

Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 21 Introduction to Non-Sequential Mode in Zemax

Ahmet Bingül

Gaziantep University Department of Optical Engineering

Feb 2025

Content

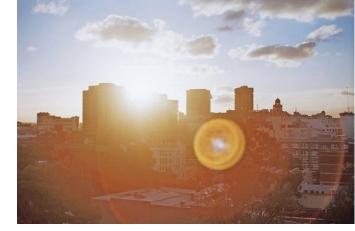
- 1. Introduction
- 2. Sequential vs Non-Sequential Modes
- 3. Some NSC Applications

Introduction

There are 2 distinct ray-tracing modes in Zemax (OpticStudio)

- Sequential
- Non-sequential

In addition, a **hybrid mode** exists in which sequential and non-sequential ray-trace are used in the same system.


In this lecture, we will see some basic applications of Non-squential ray tracing in Zemax.

Sequential Mode

- It is mainly used for designing <u>imaging and afocal systems</u>.
- Surfaces are defined in the Lens Data Editor.
- Ray can only intersect <u>each surface once</u> and has to do it in a specified -sequential- order (i.e. surface #0 then #1 ,#2 ...) and hence the name sequential ray tracing.
- Ray can only <u>reflect</u> if the surface material type is MIRROR. Partial reflections from refractive surfaces (Fresnel reflections) are accounted for to the extent of calculating the correct refracted energy, including the effects on dielectric or metallic mirrors.
- <u>Each surface has its own local coordinate system</u>. The position of each surface along the optical axis is referenced to the previous surface. In other words, the "Thickness" column in the Lens Data Editor refers to the distance from current surface and not from a global reference point.

Non-sequential Mode

- It is primarily used for <u>non-imaging applications</u> such as illumination systems and/or stray-light analysis.
- Surfaces or volume objects are defined in the <u>Non-Sequential Component Editor</u>

Stray ray example

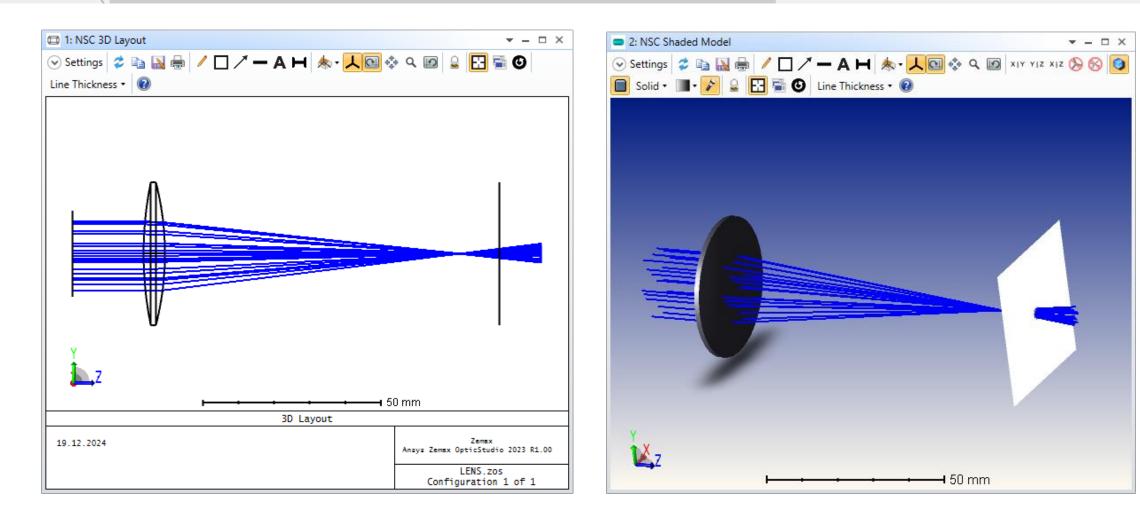
- Mechanical components may be easily imported from CAD programs, so that full Opto-Mechanical analysis may be undertaken.
- A ray can intersect the same object more than once and can intersect multiple objects in any order; hence the name non-sequential.
- Each object is referenced to a <u>global coordinate</u>, unless specified otherwise.
- Imaging-system properties such as stop location, entrance and exit pupil, field, system aperture etc. that exist in sequential systems may not be <u>meaningful</u> in non-sequential systems.
- The main analysis feature in non-sequential mode is the <u>detector ray-trace</u>, which gives spatial and angular data on incoherent or coherent rays.

