

Lecture 11 Optical Materials

Ahmet Bingül

Gaziantep University Department of Optical Engineering

Mar 2024

Optical Materials

- The most common lens material is optical glass.
 Optical glasses are classified roughly as crowns (n<1.6) and flints (n>1.6). Crystals and plastics are also used.
- Mirrors can be made of practically anything that is capable of being polished such as window (=soda lime) glass, BK7 or zerodure.

Reference Book: Handbook of Optical Materials, M.J.Weber, CRC Press.

Reference Web : <u>https://refractiveindex.info</u>

Optical Materials

 A high refractive index leads to weaker surfaces and therefore smaller aberrations. But, they are generally expansive and dense.

Material	n _d	Density	(g/cc
N-BK7	1.5168	2.51	
N-K5	1.5225	2.59	
N-SF2	1.6477	2.72	
N-LASF9	1.8503	4.41	

The cost of material for a small lens is insignificant.
 But, for a large lens it may be a very serious matter. Especially, the mass of the lens or mirror may be important in space researches.

Optical Materials in Zemax

More information can be found under Libraries Tab: Also use help:

Glass Catalog Sources

Material Catalogs (formerly called the glass catalogs) included with OpticStudio are developed by third party vendors without any involvement by Ansys. Ansys makes no representation as to the feasibility or functionality of the Material Catalogs. Material Catalogs are provided 'as is,' and any express or implied warranties are hereby disclaimed. Ansys has no responsibility to maintain the Material Catalogs or ensure their availability for future releases.

The following table lists the vendors associated with each Material Catalog:

MATERIAL CATALOG VENDORS

Catalog	Vendor	Website
AMTIR	Amorphous Materials Inc.	www.amorphousmaterials.com
ANGSTROMLINK	Fiber Optic Center, Inc.	www.FOCenter.com
APEL	Mitsui Chemicals, Inc.	www.MitsuiChemicals.com
ARCHER	Archer OpTx	www.ArcherOPTx.com
ARTON	JSR Corporation	www.JSR.co.jp
AUER-LIGHTING	Auer Lighting	https://www.auer-lighting.com/
BIREFRINGENT	Birefringent	See references below
CDGM	Chengdu Guangming	www.CDGMgd.com

Index Dispersion

Index of refraction is defined as

$$n=\frac{c}{v}$$

c = speed of light in vacuum (or in air).

v = speed of light in material

 In non-absorbing media n is real. However, in absorbing media n is complex and it is expressed as:

$$n' = n + ik$$

 $\alpha = \frac{4\pi k}{\lambda}$

k = extinction coefficient

- α = aborption coeffiecent
- λ = wavelength

Dispersion Formulae

Cauchy

(a, b, c, ... are numerical constants)

$$n(\lambda) = a + \frac{b}{\lambda^2} + \frac{c}{\lambda^4} + \cdots$$
$$n(\lambda) = a + \frac{b}{(c - \lambda)} + \frac{d}{(e - \lambda)}$$

Conrady

Hartmann

$$n(\lambda) = a + \frac{b}{\lambda} + \frac{c}{\lambda^{3.5}}$$

Kettler-Drude
$$n^2(\lambda) = a + \frac{b}{c - \lambda^2} + \frac{d}{e - \lambda^2} + \cdots$$

Sellmeier
$$n^2(\lambda) = a + \frac{b\lambda^2}{c - \lambda^2} + \frac{d\lambda^2}{e - \lambda^2} + \frac{f\lambda^2}{g - \lambda^2} + \cdots$$

Herzberger $n(\lambda) = a + b\lambda^2 + \frac{e}{(\lambda^2 - 0.035)} + \frac{d}{(\lambda^2 - 0.035)^2}$
Old Schott $n^2(\lambda) = a + b\lambda^2 + \frac{c}{\lambda^2} + \frac{d}{\lambda^4} + \frac{e}{\lambda^6} + \frac{f}{\lambda^8}$

Example 1: Dispersion Curve in Zemax

The index of refraction of an optical material varies with wavelength. In Zemax, dispersion curve for a glass can be obtained in **Libraries** Tab.

Click on Material Analysis then invoke Dispersion Diagram.

Example 2: Transmission of BK7

 In Zemax, you can plot the internal transmittance as a function of wavelength for glasses. Fresnel reflections from surfaces are ignored.

