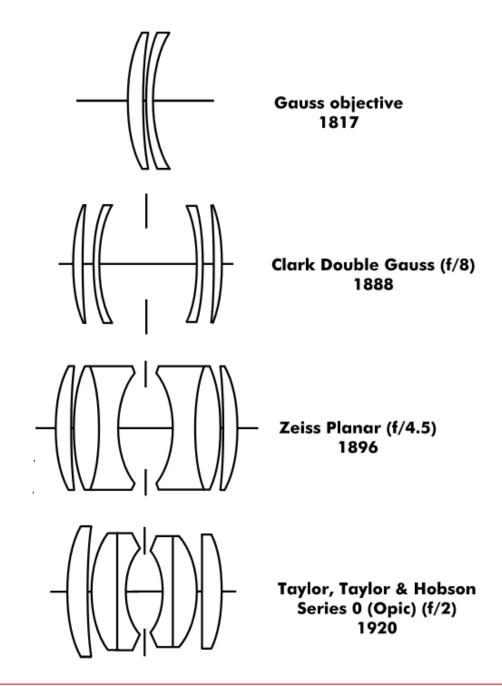


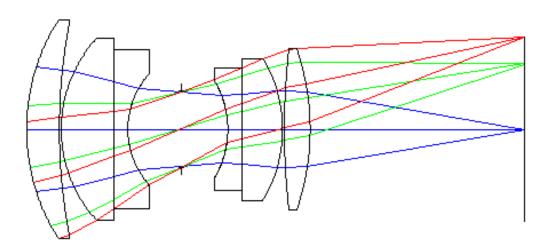
Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 14 Double Gauss Desing


Ahmet Bingül

Gaziantep University Department of Optical Engineering

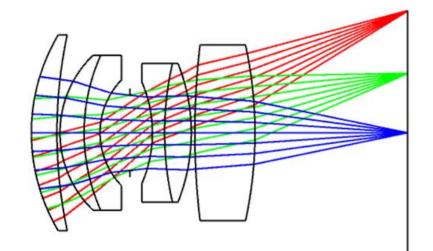
Mar 2024


Double Gauss

- The double Gauss lens is a compound lens used mostly in camera lenses that reduces optical aberrations over a large focal plane.
- It was the first patented by Alvan Graham Clark in 1888.
- f/2 (or slower) ve FOV < ±40°.
- See for more info: en.wikipedia.org/wiki/Double-Gauss_lens

Stucture

- It consists of two consecutive Gaussian lenses;
 Design with 2 positive meniscus lenses outside and 2 negative meniscus lenses inside.
- The symmetry of the system and the division of optical power into many elements reduce optical aberrations within the system.
- It forms the basis for standard wide-aperture lenses, particularly those used in 35 mm and other small-format photographic cameras.


Canon EF50mm f/2.5

Production

One of the biggest issues that the designer should pay attention to when installing an optical system is that the **optical system can be produced**. For this, it is necessary to consider both the manufacturability of the structure of the **lenses** and the **mechanics** that will surround the outside of the system.

Two suggestions:

- Relation between center thickness (ct) and diameter (D) of lens: D/10 < ct < D/3
- 2. Lenses that are too close together must be removed, this creates difficulties in the mechanical structure.

Example 1: f/5 Double Gauss Design

The specifications are as follows:

• F/#

- : 5
- EFL : 50 mm
- FOV

- : 20°
- Wavelength
- : F, d, C (visible)

Glasses

: Schott

System Explorer 🕐

-

Ŧ

Update: All Windows •

→ Aperture

Aperture Type:	
Entrance Pupil Diameter	

Aperture Value:

10.0

Apodization Type:

Uniform

Clear Semi Diameter Margin Millimeters:

1.0

Clear Semi Diameter Margin %

0.0

Global Coordinate Reference Surface

6

Telecentric Object Space

Afocal Image Space

Iterate Solves When Updating

Fast Semi-Diameters

Check GRIN Apertures

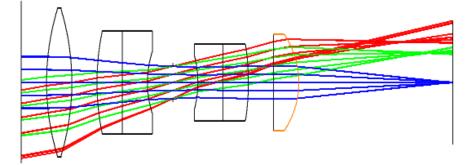
Fields

- Wavelengths
- Environment
- Polarization
- Advanced
- Ray Aiming

Ray Aiming:

