

Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 18 Non-Sequential Mode in Zemax

Ahmet Bingül

Gaziantep University Department of Optical Engineering

May 2024

Content

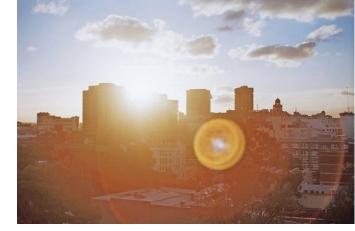
- 1. Introduction
- 2. Simple Non-Sequential Mode Application

Introduction

There are 2 distinct ray-tracing modes in Zemax (OpticStudio)

- Sequential
- Non-sequential

In addition, a **hybrid mode** exists in which sequential and non-sequential ray-trace are used in the same system.


In this lecture, we will see some basic applications of Non-squential ray tracing in Zemax.

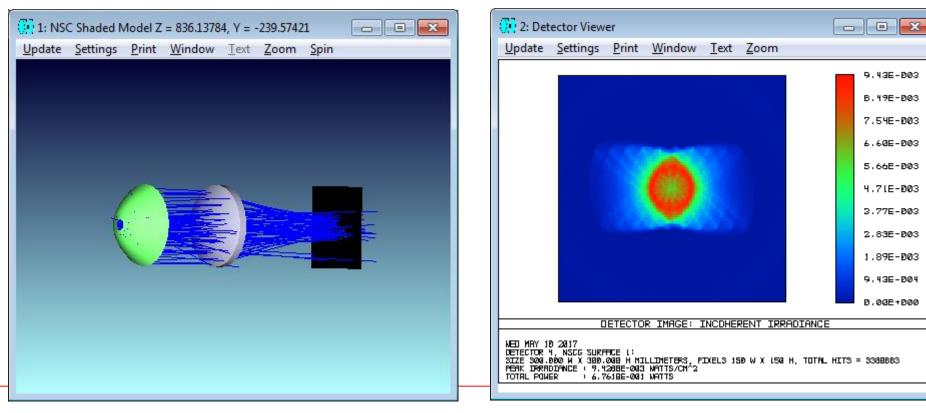
Sequential Mode

- It is mainly used for designing <u>imaging and afocal systems</u>.
- Surfaces are defined in the <u>Lens Data Editor</u>.
- Ray can only intersect <u>each surface once</u> and has to do it in a specified -sequential- order (i.e. surface #0 then #1 ,#2 ...) and hence the name sequential ray tracing.
- Ray can only <u>reflect</u> if the surface material type is MIRROR. Partial reflections from refractive surfaces (Fresnel reflections) are accounted for to the extent of calculating the correct refracted energy, including the effects on dielectric or metallic mirrors.
- <u>Each surface has its own local coordinate system</u>. The position of each surface along the optical axis is referenced to the previous surface. In other words, the "Thickness" column in the Lens Data Editor refers to the distance from current surface and not from a global reference point.

Non-sequential Mode

- It is primarily used for <u>non-imaging applications</u> such as illumination systems and/or stray-light analysis.
- Surfaces or volume objects are defined in the <u>Non-Sequential Component Editor</u>

Stray ray example


- Mechanical components may be easily imported from CAD programs, so that full Opto-Mechanical analysis may be undertaken.
- A ray can intersect the same object more than once and can intersect multiple objects in any order; hence the name non-sequential.
- Each object is referenced to a <u>global coordinate</u>, unless specified otherwise.
- Imaging-system properties such as stop location, entrance and exit pupil, field, system aperture etc. that exist in sequential systems may not be <u>meaningful</u> in non-sequential systems.
- The main analysis feature in non-sequential mode is the <u>detector ray-trace</u>, which gives spatial and angular data on incoherent or coherent rays.

Example 1: Simple Non-Sequential Mode Application

We will make a non-sequential system with

- > a filament source
- > a parabolic reflector
- > a plano-convex lens
- > a rectangular detector

as shown in the layout below:

To start Non-sequential mode:

Click on Setup tab, then select Non-Squential

This command starts Non-Squential Component Editor.