Example 1: How to add standart lens

	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels	# Y Pixels	Data Type	Color
1	Source Ellipse 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	20	1E+05	1.000	0	0	12.000
2	Standard Lens 🔻		0	0	0.000	0.000	20.000	0.000	0.000	0.000	BK7	100.000	0.000	20.000	20.000	6.000	-80.000
3 D	etector Rectangle 🔻		0	0	0.000	0.000	120.000 V	0.000	0.000	0.000		20.000	20.000	100	100	0	3
		1															

*** Object1

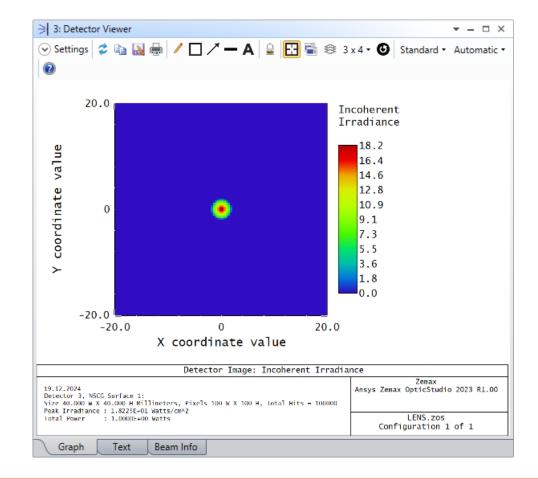
Source Ellipse								
<pre># of Layout Rays</pre>	20							
<pre># of Analysis Rays</pre>	1e5							
X Half Width	12							
Y Half Width	12							
*** Object2								
Standart Lens								
Z position	20							


Material	BK7
Radius1	100
Thickness	6
Clear1 = Edge1	20
Radius2	-80
Clear2 = Edge2	20

*** Object3

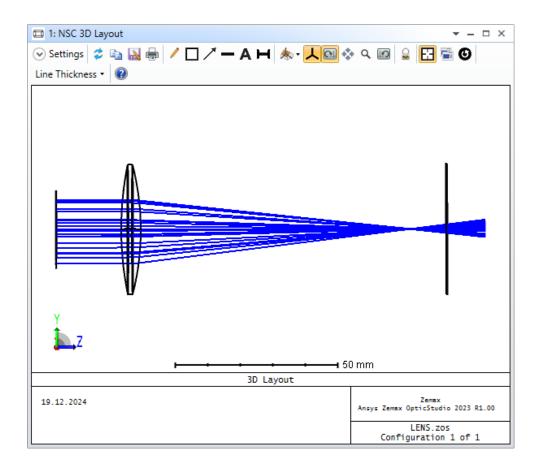
Detector	Rect
Z position	120
Material	Blank (or can be ABSORB or MIRROR)
X Half Width	20
Y Half Width	20
# X Pixels	200
# Y Pixels	200
Color	3 (detector displays false color)

Example 1: Layout

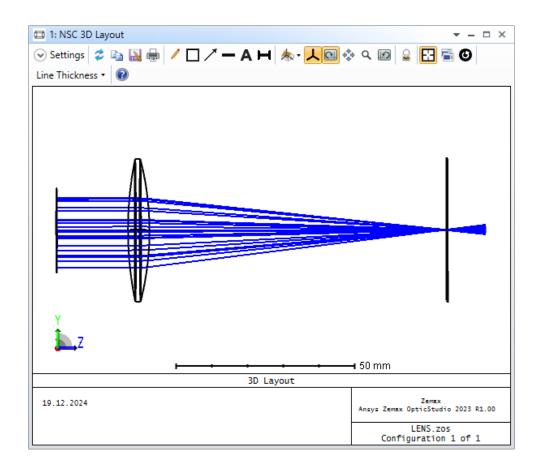

	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels	# Y Pixels	Data Type	Color
1	Source Ellipse 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	20	1E+05	1.000	0	0	12.000
2	Standard Lens 🔻		0	0	0.000	0.000	20.000	0.000	0.000	0.000	BK7	100.000	0.000	20.000	20.000	6.000	-80.000
3	Detector Rectangle 🔻		0	0	0.000	0.000	120.000 V	0.000	0.000	0.000		20.000	20.000	100	100	0	3
		1															