Paraxial

Use Ray Aiming Cache


Field	d Data Editor								▼ = □ >
pdate	e: All Windows 🔹	🚽 🐌 🔪 🛪 🗳	k ¦l ⊝ ⊖ 🧲	D 😫 🕶 🔿 🌘					
Fie	ld 2 Properties		\frown		Configuration	1/1 📀 🔊)		Field Type: Ang
	Comment	X Angle (°)	Y Angle (°)	Weight	VDX	$\overline{\mathbf{v}}$	10.0 -	· · · ·	
	On-axis Field	0.000	0.000	1.000	0.000	Field Plot	-		• •
		0.000	7.071	1.000	0.000	Plot	5.0 -		$\{1,1,\ldots,1,\ldots,N_{n}\}$
	Max Field Y	0.000	10.000	1.000	0.000		.	1	N
۹ [<u> </u>	jle (1	1
							Angle (°)	<u>ا</u>	
							>	1	1
							-5.0 -		· · · · / ·
							-		1
							-10.0 -	L	_::
								-10 -5	0 5 10
								X	Angle (°)

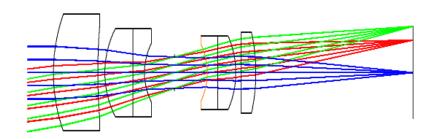
Wa	avelength [Data					•	
8	Wavele	ength (µm)	Weight	Primary		Wavelength (µm)	Weight	Primar
1	1	0.486	1.000	0	13	0.550	1.000	0
1	2	0.588	1.000	۲	14	0.550	1.000	0
	3	0.656	1.000	0	15	0.550	1.000	0
0	4	0.550	1.000	0	16	0.550	1.000	0
	5	0.550	1.000	0	17	0.550	1.000	0
	6	0.550	1.000	0	18	0.550	1.000	0
	7	0.550	1.000	0	19	0.550	1.000	0
	8	0.550	1.000	0	20	0.550	1.000	0
	9	0.550	1.000	0	21	0.550	1.000	0
1	LO	0.550	1.000	0	22	0.550	1.000	0
1	.1	0.550	1.000	0	23	0.550	1.000	0
1	12	0.550	1.000	0	24	0.550	1.000	0
F, d, (C (Visible)	•	Select Preset]		Decimals:	Use Editor Prefere	ence 🔹
Minimum Wave: 0.486		Maximum Wave	: 0.656	St	eps: 4 🔹	Gaussian Quad	rature	

Example 1: LDE at time t = 0.

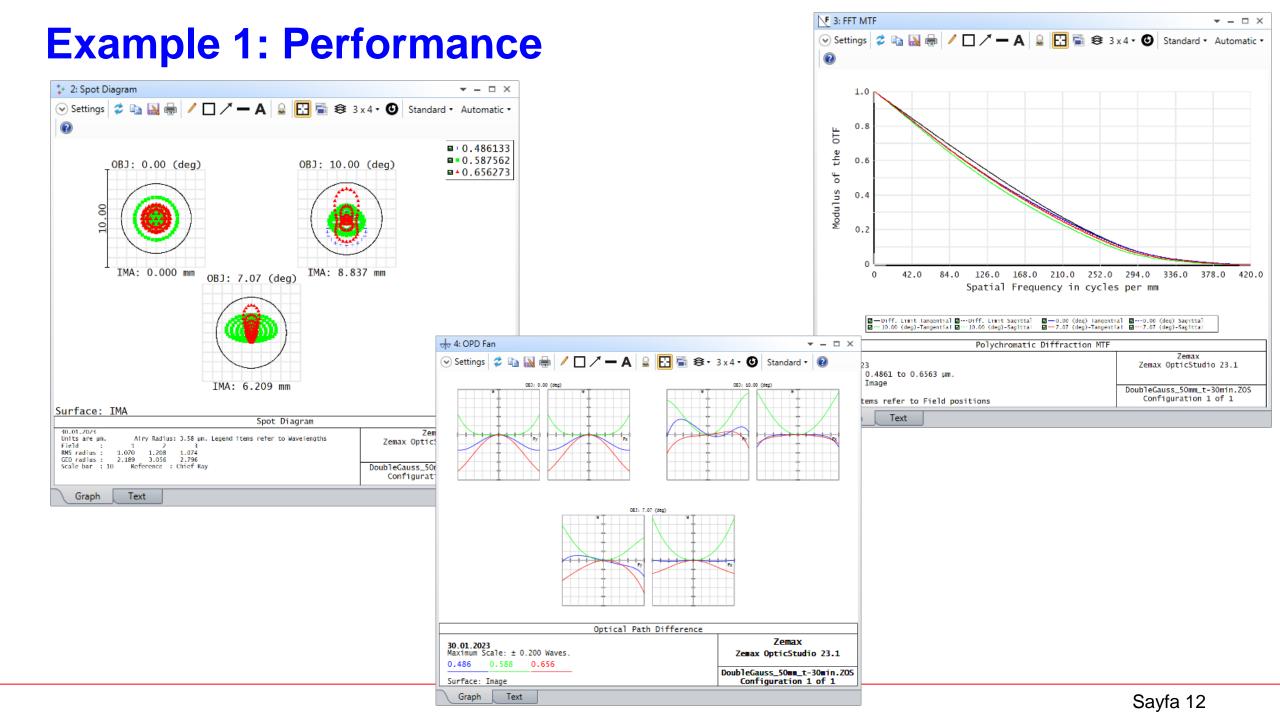
Start with predefined design form.