Press insert key a few times to open new lines (starting with Null Object).

	odate: All Window				_				······		
Object 8 Properties Configuration 1/1											
	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Materia
1	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
2	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
3	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
4	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
5	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
6	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
7	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-
8	Null Object 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-

*** Object1

Standart Surface

Material	Mirror
Radius	100
Conic	-1 (parabola)
Max Aper	150
Min Aper	20 (center hole in the reflector)

*** Object2

Source Filament	
Z position	50 (focus of the parabolic reflector)
# Layout Rays	20
# Analysis Rays	5e6
Length	20
Radius	5
Turns	10
Tilt about Y	90 (deg)
X position	-10 (mm)

*** Object4

Standard Lens

Ref Object	3 (before detector)
Z Position	200
Material	N-BK7
Radius 1	300
Clear 1	150
Edge 1	150
Thickness	70
Clear 2	150
Edge 2	150 n

*** Object5 Detector Rect Z position 1000 **Blank** (or can be ABSORB or MIRROR) Material X Half Width 150 Y Half Width 150 # X Pixels 150 # Y Pixels 150 (detector displays inverse greyscale) Color 1

In the analysis you should use **Detector Viewer** and **Ray Trace** buttons.

<u>⊠ °</u> 🖗 🖬 🔜 🤊 🤇 ở ⊄ 🗗	•	LENS.ZMX - Zemax OpticStudio	o 19.8 Professional - L105296
NSC 3D NSC Shaded CAD Part Object	race Rays Detectors & Analysis Raytra	h Flux vs. Coatings Prescription Data Plot • Ace Analysis Polarization Reports Universal Plot •	Lighting Illumination Map Radiance Sag lot Applications
Environment	Update: All Windows 🗸 🕐 🔇 🔽 🧠 🖜 🖬 🕶 🌑 😋 🖂		
 Polarization Advanced Material Catalogs Non-Sequential 	✓ Object 1 Properties <	Configuration 1/1 () >	
 Named Filters Title/Notes Files Units Cost Estimator 	 1.0 0.8 0.6 0.4 0.2 	Clear Detectors Clear & Trace Auto Update Use Polarization Split NSC Rays Save Rays:	All Trace # of Cores: 4 Growthing for the second
	0 0.1 0.2 0.3 0.4 0.5 0.6 28.05.2020 Invalid input data/settings. Graph Text Beam Info	0.7 0.8 0.9 1.0 Zemax Zemax OpticStudio 19.8 LENS.ZMX Configuration 1 of 1	Exit

ZEMAX-EE - 19052 - C:\Users\Ahmet Bingul\Desktop\ZEMAX\NonSequential\ns1.ZMX											
<u>F</u> ile <u>E</u> ditors <u>S</u> ystem <u>A</u> nalysis <u>T</u> ools <u>R</u> eports <u>M</u> acros E <u>x</u> tensions <u>W</u> indow <u>H</u> elp											
New Ope Sav Sas Upd Upa Gen Wav Chk L3n LSn Obv Dcl Dvr Rdb Gla ABg Pre											
Non-Sequential Component Editor											
<u>E</u> dit <u>S</u> olves <u>E</u> rrors <u>D</u> etectors <u>D</u> atabase <u>T</u> ools <u>V</u> iew <u>H</u> elp											
Object Type	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels	# Y Pixels					
1 Standard	0.000	MIRROR	100.000	-1.000	150.000	20.000					
2 Source Fi	0.000	-	100	500000	1.000	0					
3 Standard	0.000	N-BK7	300.000	0.000	150.000	150.000					
4 Detector	0.000		150.000	150.000	150	150					
5 Null Object	0.000	-									
Image: A transformed and tr											
1: NSC Shaded Model			2: Detector Viewer			x					
<u>U</u> pdate <u>S</u> ettings <u>P</u> rint	<u>W</u> indow <u>T</u> ext <u>Z</u> oom	<u>S</u> pin		<u>Print Window Text Zoo</u>							
					9,595-00	13					
					B.63E-DQ	13					
					7.67E-00	13					
					6.71E-00	3					
					5.75E-D0	3					
					4.79E-D0	13					
				W	3.83E-D0	13					
				CICCO - POROCO -	2.88E-D0	13					
					1.92E-00	13					
	_				9.58E-00	94					
					D.00E+D0	o					
				ECTOR IMAGE: INCOHERENT							
			MED MRY 10 2017 DETECTOR 4, NSCG SURFACE	WED WRY 10 2017 DETECTOR 4, NSCE SURFFICE L: SIZE 200.000 W X 300.000 H MILLINETERS, PIXELS 150 W X L50 H, TOTAL HITS = S379270 PERK DRANDALE + 9.58942E-003 WHITS/CH^2 TOTAL POWER + 6.7896E-001 WHITS							
			PEAK IRRADIANCE + 7, 589 TOTAL POWER + 6, 7688	E-003 WATTS/CM^2 5E-003 WATTS/CM^2 5E-003 WATTS	1.04 N, 101NL N110 - 2017270						