Example 1: Ray Tracing

Ray Trace Control			_			×
Clear Detectors					All	٢
Clear & Trace			Trace			
🖌 Auto Update		# of Co	res:	[4	~
Use Polarization		🗸 Igno	re Errors			
Split NSC Rays		Scatt	ter NSC Ray	s		
Save Rays:	LENS.ZRD					
Save Path Data	LENS.PAF					
ZRD Format:			Compre	ssed	Full Da	ta ~
Filter:						
Idle						
Terminate	Exit	t	0			


Example 1: Optimization

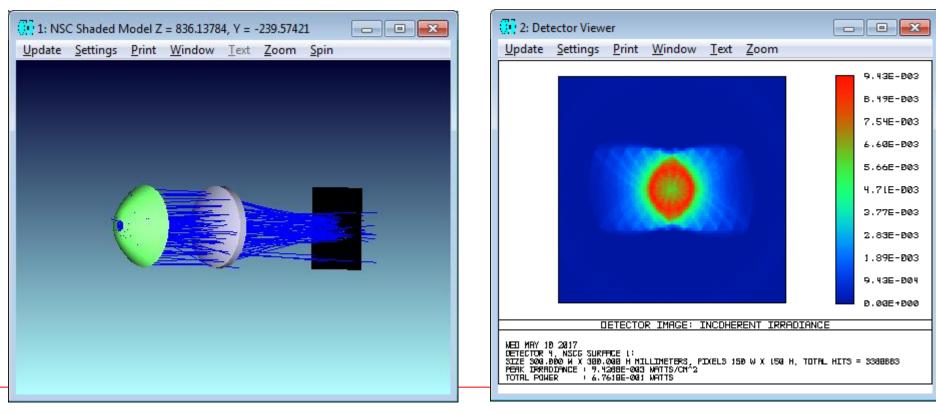
The aim is to put detector at a location where we have minimum rms spot size


Clear detector	🕼 Merit Function Editor 🗢 🗖 🗙													
Clear delector	$\Rightarrow \blacksquare \textcircled{>} \times \swarrow \textcircled{>} = \textcircled{>} \Rightarrow \Rightarrow \textcircled{>} $													
	•	Wizards ar	nd Operand	s 🔇	>			Meri	t Function:	1.1309	33963650	586		
		Туре	Surf	Det#	Pix#	Data	# Ignored	Spatial Fre	quency		Target	Weight	Value	% Contrib
	1	NSDD 🔻 1		0	0	0	0)	0.000		0.000	0.000	0.000	0.000
Start ray tracing		NSTR • 1		0	0	0	0)	0.000		0.000	0.000	0.000	0.000
	3	NSDD 🔻 1		3	-9	0	0)	0.000		0.000	1.000	1.131	100.000
Obtain minimum spot size														
•	Loc	al Optimizat	tion						—		×			
		lgorithm: argets:		Orthogo	nal Descei	nt ~	# of Cores: Cycles:	4 Automati	2					
		-					-							
		ariables:		1			Status:	Idle						
	In	nitial Merit F	unction:	1.130933	964		Execution Ti	me:						
	C	urrent Meri	t Function:	1.130933	964									
	√] Auto Upda	ate Sta	rt	Stop		Exit	Save	Load	Reset				

Example 1: Results

Z Position of detector = 120 mm Before optimization

Z Position of detector = 108. 7 mm After optimization



Example 2: Mirror-Lens-Detector

We will make a non-sequential system with

- > a filament source
- > a parabolic reflector
- > a plano-convex lens
- > a rectangular detector

as shown in the layout below:

*** Object1

Standart Surface

Material	Mirror
Radius	100
Conic	-1 (parabola)
Max Aper	150
Min Aper	20 (center hole in the reflector)

*** Object2

Source Filament	
Z position	50 (focus of the parabolic reflector)
# Layout Rays	20
# Analysis Rays	5e6
Length	20
Radius	5
Turns	10
Tilt about Y	90 (deg)
X position	-10 (mm)

*** Object4

Standard Lens

Ref Object	3 (before detector)
Z Position	200
Material	N-BK7
Radius 1	300
Clear 1	150
Edge 1	150
Thickness	70
Clear 2	150
Edge 2	150 n