):	Surface 1	12 Properties	$\langle \rangle$			Configuration 1/1							
	Surf	ace Type	Comment	Radius		Thickness		Material	Clear Semi-Dia				
	OBJECT	Standard \bullet		Infinity		Infinity			0.000				
		Standard \bullet		Infinity		5.000			6.097				
		Standard 🔻		50.000	۷	5.000		N-BK7	6.097				
		Standard \bullet		-50.000	۷	5.000	V		5.939				
L.		Standard 🔻		50.000	۷	5.000		N-BK7	5.361				
;		Standard 🔻		Infinity		5.000		N-F2	4.881				
5		Standard 🔻		20.000	۷	5.000	V		4.388				
1	STOP	Standard 🔻		Infinity		5.000	v		3.182				
3		Standard 💌		-20.000	v	5.000		N-BK7	3.973				
)		Standard 💌		Infinity		5.000		N-F2	4.093				
LO		Standard 🔻		-50.000	۷	5.000	v		4.197				
L1		Standard 🕶		Infinity		5.000		N-BK7	4.169				
12		Standard 🕶		-17.074	F	30.508	V		4.152				
L3	IMAGE	Standard •		Infinity	Cu	urvature solve on surfa	ce	12	0.092				
			٠ [olve Type: F Num		· ·					

light Merit Function Editor							
🗢 🗔 🗋 🔪 🗶		0					
Nizards and Operan	ids 🔇 🔊			Merit Function:			
Optimization Wizard Current Operand (5)	Optimization Function		Pupil Integrat	tion	Boundary	Values	
	Image Quality:	Spot 🔹	Gaussian C	Quadrature	✓ Glass	Min:	2
	Spatial Frequency:	30	Rectangula	ar Array		Max:	15
	X Weight:	1	Rings:	5 •		Edge Thickness:	0
	Y Weight:	1	Arms:	6 •	🗷 Air	Min:	1
	Туре:	RMS •	Obscuration:	0		Max:	1e+03
	Reference:	Centroid 🔹				Edge Thickness:	1
	Max Distortion (%):	1					
	Ignore Lateral Color						


Example 1: Operands in MFE

🔓 N	lerit Functio	n Editor											▼ - □ 3
21	🚽 🚺 🔪	X 🕺 🛯	• 🧲 💿 😫										
•	Wizards and Operands 🔇 > Merit Function: 0.000197729084628093												
	Туре	Surf1	Surf2							Target	Weight	Value	% Contrib
1	TTHI 🔻	2	12							0.000	0.000	68.795	0.000
2	OPLT 🔻	1								100.000	1.000	100.000	0.000
3	CTGT 🔻	12								30.000	1.000	30.000	0.000
4	DIMX 🕶	0	2	0						1.000	1.000	1.000	0.000
5	CVLT -	8								0.000	1.000	0.000	0.000
6	DMFS 🔻												
7	BLNK 🔻	Sequent	ial merit func	tion: RMS spo	t x+y cł	nief X W	/gt = 1.00	00 Y	Wgt :	= 1.0000 GQ	5 rings 6 arm	s	
8	BLNK 🔻	Default i	ndividual air	and glass thic	kness b	oundar	y constrai	nts.					
9	MNCA -	1	1							1.000	1.000	1.000	0.000
10	MXCA 🕶	1	1							1000.000	1.000	1000.000	0.000
11	MNEA 🕶	1	1	0.000	0					1.000	1.000	1.000	0.000
12	MNCG -	1	1							2.000	1.000	2.000	0.000
13	MXCG 🕶	1	1							15.000	1.000	15.000	0.000
14	MNEG 🔻	1	1	0.000	0					2.000	1.000	2.000	0.000


