

Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 12 Design Forms

Ahmet Bingül

Gaziantep University Department of Optical Engineering

Sep 2024

Design Forms

- In the history of optical design, many forms have been proposed for lens designs.
- These can be grouped as singlet, doublet, triplet, ... in terms of the number of lenses.
- In practice, the first step in optical system design is to start with well-known forms that have been studied, tested and approved by many designers.
- In this section, we will see some fundamental design forms:
 - Camera Objective Lenses
 - Mirror Objectives
 - Zoom Lenses
 - Eyepieces
 - Cell Phone Camera Lenses

Design Templat

~

 \sim

	File	Setup Analyze Opti	mize Tolerance	Libraries	Part Designer	Programming	STAR He	lp	
nplates in Zemax	Materi Catalo	als Materials Materials G g Analyses • Tools • Optical Materials	lass Substitution Template	Lens Make Catalog Ca Sto	Private Test talog Plate Li ock Parts	sts Design Template	es Coating Catalog plates Co	Coatings Tools +	ABg ABg Scatter Catalog
	System	Explorer 🕜	▼ 4 🚺 Le	ns Data		Design	Templates		
	Update	All Windows •	Upda	ate: All Windo	ws • C C +		Browse a lil	brary of over	600 pre-built
	 Fields 	s	(~) S	urface 0 Pro	operties 🕜 🖓		Opticstudie	o designs	
	► Wave	lengths		Surface Ty	/pe Comn	Rac	arteut kau arcia	nad	
					- 0	× nfinity	Infinity	nea	0.000
Search Results		Details							
Front conversion lens	^								
Viewfinder, zoom				_					
AFOCAL OBJECTIVE									
SIMPLE 6X24 TELESCOPE		1							
6X24 TELESCOPE									
GALILEAN AFOCAL SYSTEM				\ll					
CYLINDRICAL ANAMORPH			117						
Telescope with Plossl									
TIMES FOUR LASER BEAM EXPANDER									
TIMES FOUR LASER BEAM EXPANDER			F						
TIMES FOUR LASER BEAM EXPANDER		¥ '							
TIMES FOUR LASER BEAM EXPANDER		Y .							
OGINO X2 CONVERTER		, Z							
ZOOM BEAM EXPANDER			<u> </u>	— 1 50 mm	1				
8 x 30 Binocular									
10X Beam Expander, operation at 10 microns									
f/3.5 TRIPLET									
F/2 TRIPLET		Darameter	Valu			<u>^</u>			
F/6 TRIPLET		Parameter	valu	ic.		-			
50 INCH f/8 TRIPLET		Working F/#	2 87335107048003			-			
RADIATION RESISTANT LENS 25 MM f/2.8		Total Track Length	121 0/16280051						
TRIPLET OBJECTIVE		System Temperature	20						
TRIPLET OBJECTIVE		System Prossure	1						
TRIPLET OBJECTIVE		System Pressure	01 6200001015442						
COOKE TRIPLET USP 3176582		Exit Pupil Position	-91,0500901015445						
WIDE-ANGLE COOKE TRIPLET		Exit Pupil Diameter	33,1912432874823						
MICROPHOTOGRAPY OBJECTIVE		Entrance Pupil Position	32,635574208848						
COOKE TRIPLET WITH PLASTIC LENSES		Entrance Pupil Diameter	35,714						
TRIPLET TAYLOR		Effective Focal Length	100,000028500613						
TRIPLET AT F/4 20 DEGREE SEMI-FIELD		Performance Seidel	107 (10000000000			-			
MINUS-PLUS-MINUS TRIPLET		W311 - Distortion	137,412232851886						
REAR DIAPHRAM TRIPLET	\sim	W222 - Astigmatism	-10,3377824402642						
	Found 642 Result(s)	W220 - Field Curvature	114,003745378694						
	Load	W131 - Coma	-63,3611276443862					South	
		W040 - Spherical	32 9798464452778			~		JAVIA	1.0

W040 - Spherical

32.9798464452778

Close

?

*

Search Criteria

Exit Pupil Position

Exit Pupil Position

System Pressure

System Temperature Total Track Length

Effective Focal Length

Entrance Pupil Diameter

Entrance Pupil Position

Exit Pupil Diameter

Object Distance

Image Distance

Number of Surfaces

Prescription

Working F/#

System

Reflective

Author

Notes Title

Sayfa 3

-

Scat

urati Ch

Function Scatte

CAMERA OBJECTIVE LENSES

Objective Lens Design Forms

Landscape Lens

- It is single lens
- Typical use of **f/5** or slower
- FOV < ±5°
- FOV can be controlled by aperture stop placed in front of the lens.
- Image quality is low. But, it can be used in movement detection
- Performance can be improved by using aspheric surfaces
- Plastic materials can be used to make it cheap

Achomatic Doublets

- Better image quality compared to landscape lens
- f/5 or slower

- FOV < ± 5°
- Two different glases are used
- Performance can be improved by using aspheric surfaces
- Aberations are controlled by adding air gap between lenses

Cooke Triplet

- It is widely used.
- f/3 or slower
- FOV < ±20°
- Structure is PNP.
 Negative lens is used to control FOV.
- AS is in between lenses.

 This triplet can be converted to <u>tessar</u> or <u>heliar</u> to obtain better imaging performance.