Example 2: How to use LED data with Zemax

LED manufacturers (such as Osram Opto Semiconductors) distribute comprehensive ray-tracing data files to be used in optical simulations such as

eulumdat file, ray file and spectrum file.

- In principle, LED is considered to be a point source in eulumdat file which is used for a quick analysis.
- whereas, the ray le represents actual spatial and angular distribution of rays originating from the outer surface of LED. Therefore, ray files can be used in more realistic simulations.
- The spectral distribution of LED (wavelengths emitted and corresponding weights) are stored in spectrum files.

Two types (White and IR) of LED provided by Osram Company will be presented. [If possible, show ray files and eulumdat files]

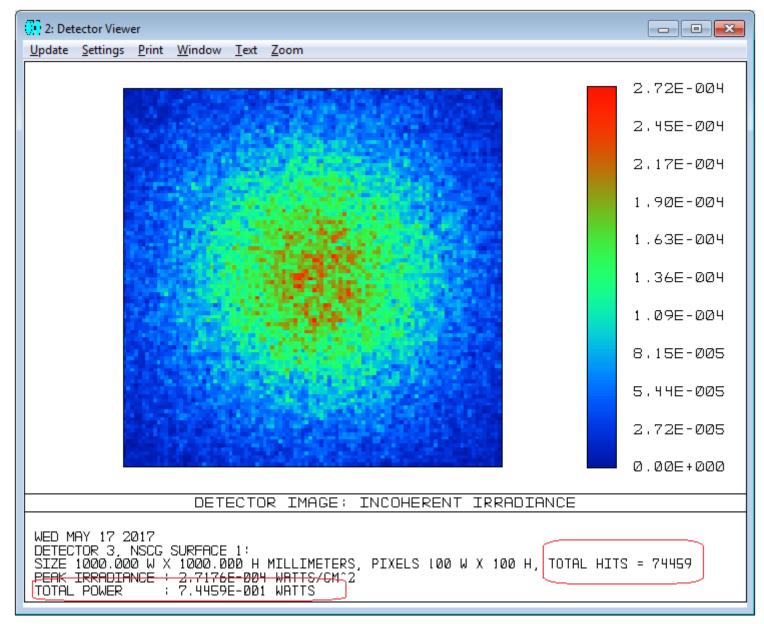
Examples:

- **LUW H9GP** a white LED having color temperature of 6500 K.
- SFH 4718A which is an IR LED whose peak irradiance is at 850 nm

After downloading LED's simulation files, you should copy and paste files to the related folders:

```
Geometry files (IGS or STEP) goes to:
C:\<ZEMAX>\Objects\CAD Files
```

Spectrum files goes to:

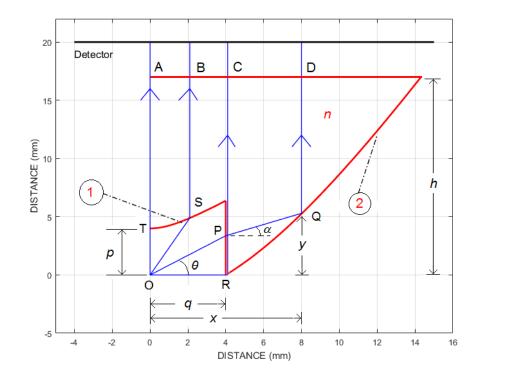

```
C:\<ZEMAX>\Objects\Sources\Spectrum Files
```