Infrared Materials

- Infrared Materials are not generally usable in the visible range.
 - > **Germanium**: Transmittance for 2 μ m-14 μ m is T ≈ 45%.
 - > **N-BK7**: Transmittance for 2 μ m-14 μ m is T \approx 0 %
- Table shows properties of common optical materials in Thermal Infrared

Material	Refractive Index at 4 µm	Refractive Index at 10 µm	<i>dn/dt</i> /°C	Comments
Germanium	4.0243	4.0032	0.000396	Expensive, large <i>dn/dt</i>
Silicon	3.4255	3.4179*	0.000150	Large <i>dn/dt</i>
Zinc sulfide, CVD	2.2520	2.2005	0.0000433	
Zinc selenide, CVD	2.4331	2.4065	0.000060	Expensive, very low absorption
AMTIR I (Ge/As/SE:33/12/5	2.5141 5)	2.4976	0.000072	

Ultraviolet Materials

For UV region of the spectrum, we have only relatively few materials:

- UV-grade fused silica
- Crystal quartz
- Sapphire
- CaF
- MgF
- LiF

Optical Plastics (Polymers)

Optical plastics suitable for lens manufacture. Plastics have found extensive applications especially in **Illumination Engineering**.

Properties of Frequently Used Plastic Optical Materials

Properties	Acrylic (PMMA)	Polycarbonate (PC)	Polystyrene (PS)
Refractive index			
N_F (486.1 nm)	1.497	1.599	1.604
N_d (587.6 nm)	1.491	1.585	1.590
N_C (656.3 nm)	1.489	1.579	1.584
Abbe value	57.2	34.0	30.8
Transmission (%) Visible spectrum 3.174 mm thickness	92	85-91	87-92
Specific gravity	1.19	1.20	1.06

Plastic Lenses

Advantages

- 1. Ease and economy of manufacture in large quantities.
- 2. Low cost of the raw material.
- **3.** The ability to mold the mount around the lens in one operation.
- 4. Lens thicknesses and airspaces are easier to maintain.
- 5. Aspheric surfaces can be molded as easily as spheres.
- 6. A dye can be incorporated in the raw material if desired.

Disadvantages

- 1. The small variety and low refractive index of available plastics.
- 2. The softness of the completed lenses.
- 3. The high thermal expansion (eight times that of glass).
- 4. The high temperature coefficient of refractive index (120 times that of glass).
- 5. Plane surfaces do not mold well.
- 6. The difficulty of making a small number of lenses because of mold cost.
- 7. Plastics easily acquire high static charges, which pick up dust.
- 8. Plastic lenses cannot be cemented.
- 9. Plastic lenses can be coated only with some difficulty

Plastic Materials in Zemax

In Zemax, you can find the plastics in different catalogs. Fameous plastics used in industry are given below:

<u>Material Name</u>	Catalog Name
PMMA	MISC
POLYCARB	MISC
POLYSTYR	MISC
E48R	ZEON
B270	SCHOTT

Glass Used in Aerospace Applications (2024)

OHARA S-BSM22R

622.532

Selecting suitable optical material is important when designing aerospace optical systems. Schott and Ohara companies offer a variety of i-line glasses with enhanced blue transmittance which are successfully utilized in space applications.

	Glass Type	Code	Glass Type	Code	0: Catalog Report		· -	- 🗆 X
OHARA	S-FPL51Y	497.811	SCHOTT BK7 HT	517.642	ᡷ 🔜 🖻 🖶 🔞			
OHARA	S-FSL5Y	487.703	SCHOTT F2 HT	620.364	Listing of data for ca	talog RAD	HARD.AGF	
OHARA	BSL7Y	516.643	SCHOTT BK7 G18	520.636				
OHARA	BAL15Y	557.587	SCHOTT K 5 G20	523.568	Total number of glasse	s: 7		
OHARA	BAL35Y	589.612	SCHOTT LaK9 G15	691.547	Standard glasses	: 7		
OHARA	BSM51Y	603.606	SCHOTT LF 5 G15	584.408	Obsolete glasses	: 0		
OHARA	PBL1Y	548.458	SCHOTT N-BAK4HT	569.560	Special glasses	: 0		
OHARA	PBL6Y	532.490	SCHOTT N-KZFS4HT	613.445	Melt glasses	: 0		
OHARA	PBL25Y	581.408	SCHOTT N-LASF9HT	850.322	Name	Stat	Nd	
OHARA	PBL26Y	567.428	SCHOTT N-SF57HT	847.238	BK7G18	Stat	1.519747	63
OHARA	PBM2Y	620.363	SCHOTT N-SF7HTUltra	847.238	F2G12	Stan	1.620722	36
OHARA	PBM8Y	596.393	SCHOTT N-SF6HT	805.254	K5G20	Stan	1.523439	56
OHARA	PBM18Y	596.387	SCHOTT N-SF6HTUltra	805.254	LAK9G15	Stan Stan	1.690636	54 10
OHARA	PBL35Y	582.409	SCHOTT N-SK2HT	607.567	SF6G05	Stan	1.809061	25
OHARA	S-BSL7R	516.641	SCHOTT SF57HTUltra	847.238	SF8G07	Stan	1.694763	30
OHARA	S-BAL35R	589.610	SCHOTT SF6HT	805.254				
OHARA	PBM2R	620.365			<			>
OHARA	PBM8R	596.394						

Example 3: How To Enter Glass Data at Specific Wavelengths

Zemax is supplied with the glass catalogs of the major manufacturers (which are built-in to Zemax), but there are times when you still need to add your own glass data. There are several methods to do this in Zemax.

