Add a doublet lens and optimize the system as follows. Notice F = 1000 mm.

) N	Merit Fu	nction Edit	or							-	
	L 🕨	VX :	< 🖻 🧲	• \$	⇒ 🕜						
)	Wizard	s and Ope	ands			Merit Fund	tion: 0.0003	517789337	14607		
	Туре	e Sur	f1 Su	ırf2			Target	Weight	Value	% Contrib	
	EFFL	•		1			1000.000	1.000	1000.000	5.176E-10	^
	TOTR	•					0.000	0.000	299.467	0.000	
	OPLT	▼ 2					300.000	1.000	300.000	0.000	
	DMFS	•									
	BLNK	 Seque 	ntial mer	it function: RI	MS spot x+y	centroid X W	gt = 1.0000 Y	Wqt = 1.0	000 GQ 3 r	rings 6 arms	\checkmark
Le	ens Data	1									· -
Le Jpda	ens Data late: All \	Windows •	C @ +	• 🕒 🔟 🕂 🚽	k 😪 🙀 🎝		0- <u> </u> 🕻 (d 🗐 💲 +	+ → @		* -
Le Ipdi	ens Data date: All \ Surface	Windows • 1 Propert	C C +	• • • • • + -	k 😪 🙀 🦸	‡	O• ≰ 🧲 (Configuration 1	D 5 • /1 ()	• ⇒ 0		· -
Le Jpd S	ens Data Jate: All \ Surface Surfa	Windows • 1 Propert ace Type	C Comm	• 🔮 🛍 🦂 🚽 Radius	K 😪 🙀 🏼	Description of the second	O • ≰ ⊊ ⊄ Configuration 1 Clear Semi	D 🗌 💲 • /1 🔇 🔇	↔ ⇒ Ø one Mec	h Semi-Dia	Coni
Le Jpd S	ens Data date: All \ Surface Surfa DBJECT	Windows • 1 Propert ace Type Standard	C Comn	• • • • • • • • • • • • • • • • • • •	K 🐼 餐 🎝 Thicknes		O • ≰ ⊊ Configuration 1 Clear Semi Infinity	 D □ \$ → /1 < > Chip Za 0.0 	↔ ⇒ ② one Mec	h Semi-Dia Infinity	Coni
Jpd Jpd S	ens Data Jate: All \ Surface Surfa SUBJECT	Windows • 1 Propert ace Type Standard Standard	© © + es < (Comn •	• • • • • • • • • • • • • • • • • • •	Thicknes		O • ≰ ⊊ ⊄ Configuration 1 Clear Semi Infinity 60.000	 Chip Za 0.0 	 ↔ ↔ <l< td=""><td>h Semi-Dia Infinity 60.000</td><td>Coni 0.00</td></l<>	h Semi-Dia Infinity 60.000	Coni 0.00
Le Jpd 5 0 0 1 5 2 (a	ens Data Jate: All \ Surface Surfa SUBJECT STOP aper)	Windows • 1 Propert ace Type Standard Standard Standard	① ④ + es 〈 ① Comn • •	Radius Infinity -736.836	Thicknes Infinity 250.000 -250.000		O - ≤ ⊂ ⊂ Configuration 1 Clear Semi Infinity 60.000 62.159	► Chip Zo 0.0 0.0	← → ② one Mec 00 00 00	h Semi-Dia Infinity 60.000 62.594	Coni 0.00 -1.20
Jpd S O S (a	ens Data Jate: All V Surface Surfa SUBJECT STOP aper)	Windows • 1 Propert ace Type Standard Standard Standard Standard	© © + es < (Comn • • •	• • • • • • • • • • • • • • • • • • •	Thicknes Thicknes Infinity 250.000 (-250.000 (281.467		O • ≤	 Chip Za Chip Za 0.0 0.0 0.0 0.0 	← → 	h Semi-Dia Infinity 60.000 62.594 22.271	Coni 0.00 -1.20 -8.51
Le lpd S C (a (a	ens Data late: All V Surface Surfa DBJECT DBJECT TOP aper) aper)	Windows	© © + es < (Comn • • • •	 Radius Infinity -736.836 -395.780 -42.971 	 Thicknes Infinity 250.000 -250.000 281.467 4.000 		O • ≤	 Chip Z (0,0) Chip Z (0,0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	 ← ⇒ ② One Mec 00 00 00 00 00 	h Semi-Dia Infinity 60.000 62.594 22.271 12.000	Coni 0.00 -1.20 -8.51 0.00
Le pd S C (a (a (a	ens Data Jate: All N Surface Surface DBJECT STOP aper) aper) aper)	Windows	C C +	Radius Infinity Infinity -736.836 -395.780 -42.971 -168.166	 Thickness Infinity 250.000 -250.000 281.467 4.000 4.000 	 	O - ≤ ⊆ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂	 Chip Zo Chip Zo 0.0 	← → ② Dne Mec 00 00 00 00 00 00 00 00	h Semi-Dia Infinity 60.000 62.594 22.271 12.000 12.000	Coni 0.00 -1.20 -8.51 0.00
Le Jpd S (a (a (a (a)	ens Data late: All V Surface SURFACE DBJECT DBJECT TOP aper) aper) aper) aper)	Windows	© © + es < () Comn • • • • • • • • •	Radius Infinity Infinity -736.836 -395.780 -42.971 -168.166 -68.005	 Thickness Infinity 250.000 -250.000 281.467 4.000 4.000 10.000 	 Material Mirror Mirror Mirror Mirror N-BK7 N-SF2 	O • ≤ ⊆ ⊆ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂	 Chip Za Chip Za 0.0 		h Semi-Dia Infinity 60.000 62.594 22.271 12.000 12.000 12.000	Coni 0.00 -1.20 -8.51 0.00 0.00