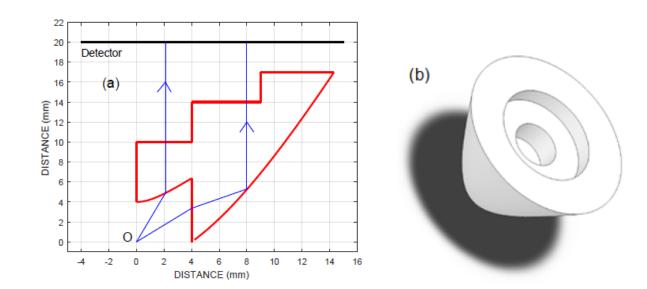
Ray files goes to C:\<ZEMAX>\Objects\Sources\Source Files

Then, add a rectangular or polar detector

ZEMAX-EE - 19052 - C:\Use	rs\Ahmet Bingul\Desktop\	ZEMAX\NonSequential\led	ZMX								
<u>F</u> ile <u>E</u> ditors <u>S</u> ystem <u>A</u> nalysis <u>T</u> ools <u>R</u> eports <u>M</u> acros E <u>x</u> tensions <u>W</u> indow <u>H</u> elp											
New Ope Sav Sas Upd Upa Gen Wav Chk L3n LSn Obv Dcl Dvr Rdb Gia ABg Pre											
💮 Non-Sequential Component Editor											
<u>Edit</u> Solves Errors De	tectors <u>D</u> atabase <u>T</u> ools					1	1				
Object Type	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels			
1 Source File	0.000	0.000	0.000	0.000	-	1000	100000	1.000			
2 Imported	0.000	0.000	0.000	0.000		1.000	1	5			
3 Detector	500.000	0.000	0.000	0.000		500.000	500.000	100			
4 Null Object	0.000	0.000	0.000	0.000	-						
4 Null Object 0.000 0.000 0.000 - * • * • • * <											

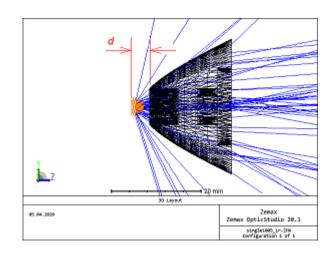
The detector

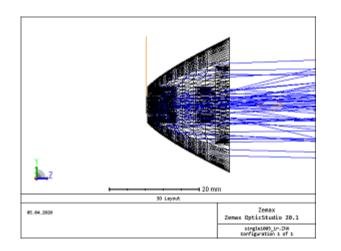

Example 3: Array of point sources

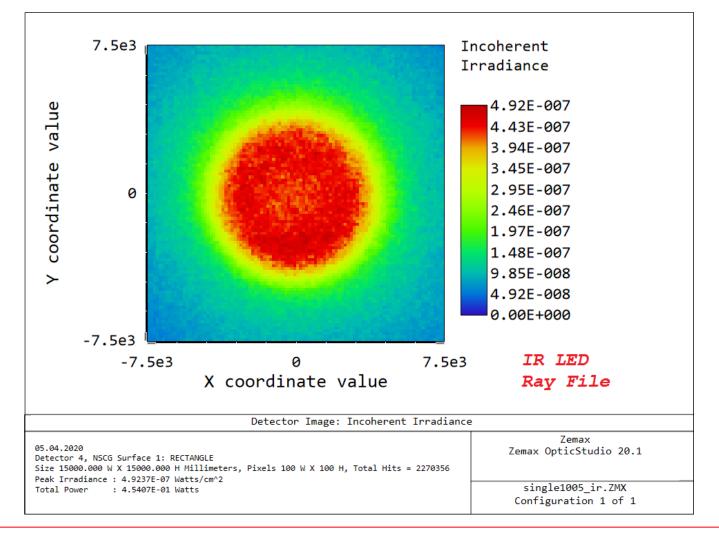

Consider we have a point source with cone angle 20°.

