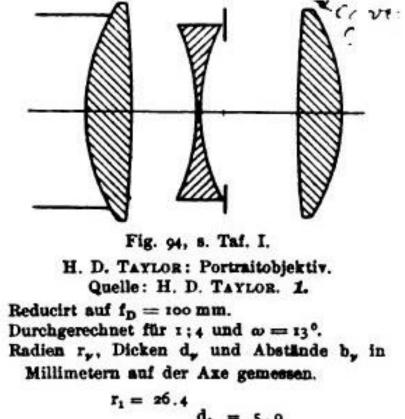


Lecture 14 Cooke Triplet

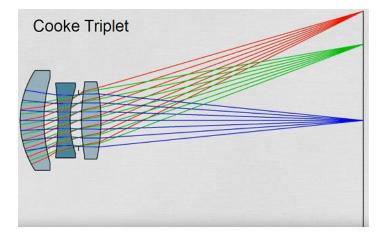

Ahmet Bingül

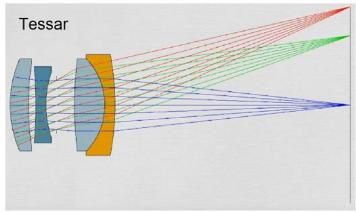
Gaziantep University Department of Optical Engineering

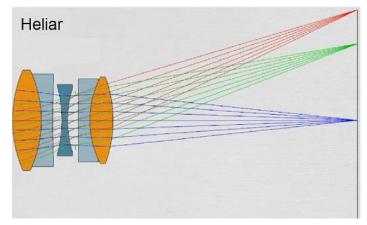
Sep 2024

Cooke Triplet

- The Cooke triplet is a photographic lens designed and patented (patent number GB 22,607) in 1893 by Dennis Taylor.
- It was the first lens system that allowed elimination of most of the optical distortion or aberration at the outer edge of the image.
- A Cooke triplet comprises a negative flint glass element in the center with a crown glass element on each side.
- See for more info: https://en.wikipedia.org/wiki/Cooke_triplet

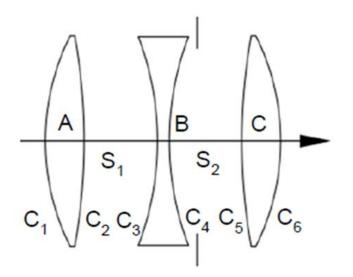



 $d_{1} = 5.9$ $r_{1} = 10.4$ $b_{1} = 10.9$ $r_{2} = 29.8$ $d_{2} = 0.2$ $r_{4} = 24.2$ $b_{1}^{(1)} = 3.1$ $b_{3}^{(1)} = 9.4$ $r_{5} = 150.7$ $d_{1} = 5.9$ $r_{6} = 26.4$ Glasarten n_D. $L_{1} = L_{2} = 1.5108$ $L_{2} = 1.6042$


Cooke Triplet

- It is widely used.
- f/3 or slower
- FOV < ±20°
- Structure is PNP.
 Negative lens is used to control FOV.
- AS is in between lenses.

 This triplet can be converted to <u>tessar</u> or <u>heliar</u> to obtain better imaging performance.



Optimization

- The Cooke triplet can correct, with only three elements, for one wavelength
 - spherical aberration
 - coma
 - astigmatism
 - field curvature
 - distortion
- We have totally 16 parameters to optimize the triplet.
 - 3 glass types
 - 6 Radius of curvatures
 - 3 glass thicknesses
 - 4 air thicknesses

Example 1: f/5 Cooke Triplet Design in Zemax

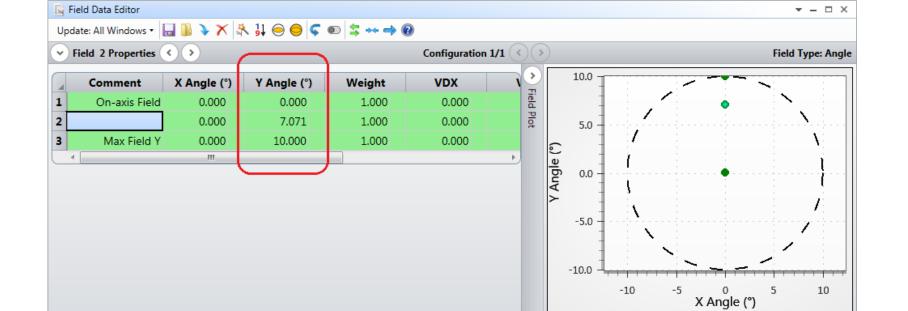
The specifications are as follows:

• F/#

- :5
- EFL : 50 mm
- FOV

- : 20º
- Wavelength
- : F, d, C (visible)

Glasses


: Schott

System Explorer 🕐

Update: All Windows •

Aperture
Aperture Type:
Entrance Pupil Diameter 🔹
Aperture Value:
10.0
Apodization Type:
Uniform 👻
Clear Semi Diameter Margin Millimeters:
1.0
Clear Semi Diameter Margin %
0.0
Global Coordinate Reference Surface
6
Telecentric Object Space
Afocal Image Space
Iterate Solves When Updating
🔽 Fast Semi-Diameters
Check GRIN Apertures
Fields
Wavelengths
Environment
Polarization
Advanced
Ray Aiming

-		-				
Ra	y Ain	ning	g:			
	Para	axia	ıl			
	_					

W	lave	elength Data					•	
		Wavelength (µm)	Weight f	Primary		Wavelength (µm)	Weight	Primar
1	1	0.486	1.000	0	13	0.550	1.000	0
1	2	0.588	1.000	۲	14	0.550	1.000	0
1	3	0.656	1.000	0	15	0.550	1.000	0
	4	0.550	1.000	0	16	0.550	1.000	0
	5	0.550	1.000	0	17	0.550	1.000	0
	6	0.550	1.000	0	18	0.550	1.000	0
	7	0.550	1.000	0	19	0.550	1.000	0
	8	0.550	1.000	0	20	0.550	1.000	0
	9	0.550	1.000	0	21	0.550	1.000	0
	10	0.550	1.000	0	22	0.550	1.000	0
	11	0.550	1.000	0	23	0.550	1.000	0
	12	0.550	1.000	0	24	0.550	1.000	0
F, d,	C (/isible) 🔹	Select Preset			Decimals:	Use Editor Prefere	nce
Minir	nun	n Wave: 0.486	Maximum Wave:	0.656	Ste	eps: 4 🔹	Gaussian Quad	rature

Example 1: LDE at time t = 0

Start with predefined design form.

Surface 8 Properties	$\langle \rangle$			Configuration 1/1 🔇 📎								
Surface Type	Comment	Radius		Thickness	;	Material		Clear Semi-Dia	C			
OBJECT Standard 🔻		Infinity		Infinity				Infinity				
Standard 🔻		Infinity		5.000				0.000 U				
Standard 🔻		50.000	V	5.000	۷	N-BK7	S	9.857				
Standard 🔻		-50.000	V	5.000	V			9.231				
Standard 🔻		-50.000	V	5.000	۷	N-F2	S	7.192				
Standard 🔻		50.000	V	5.000	V			6.213				
STOP Standard •		Infinity		5.000	V			4.192				
Standard 🔻		Infinity	v	5.000	۷	N-BK7	S	6.281				
Standard 🔻		-21.037	F	39.983	V			6.868				
IMAGE Standard 🔻		Infinity	Cur	rvature solve o	on si	urface 8		8.998				
	(So	lve Type:	FN	lumber	•		÷			
			F/#	# :	5				_			
									-			