Zemax Table Glass file is a simple ASCII list. Open notepad save the data as shown. Note Density : is in gram/cubic centimeter (g/cc) 1st column : Wavelength in µm 2nd column: index of refraction Filename: MYGLASS. ZTG Path: C:\<ZemaxFolder>\Glasscat

MYGLASS.ZTG - Notepad	- • ×
! MYGLASS.ZTG ! this is an example glas	s
DENSITY 2.5	
0.35000 1.48148 0.40000 1.42857 0.45000 1.37931 0.50000 1.33333 0.55000 1.29032 0.60000 1.25000 0.65000 1.21212 0.70000 1.17647 0.75000 1.14286	
	Þ
	Ln 15, Col 1

In the lens data editor, write the file name and its extension in the Glass (Material) column as below.

🔀 Len	s Data Editor						
Edit	Solves View Hel	р					
S	urf:Type	Comment	Radius	Thickness	Glass	Semi-Diameter	Conic 🖍
OBJ	Standard		Infinity	Infinity		0.000	0.000
STO	Standard		Infinity	10.000		10.000	0.000
2	Standard		100.000	8.000	MYGLASS.ZTG	10.000	0.000
3	Standard		-80.000	87.623		9.844	0.000
IMA	Standard		Infinity	-		4.064	0.000
						· · ·	
							-
•							►

Eye Model

The material file (EYE.AGF) used in Eye Models are given on the course web page.

See also:

https://support.zemax.com/hc/en-us/articles/1500005575082-OpticStudio-models-of-the-human-eye

📄 Lens Data							→ – □ ×
Update: All Window	s• 🛈 🖉 🕂	- 🥥 💷 🚽	: 🔸 😪 😪	\$ ⇒ \$	ዾ 😔 📀 🛫	S 🔊 🗌	\$ ↔ ⇒ 0
Surface 1 Prop	perties 🔇			Configu	iration 1/1 🔇		
Surface	Туре	Commen	Radius	Thickness	Material	Coating	Clear Semi-Dia
0 OBJECT (aper)	Standard 🔹		250.0	246.0			0.000 U
1	Standard 🔹		Infinity	4.000			4.033
2 (aper)	Standard 🔹	CORNEA	7.800	0.520	CORNEA		6.000 U
3 (aper)	Standard 🔹		6.700	2.700	AQUEOUS		6.000 U
4 STOP	Standard 🔹	IRIS	Infinity	0.100	AQUEOUS		2.000 U
5 (aper)	Standard 🔹	LENS	7.000	4.300	LENS		4.750 U
6 (aper)	Standard 🔹		-5.300	16.380	VITREOUS		4.750 U
7 (aper)	Standard 🔻	RETINA	-11.000	1.000	VITREOUS		5.481*
8 IMAGE (aper)	Standard •	SCLERA	-12.000	-			5.780*
		<					>

Sayfa 19

Coating

An optical coating is one or more thin layers of material deposited on an optical component such as a lens or mirror, which alters the way in which the optic reflects and transmits light.

The reflectance between two meadia is given by:

$$R = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2 = \frac{I_R}{I_0}$$

and transmittance after double internal reflections:

$$T = \frac{I_T}{I_0} \approx (1 - R)^2$$

Example 4: Numerical Example

For BK7 at λ = 550 nm index is n_g = 1.52 Then, for BK7 and air (n = 1) interface (no coating)

 $R_0 = (1.52 - 1)^2 / (1.52 + 1)^2 = 0.0426$

$$T_0 = (1 - R_0)^2 = 0.9167$$

$$T_0 = 91.7\%$$

Now, if we add a coating SiO ($n_c = 1.45$) with thickness:

$$t = \frac{\lambda}{4n_c} = \frac{550 \text{ nm}}{4(1.45)} = 94.8 \text{ nm}$$

Then, reflectance and transmittance for SiO:

$$R_1 = (1.45 - 1)^2 / (1.45 + 1)^2 = 0.0337$$

 $T_1 = (1 - R_1)^2 = 0.9337$

reflectance and transmittance for BK7:

$$R_2 = (1.45 - 1.52)^2 / (1.45 + 1.52)^2 = 0.0005$$
$$T_2 = T_1 (1 - R_2)^2 = 0.9327 \qquad T_2 = 93.3\%$$

	glass	
I ₀		۱ _Т
		→
R	ng	

Coating in Zemax

The default COATING.DAT file supplied with OpticStudio contains several materials and a few common optical coatings.