Non-Sequential	Component Editor vs • 🕐 🕐 🛵 🔍	• • •		7.00		0		▼ - □ X	⊡ 1: NSC 3D Layout ▼ - □ × ⊙ Settings 2 □ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
Object 1 Prop	00	• • •		2.000		Configuration 1/1			Line Thickness • 🔞
Type Draw Sources Coat/Scatter Scatter To Volume Physics Index Diffraction CAD	Polarization Random Polariza Initial Phase (deg): Coherence Length:	0	Pre Bull	trace Reverse Rays -Propagation: & Scatter: hpling Method:	0 Many Sobol	Array Array Type: Number X: Number Y: Spacing X Spacing Y	3	Color/S Source	2 mm
Object		side Of	X Position	Y Position	Z Position	Marghan and	Tilt About Y		
1 S	ource Point 🔻)	0	0.000	0.000	0.000	0.000	0.000	0.000 >	

Example 4: How to use a specific Lens with Zemax

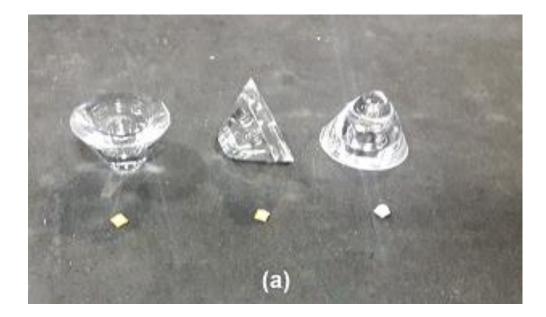

In this example, you will see adding a specific lens designed first in **Matlab**. Solid model of the lens is then produced via **SolidWorks** program. **Osram SFH 4718A IR LED** used to test. *This was a TUBITAK 1005 Project (118M568)*

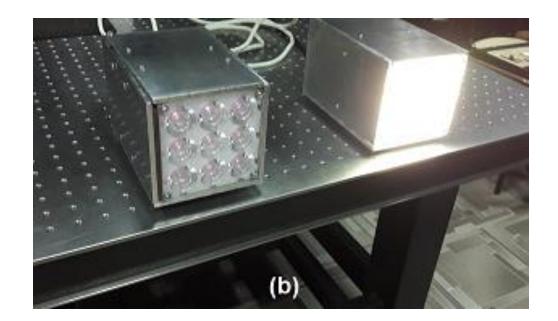


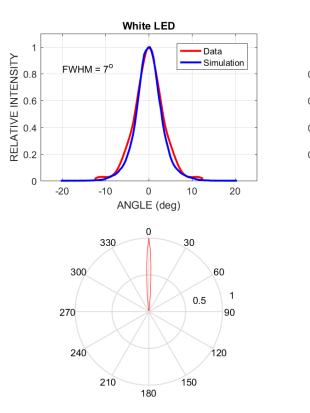


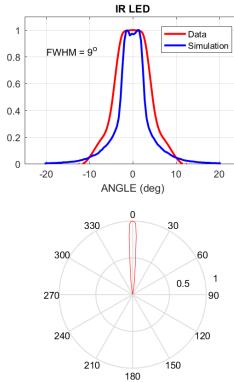
You can download **pmmaLEDcollimator-small.stp** the file from the course web page. The lens file must be placed under:

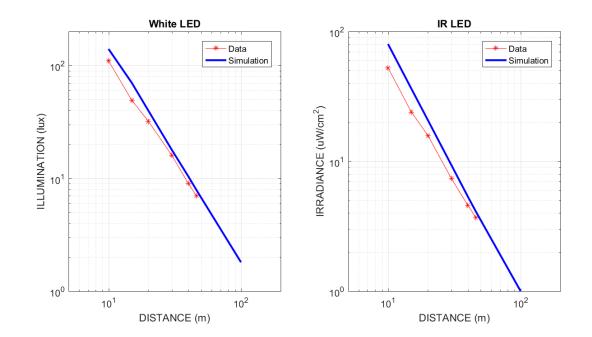
C:\<ZEMAX>\Objects\CAD Files






Manufacturing the lens


A prototype of a solid free-form lens is manufactured by using PMMA via plastic injection molding method.