Petzval Lens

- **f/4** or slower
- FOV < ±4°

Double Gauss Lens

- It is symetric with respect to AS.
- f/2 slower.
- FOV < ±40°
- Used in DSLR (Digital Single Reflex Camera) photograph machine.

Telephoto Lens

A basic telephoto lens consists of two lens groups (a positive group followed by a negative group). The stop is at or near the front group. The front principal plane is pushed out in front of the lens so that the EFL of a telephoto lens is greater than its physical length (measured from the first lens surface to the image plane). The ratio of the lens length to EFL is called the telephoto ratio.

An Example Telephoto Lens Design used in Earh Observation-1

Stages	Explanation	
Stage 1	Start with positive and negative lenses with the stop in the middle.	
Stage 2	These two lenses are converted to doublet lenses.	
Stage 3-4	The lenses are added in front and behind the stop at stages 3 and 4 respectively due to insufficient system performance.	
Stage 5	It is optimized again so that doublets in the optical system are separated and a diffraction-limited optic is designed.	

Sayfa 12

An Example Telephtoto Lens Design used in Earh Observation-2

The materials used in the design is selected to be radiation resistance for space application.

Wide Angle Objectives

Retrofocus

FishEye

Sayfa 15

MIRROR OBJECTIVES (Telescopes)

Newtonian

Primary: Prabolic Scondary: Plane

Cassegrain

Primary: Parabolic Scondary: Hyperbolic

f/8, 0.5-deg HFOV

In a first-order layout, the mirror curvatures of any twomirror system are given by

$$c_1 = \frac{BFL - f}{2df} \quad c_2 = \frac{BFL + d - f}{2dBFL}$$

where f is the effective focal length, d is the separation between the two mirrors, and *BFL* is the distance from the second mirror to the image.

Schwarzshild

Primary: small negative spherical Scondary: large positive spherical Used in microscopy

f/2, 1-deg HFOV

$$d = 2f$$
 $c_1 = (\sqrt{5} - 1)f$ $c_2 = (\sqrt{5} + 1)f$

d = mirror separation $c_1, c_2 = mirror curvatures$ f = system focal length

Gregorian Primary: Parabolic Secondary: Elliptic

f/8, 0.5-deg HFOV

Three-mirror anastigmat is an anastigmat telescope built with three curved mirrors, enabling it to minimize all three main optical aberrations spherical aberration, coma, and astigmatism.

Eisenberg-Pearson Two-mirror Three-surface

Korsch Telescope

Dietrich Korsch developed a broader range of solutions in 1972. A telescope based on Korsch's design corrects for spherical aberration, coma, astigmatism, and field curvature, allowing for a wide field of view with minimal stray light in the focal plane.

James Webb Space Telescope

Webb's optical design is a three-mirror anastigmat.

ZOOM LENSES

What is Zoom Lens?

A zoom lens is a mechanical assembly of lens elements for which the focal length (and thus angle of view) can be varied, as opposed to a fixed-focal-length (FFL) lens.

Zoom lenses are often described by the ratio of their longest to shortest focal lengths.

For example, a zoom lens with focal lengths ranging from 100 mm to 400 mm may be described as a 4:1 or "4×" zoom.

Two-Element Zoom Lenses

These are Inverse-Telephoto and Telephoto lenses with focal lengths ±100.

Three-Element Zoom Lenses

Focal systems

Three-Element Zoom Lenses

Afocal systems

Four-Element Zoom Lenses

Here is a simple design form.

- Three lenses of the afocal system are L₁, L₂, L₃.
- L₁ and L₂ can move to the left and right, changing the overall focal length of the system. See previous page.

Four-Element Zoom Lenses

This is very advanced example. First group on the left and last group on the right are fixed. Rest of them are moved to change focal length.

US Patent application 20090086321 by Keiko Mizuguchi.

EYEPIECES

Eyepiece

- An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes.
- Eyepiece is used to view a real image that has been formed by optical components located between the eyepiece and the object being viewed (foreoptics).

For details visit: https://en.wikipedia.org/wiki/Eyepiece

Eyepiece Design Forms

A simple convex lens placed after the focus of the objective lens presents the viewer with a magnified inverted image.

The simple negative lens placed before the focus of the objective has the advantage of presenting an erect image but with limited field of view.

Eyepiece Design Forms

---- Ramsden Huygens Kellner Plössl ≤ 33 n Erfle **Orthoscopic**

CELL PHONE CAMERA LENSES

Miniature Lenses

Lenses for mobile phones, have been developed over the last two decades.

Typical mobile phone lens specifications

Year	2006	2012	2018
Focal length	3–6 mm	3–5 mm	3–5 mm
FOV	66°	72°	78°
<i>F/</i> #	2.8	2.2-2.4	2.0 - 1.4
TTL	<5.0 mm	<5.0 mm	<6.0 mm
Distortion	<1-2%	<1-2%	<1-2%
CRA	${<}24^{\circ}$	$<30^{\circ}$	$<33^{\circ}$
RI	>50%	>50%	>32%
# lens elements	3–5	4–6	5-8

Mobile phone lens forms with two, three, four, and five lens elements. The plane parallel plate next to the image plane represents an infrared filter

Designing Cell phone Camera Lenses in Zemax

- https://www.zemax.com/blogs/news/designing-cell-phone-camera-lenses-part-1-optics
- https://www.zemax.com/blogs/news/designing-cell-phone-camera-lenses-part-2optomechanical-packaging-with-opticsbuilder