DEFAULT MATERIALS AND COATINGS

Material	Description
AIR	Unity index, used for including air gaps in coatings
AL2O3	Aluminum Oxide, index 1.59
ALUM	Aluminum, index 0.7-7.0i
ALUM2	An alternate definition for aluminum
CEF3	Cerous Flouride, index 1.63
LA2O3	Lanthanum Oxide, index 1.95
MGF2	Magnesium Fluoride, index 1.38
N15	Imaginary material of index 1.50
THF4	Thorium Fluoride, index 1.52
ZNS	Zinc Sulphide, index 2.35
ZRO2	Zirconium Oxide, index 2.1

■ ≒ 🔍
n' = 0.7 - 7.0i

Coating	Description
AR	General anti reflection, defined as a quarter wave of MGF2
GAP	A small gap of air used to show evanescent propagation
HEAR1	High performance anti reflection coating
HEAR2	High performance anti reflection coating
METAL	A thin layer of aluminum used to make beamsplitters
NULL	A zero thickness coating used primarily for debugging
WAR	Anti-reflection "W" coat, defined as a half wave of LA2O3 followed by a quarter wave of MGF2.

For more information see:

Reflectance of Metals

Metals are used in optical systems as reflective optical components, **optical thin films**, structural elements, and mirror substrates. For metals *n* is complex and it is expressed in Zemax as:

$$n' = n + ik$$

Zemax uses negative value of imaginary part. For example, index of Aluminum is given by:

n' = 0.7 - 7.0i

In the ref. Book, index of refraction of Aluminum at $\lambda \approx 565$ nm is given by:

n' = 1.018 - 6.846i

Then, the reflectance at normal incidence can be computed as follows:

$$R = \left|\frac{n'-1}{n'+1}\right|^2 = \left|\frac{1.018 - 6.846i - 1}{1.018 - 6.846i + 1}\right|^2 = 0.92 = 92\%$$

The reflectance is a function of n' and hence the wavelength.

Example 5: How to Add new metal coating

There are two ways of accessing the data in the coating file.

- The file can be edited outside of OpticStudio using any text editor.
- "Edit Coating File" option in the Coating Tools group of the Libraries tab.

Edit the default coating file C:\<Zemax>\Coatings\COATING.DAT

For more information, search for "Coating File Data Syntax" in Zemax help.

To apply this coating to a sequential surface, go to the Coating section of the Surface Properties in the Lens Data Editor. The new coating will be listed in the drop-down menu. The items in the menu follow the same order as defined in the coating file.

Update: All Windo	ws • 🖸 🐨 🕂 🔮 🛍	🕂 ⊀ % 🟋	₩ ⊅ ₩ ≫ ⊚ 0•	👱 🗣 🔍 📄 🏯 🕶			
Surface 2 Pro	Surface 2 Properties < >			Configuration 1/1 <>			
Туре							
Draw	Coating: AR_II	*	Use Layer Multiplier A				
Aperture							
Scattering							
Tilt/Decenter							
Physical Optics							
Import							
Composite							
					•		
Surf	ace Type	Comm	Radius	Thickness	Material	Coating	
	Standard •		Infinity	Infinity			
	Standard		h fi h				
1 STOP	Standard •		Infinity	0.000			
2	Standard 🕶		100.000	5.000	N-BK7	AR_TI	
2	Standard •		-80.000	85.000			
S	Stanuaru						
	Standard -		Infinity				
	Update: All Windo Surface 2 Provements Type Draw Aperture Scattering Tilt/Decenter Physical Optics Coating Import Composite Surf 0 OBJECT 1 STOP 2	Update: All Windows • ① ① ① + ● ● Surface 2 Properties • ● Type Draw Aperture Scattering Tilt/Decenter Physical Optics Coating Import Composite Import Composite O OBJECT Standard • 1 STOP Standard • 2	Update: All Windows • • Surface 2 Properties • Type Coating: Draw Aperture Scattering Tilt/Decenter Physical Optics Coating Coating Import Composite • Standard • 1 STOP Standard • 2 Standard •	Update: All Windows • ① ② ÷ ③ III ÷ ÷ ② ② Surface 2 Properties • ○ Type Draw Aperture Scattering Tilt/Decenter Physical Optics Coating Import Composite Surface Type Comm Radius 0 OBJECT Standard • Infinity 1 STOP Standard • 100.000	Update: All Windows • O O • O O O O O O O O O O O O O O O	Update: All Windows • ① ② + ● ⑧ Surface 2 Properties • Configuration 1/1 •	