Optical Performance

50 m uzunluğundaki karanlık bir koridorun aydınlatılması. Solda görünür bölge ve sağda sadece kızılötesi aydınlatma yapılmıştır.

Ayrıca bkz: http://www1.gantep.edu.tr/~bingul/irwalk.gif

Example 5: Defining Diode Laser Source

Consider a diode laser* given right: *This is the product OPD00082 FL-COC11-10-808 laser from focuslight*

LASER DIODE BEAM PROPAGATION SHOWING SLOW AND FAST AXES **Laser Diode Chip** $\theta_{\rm f}$ θ X

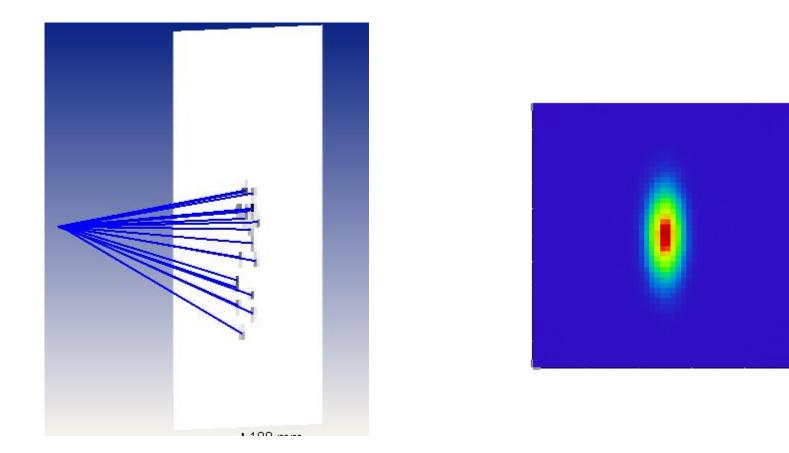
Optical Data ²	Unit	Value
Centroid Wavelength	nm	808
Wavelength Tolerance	nm	± 3
Emitter Width	μm	200
Output Power ³	W	10
Spectral Width FWHM	nm	≤ 3
Spectral Width 90% Energy	nm	≤ 5
Fast Axis Divergence (FWHM)	0	~ 30
Slow Axis Divergence (FWHM)	0	8
Polarization Mode	-	TE
Wavelength Temp. Coefficient	nm / °C	~ 0.28
Electrical Data ²		
Operation Current	А	≤ 11.8
Threshold Current	Α	≤ 1.8
Operating Voltage	V	≤ 2.2
Slope Efficiency	W/A	≥ 1
Power Conversion Efficiency	%	≥ 44
Thermal Data		
Operating Temperature	°C	15 ~ 30
Storage Temperature ⁴	°C	-40 ~ 55
Recommended Heatsink Capacity	W	≥ 20

A laser diode source can be defined in zemax via **Source Diode**.

For this laser: Wavelength = 808 nmX-divergence = $8 * 0.849 = 6.792^{\circ}$ (Slow Axis) Y-divergence = $30 * 0.849 = 25.47^{\circ}$ (Fast Axis) X-SuperGauss = Y-SuperGauss = 1 X-width = $200/2 = 100 \ \mu m = 0.1 \ mm$ Y-width = $2/2 = 1 \ \mu m = 0.001 \ mm$ X-sigma = 1 mm Y-sigma = 1 mm X-sigma Hx = X-sigma Hy = 1**Detector Rectangle:**

Z-position = 100 mm

Optical Data ²	Unit	Value
Centroid Wavelength	nm	808
Wavelength Tolerance	nm	± 3
Emitter Width	μm	200
Output Power ³	W	10
Spectral Width FWHM	nm	≤ 3
Spectral Width 90% Energy	nm	≤ 5
Fast Axis Divergence (FWHM)	0	~ 30
Slow Axis Divergence (FWHM)	٥	8
Polarization Mode	-	TE
Wavelength Temp. Coefficient	nm /°C	~ 0.28
Electrical Data ²		
Operation Current	А	≤ 11.8
Threshold Current	А	≤ 1.8
Operating Voltage	V	≤ 2.2
Slope Efficiency	W / A	≥ 1
Power Conversion Efficiency	%	≥ 44