- TTHI Thickness between surfaces 2 and 12
- OPLT Value of 1st operand must be less than 100
- CTGT Center thickness between 12 and 13 must be less than 30
- DIMX Maximum distotion must me less than 1% for 2nd wavelength
- CVLT Curvature of 8th surface must be less than 0 (Namely, $C_8 = 1/R_8 < 0$)

Example 1: t = 30 min

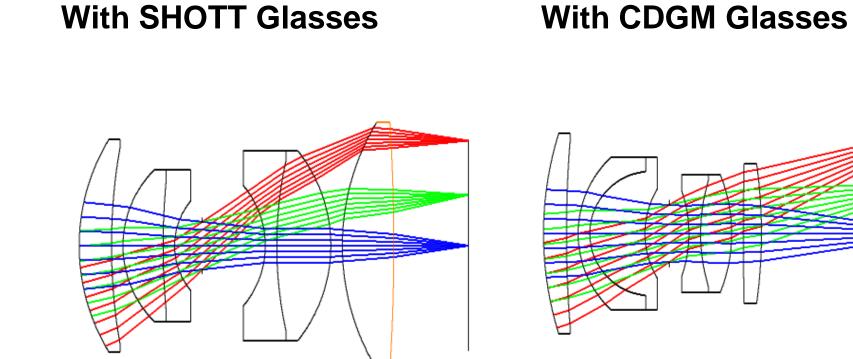
- Stop the **hammer** optimization.
- Can you change design to reduce the manufacturing cost?

~)	Surface 8 Properties				Configura	tio	n 1/1 (<)>			
	Surface Type	Comment	Radius		Thickness		Material		Clear Semi-Dia	Chip
0	OBJECT Standard •		Infinity		Infinity				Infinity	
1	Standard 🔻		Infinity		5.000				0.000 U	
2	Standard 🔻		33.935	۷	8.494	V	N-LASF9HT	S	11.151	
3	Standard 🔻		115.595	۷	1.346	۷			9.418	
4	Standard 🔻		18.752	۷	5.383	V	N-PSK53A	S	8.399	
5	Standard 🔻		Infinity		2.197	V	N-SF4	S	6.815	
6	Standard 🔻		12.499	۷	5.720	۷			5.667	
7	STOP Standard •		Infinity		6.284	۷			3.001	
8	Standard 🔻		-12.886	۷	2.000	۷	N-SF15	S	5.460	
9	Standard 🔻		Infinity		3.462	۷	P-LASF51	S	6.322	
10	Standard 🔻		-17.550	۷	1.000	V			7.013	
11	Standard 🔻		Infinity		2.840	V	P-LASF50	S	7.482	
12	Standard 🔻		-36.243	F	30.069	۷			7.752	
13	IMAGE Standard 🔻		Infinity		-				8.840	

Exercise 1

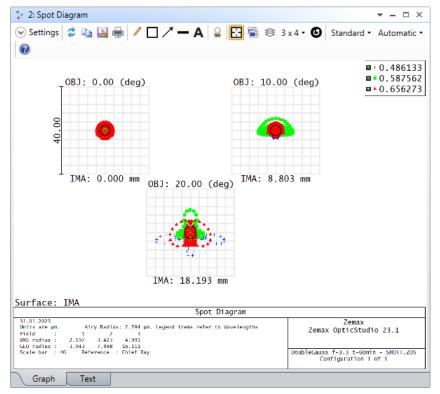
Design a Double Gauss Lens to perform the following specifications:

- F/# : 3.3
- EFL : 50 mm
- EPD : 15 mm
- FOV

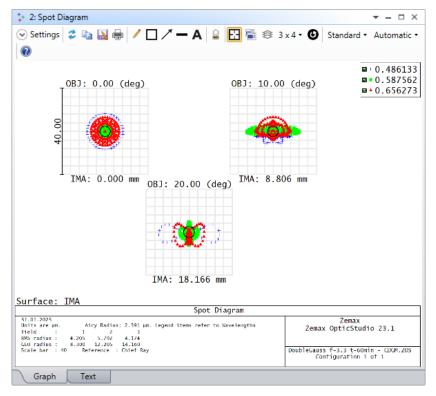

- : 40° (Namely SFOV = 0,10,20 deg)
- Wavelength
 - h : F, d, C (visible) log : **SCHOTT**
- Glass Catalog