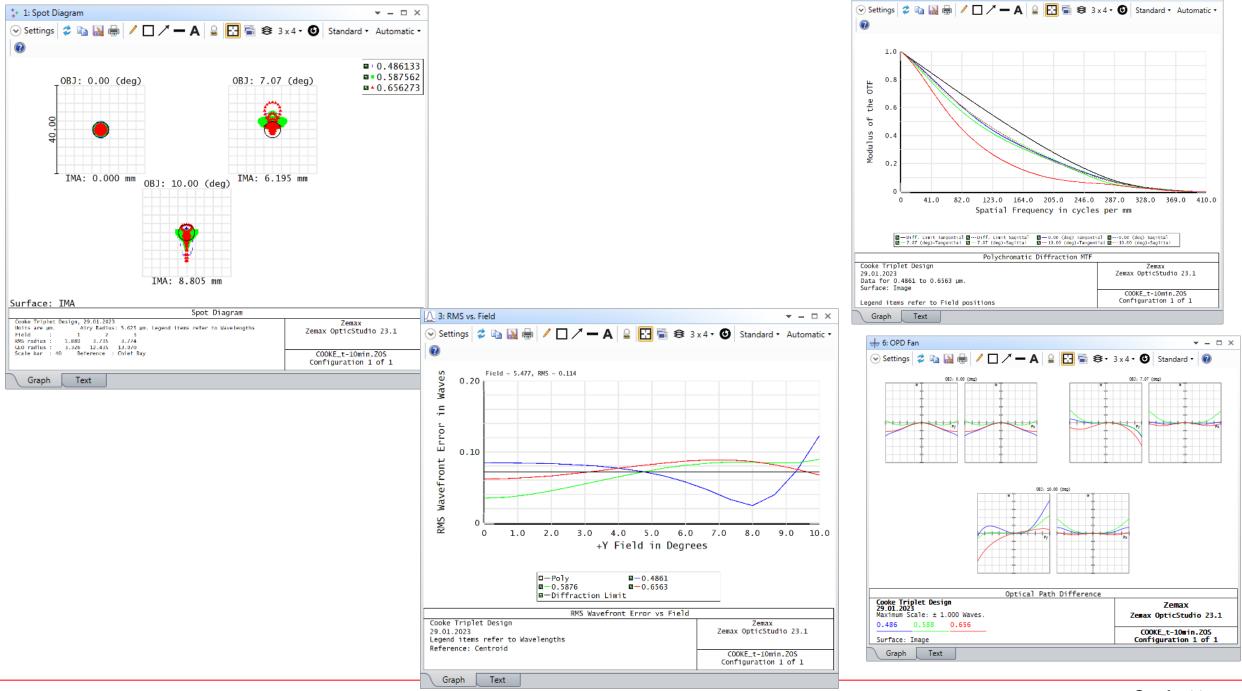
Example 1: MFE

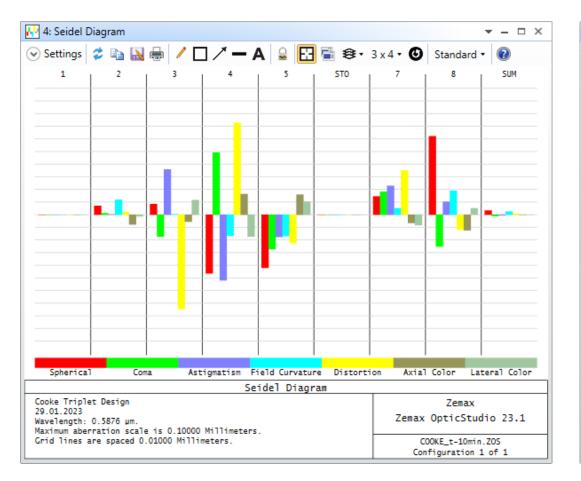
🔓 Merit Function Editor						▼ - □ X
🗢 🗔 📦 🔪 🛪 🔱	. ፍ 💿 😫 🕶 🔿	0				
Nizards and Operan	nds 🔇 🕨		Merit F	unction:		
Optimization Wizard Current Operand (2)	Optimization Function Image Quality: Spatial Frequency: X Weight: Y Weight: Type: Reference: Max Distortion (%): Ignore Lateral Color Optimization Goal		Pupil Integration Gaussian Quadrature Rectangular Array Rings: 5 Arms: 6 Obscuration: 0	•	Boundary Values Glass Min: Max: Edge Thickness: Air Min: Max: Edge Thickness:	2 10 1 1 1 1e+03 1
	Optimization Goal Best Nominal Perfor Improve Manufactur Weight: 1 OK Apply		Start At: Overall Weight: 1	Field	figuration: All d: All we Settings Load Settings	Assume Axial Symmetry: Add Favorite Operands: Reset Settings

l N	lerit Functio	n Editor											
21	🚽 🕪 🔖 🕻	X 🕺 🛯	• Ϛ 💿 😫	++ => (2								
•	Wizards and	l Operand	s < >							Merit Funct	ion: 0.0005	90067994988872	
	Tuno	Comm											
1	Type DMFS •	Comm											
2		Sequent	ial merit func	tion: RM	S spot x	(+y cen	troid X W	gt =	1.000	00 Y Wgt = 1	.0000 GQ 5 r	ings 6 arms	[
3			ndividual air			•		-					
4	MNCA 🕶	1	1							1.000	1.000	1.000	0.000
5	MXCA 🕶	1	1							1000.000	1.000	1000.000	0.000
6	MNEA 🕶	1	1	0.000	0					1.000	1.000	1.000	0.000
7	MNCG -	1	1							2.000	1.000	2.000	0.000
8	MXCG 🕶	1	1							10.000	1.000	10.000	0.000
9	MNEG 🔻	1	1	0.000	0					2.000	1.000	2.000	0.000
10	MNCA -	2	2							1.000	1.000	1.000	0.000
11	MXCA 🕶	2	2							1000.000	1.000	1000.000	0.000
12	MNEA -	2	2	0.000	0					1.000	1.000	1.000	0.000
13	MNCG -	2	2							2.000	1.000	2.000	0.000
14	MXCG 🕶	2	2							10.000	1.000	10.000	0.000
15	MNEG 🕶	2	2	0.000	0					2.000	1.000	2.000	0.000
16	MNCA -	3	3							1.000	1.000	1.000	0.000
17	MXCA 🕶	3	3							1000.000	1.000	1000.000	0.000
18	MNEA 🕶	3	3	0.000	0					1.000	1.000	1.000	0.000

Example 1: LDE at t = 10 min

• Stop the **hammer** optimization.