Thermal Data		
Operating Temperature	°C	
Storage Temperature ⁴	°C	
Recommended Heatsink Capacity	W	

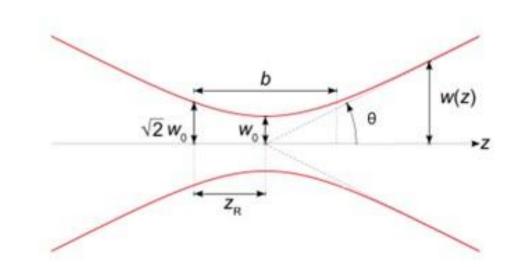
 $15 \sim 30$

-40 ~ 55

≥ 20

I will mention about FAC lenses in Lens Catalog for vendor from LIMO.

Sayfa 25


Example 6: FAC Design and Fiber Coupling

See course web page

Example 7: Laser Modelling

Consider an ideal Gaussian beam with waist w_0 This Gaussian beam can be described using any two of the three parameters:

- wavelength λ
- beam waist w₀
- divergence angle θ

The beam size is a function of the distance from the waist. Zemax OpticStudio uses the half width:

$$w(z) = w_0 \left[1 + \left(\frac{z}{z_R}\right)^2 \right]^{\frac{1}{2}}$$
 (1)

For large distances the beam size expands linearly. The divergence angle θ of the beam is given by

$$\theta = \frac{\lambda}{\pi w_0} \quad for \, z \gg z_R \tag{2}$$
$$z_R = \frac{\pi w_0^2}{\lambda}$$

Beam Parameter Product: $BPP = w_0 \theta$

For efficient fiber coupling $BPP_{Total} < \frac{D_{fiber}}{2} * NA_{fiber}$

Let

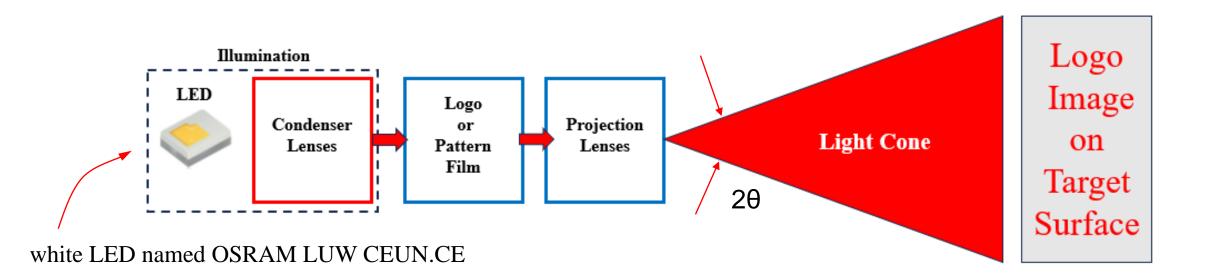
$$\theta_F = \theta_x = 29 \text{ deg} = 506.145 \text{ mrad} \quad w_{0x} = 0.5 \ \mu\text{m}$$

 $\theta_S = \theta_y = 9 \text{ deg} = 157.079 \text{ mrad} \quad w_{0y} = 95 \ \mu\text{m}$
 $NA_{fiber} = 0.2 \text{ and } D_{fiber} = 150 \ \mu\text{m}$
Then
 $BBP_F = 0.253 \text{ mm. mrad}$
 $BBP_F = 14.92 \text{ mm. mrad}$
 $BBP_{Total} = (BBP_F^2 + BBP_S^2)^{1/2} = 14.92 \text{ mm. mrad}$
 $\frac{D_{fiber}}{2} * NA_{fiber} = 15 \text{ mm. mrad}$

Example 7: Hybrid Systems

See course web page

Example 8: Projection Lens Design



(Studeny, 2019)

(Studeny, 2019)

(Bremer, Lewerich, Hendricks ve Neumann, 2019)

$$\theta = tan^{-1} \left(\frac{\text{radius of logo}}{\text{distance between LPL to target surface}} \right)$$

Download documents from web page: http://www1.gantep.edu.tr/~bingul/zemax