Exercise 2

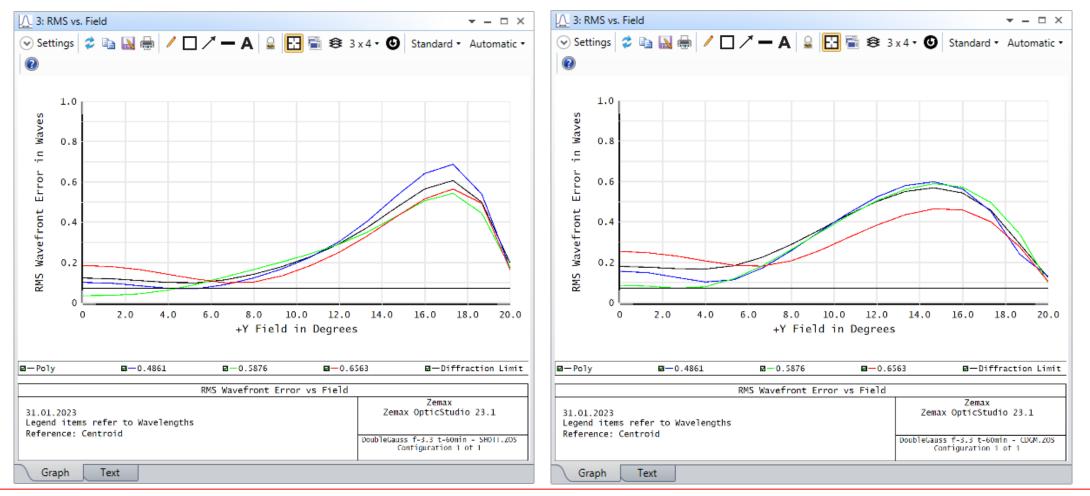
Design a Double Gauss Lens to perform the following specifications:


- F/# : 3.3
- EFL : 50 mm
- EPD : 15 mm
- FOV

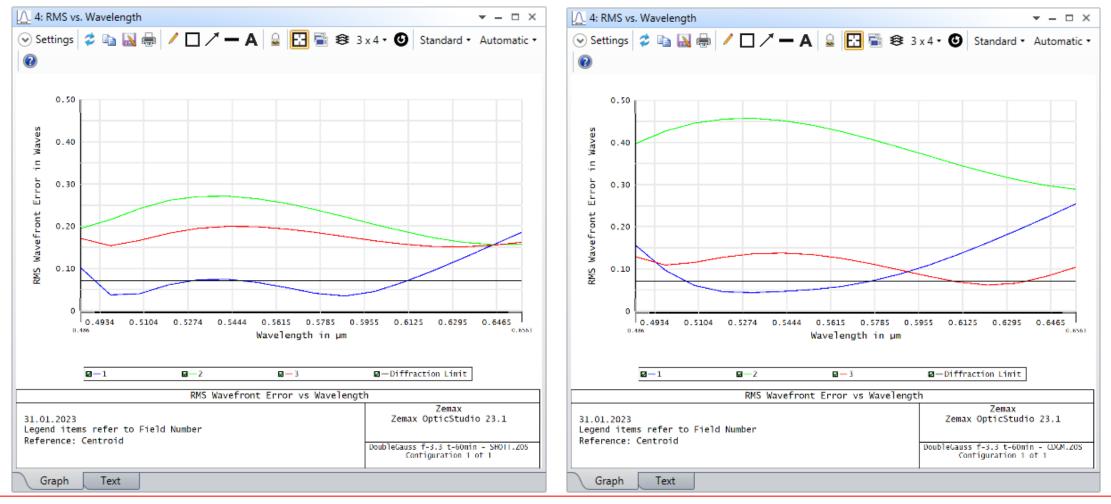
- : 40° (Namely SFOV = 0,10,20 deg)
- Wavelength : F
- Glass Catalog
- : F, d, C (visible)
- log : CDGM


With SHOTT Glasses

Açı	RMS Spot Rad.
0°	2.2 µm
10°	3.4 µm
20°	5.0 µm


With CDGM Glasses

Açı	RMS	Spot	Rad.
0 °	4.	2 µm	
10°	5.	8 µm	
20°	4.	2 µm	


With SHOTT Glasses

With CDGM Galsses

With SHOTT Glasses

With CDGM Glasses