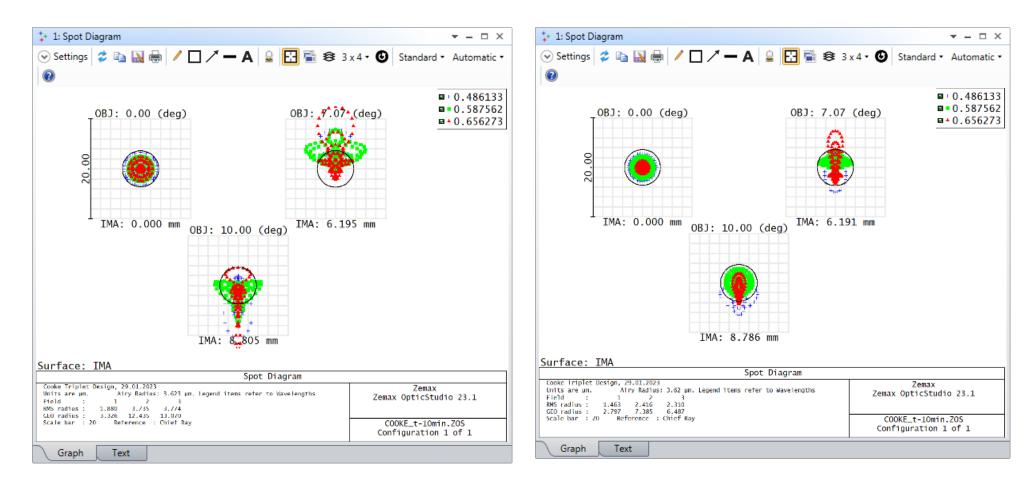

Lens Data


Can you change the design to reduce manufacturing cost?

Update: All Windows - 🕐 🕐 🕂 🔮 📓 🤸 🐇 💱 🏘 🋊 🛊 🏚 🏟 🔿 - ≰ 🥥 🔲 🗐 😂 🛶 🔿 🔞

•	Surface 8 Prope	erties 🔇	>	Configuration 1/1											
	Surface Type	e (Comment	Radius		Thicknes	5	Material		Clear Semi-Dia	a	Ch			
0	OBJECT Standar	rd 🕶		Infinity		Infinity				Infinity					
1	Standa	rd 🕶		Infinity		5.000				0.000	U				
2	Standa	rd 🕶		27.987	۷	4.896	V	N-LAF35	S	9.806					
3	Standa	rd 🕶		-1112.760	۷	8.277	۷			8.973					
4	Standa	rd 🕶		-19.586	۷	2.000	v	SF10	S	5.396					
5	Standa	rd 🔻		19.343	۷	2.642	V			5.004					
6	STOP Standa	rd 🔻		Infinity		1.899	V			3.829					
7	Standa	rd 🕶		65.065	۷	3.332	v	N-LAF35	S	5.637					
8	Standa	rd 🔻		-17.475	F	42.153	v			6.068					
9	IMAGE Standa	rd 🔻		Infinity		-				8.809					
		۲.		"	1							Þ			

 • 2: Layout
 • - □ ×
 • Settings
 • Image: Im


Example 1: Improve Performance

- We may use aspheric surface
- In the Optimize section you can click on Find Best Asphere to obtain better performance.

Starting Merit Function	on: 0.000590068 0.000435188 on surface	2	
Asphere Type:	8th order	*	
Last Surface:	9		
First Surface:	0	. T	

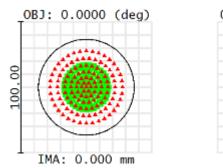
Before using aspherical surface

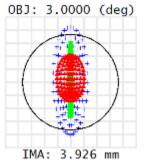
After using aspherical surface

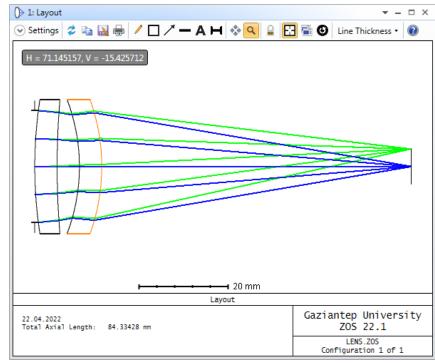
Example 2: LWIR Objective

Design the following objective using two and three lenses.

Spectral range	8-12 µm
Focal length	75 mm
f/#	3
SFOV	3° (FOV = 6°)
Materials	Germanium – ZnSe pair
ct1 = ct2	5 mm
Distance between lenses	5-15 mm variable
Radius of curvatures	All variable

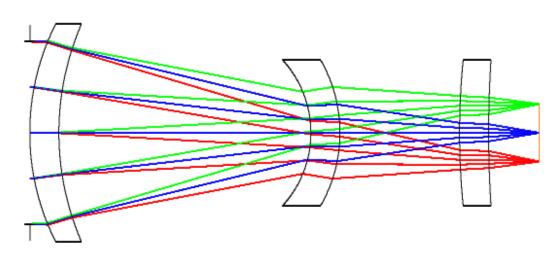

Perform optimization to obtain minimum spot radius averaged over FOV.

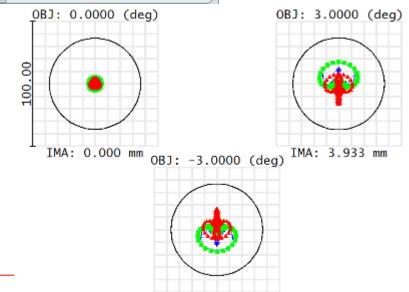

Starting values are given below. In MFE set only EFFL = 75 mm.


Surface 6 Properties	< >>			Configuration 1/1		
Surface Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia
OBJE(Standard •		Infinity	Infinity			Infinity
L STOP Standard -		Infinity	0.000			12.500
2 (aper) Standard 🕶		Infinity V	5.000	GERMANIUM		15.000 U
3 (aper) Standard ▼		Infinity V	5.000			15.000 U
4 (aper) Standard 🕶		Infinity V	5.000	ZNSE		15.000 U
5 (aper) Standard 🕶		Infinity V	50.000 V			15.000 U
6 IMAG Standard ▼		Infinity	-			15.557
		∕ — А н ҈ ҈				
	22.04.2022 Total Axial Length: 65.0000 mm		itep University ZOS 22.1 LENS.ZOS juuration 1 of 1			

After optimization (just use EFFL operand)

Jpdate: All Windows •	: 🕲 🕂 🥥 🛍 🖂	: -¼ 🛊 ∌ ₽ ;	۰ ⊄	🎯 O · <u> </u> 🧲		📃 😫 ↔ 🔿 🔞							
Surface 6 Properties Configuration 1/1													
Surface Type	Comment	Radius		Thickness		Material							
OBJE(Standard •		Infinity		Infinity									
L STOP Standard ▼		Infinity		0.000									
2 (aper) Standard 🕶		98.693	V	5.000		GERMANIUM							
aper) Standard 🔹		175.250	V	5.000									
🛿 (aper) Standard 🔻		-41.835	V	5.000		ZNSE							
i (aper) Standard 🔹		-44.309	V	69.334	V								
5 IMAG Standard ▼		Infinity		_									





Try a triplet solution (F/3, EFFL = 75 mm, TOTR=70 mm). Here is an example:

Surface 8 Properties	< >>				Configuration 1/1	\mathbf{O}		
Surface Type	Comment	Radius	Thickness		Material	Coating	Clear Semi-Dia	Chip Zo
OBJE(Standard •		Infinity	Infinity				Infinity	0.0
STOP Standard •		Infinity	0.000				12.500	0.0
(aper) Standard 🔻		33.170	/ 4.000		GERMANIUM		15.000 U	J 0.0
(aper) Standard 🔻		37.614	/ 34.637	٧			15.000 U	J 0.0
(aper) Standard 🔻		-14.806	/ 4.000		ZNSE		10.000 U	J 0.0
(aper) Standard 🔻		-20.048	/ 16.440	٧			10.000 U	J 0.0
(aper) Standard 🔻		100.042	/ 4.000		GERMANIUM		10.000 U	J 0.0
(aper) Standard 🔻		155.803	/ 6.923	V			10.000 U	J 0.0
IMAG Standard •		Infinity	_				4.000 ไ	J 0.0

IMA: -3.933 mm