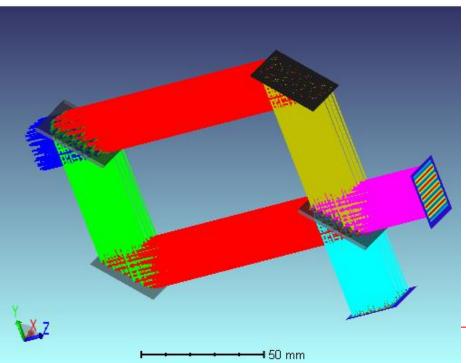
*** Object5 Detector Rect Z position 1000 **Blank** (or can be ABSORB or MIRROR) Material X Half Width 150 Y Half Width 150 # X Pixels 150 # Y Pixels 150 (detector displays inverse greyscale) Color 1

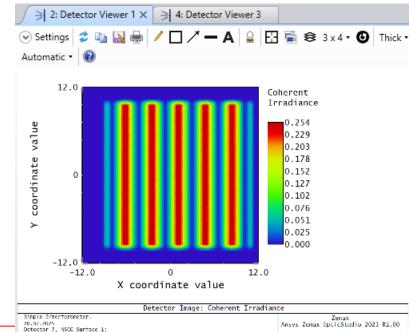
In the analysis you should use **Detector Viewer** and **Ray Trace** buttons.

<u>∞ °</u> » • ¢ ¢ ¢	I.	LENS.ZMX - Zemax OpticStudi	o 19.8 Professional - L105296
File Setup Analyze Optimize Take Image: System Viewer Syste	y Lichtning Critical Ray race Tracer Detector Viewer Tools Ray Database Pat race Rays Detectors & Analysis Raytra	th Flux vs. ysis Wavelength Analysis Polarization Reports Universal F ace Analysis Polarization Reports Universal F	Lighting Illumination Map Radiance Sag Plot Applications
Environment Polarization	Update: All Windows • C C K k 🕲 🖜 🖜 🖶 👄 🔷 🗛 • Z	Z - 🚫 🧲 💿 📄 💲 ↔ 🔿 🔞 Configuration 1/1 < (>)	_
 Advanced Material Catalogs Non-Sequential Named Filters Title/Notes Files Units Cost Estimator 	I: Detector Viewer Settings Settings.	Clear Detectors Clear & Trace Auto Update Use Polarization Split NSC Rays Save Rays:	All • Trace # of Cores: 4 • Ignore Errors Scatter NSC Rays ENS.ZRD Compressed Full Data • Exit

ZEMAX-EE - 19052 - C:\Users\Ahmet Bingul\Desktop\ZEMAX\NonSequential\ns1.ZMX											
<u>F</u> ile <u>E</u> ditors <u>System A</u> nalysis <u>T</u> ools <u>R</u> eports <u>M</u> acros E <u>x</u> tensions <u>W</u> indow <u>H</u> elp											
New Ope Sav Sas Upd Upa Gen Wav Chk L3n LSn Obv Dcl Dvr Rdb Gla ABg Pre											
🗰 Non-Sequential Component Editor											
<u>E</u> dit <u>S</u> olves <u>E</u> rrors <u>D</u> etectors <u>D</u> atabase <u>T</u> ools <u>V</u> iew <u>H</u> elp											
Object Type	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels	# Y Pixels					
1 Standard	0.000	MIRROR	100.000	-1.000	150.000	20.000					
2 Source Fi	0.000	-	100	500000	1.000	0					
3 Standard	0.000	N-BK7	300.000	0.000	150.000	150.000					
4 Detector	0.000		150.000	150.000	150	150					
5 Null Object	0.000	-									
Image: A transformed and tr											
1: NSC Shaded Model			2: Detector Viewer			x					
<u>U</u> pdate <u>S</u> ettings <u>P</u> rint	<u>W</u> indow <u>T</u> ext <u>Z</u> oom	<u>S</u> pin		rint <u>W</u> indow <u>T</u> ext <u>Z</u> oo							
					9,585-00	13					
				в.63Е-рез							
					7.67E-00	13					
				-	6.71E-00	3					
					5.75E-D0	3					
					4.79E-00	13					
				•	3.83E-D0	13					
				CICIPIT PORTO D	2.88E-D0	13					
					1.92E-00	13					
	_				9.59E-00	94					
					D.00E+D0	o					
				ECTOR IMAGE: INCOHERENT							
MED MRY 10 2017 DETECTOR 4, NSCG SURFACE 1: SIZE S00.000 H X 300.000 H MILLIMATERS, PIXELS 150 W X 150 H, TOTAL HITS = 3379270 PORK DRADDACE 4, 9.50428-003 WATTS/CM^2 TOTAL POWER 4.6.7505E-001 WATTS											
SIZE S00,000 W X 300.000 H X 300.000 H MILLIMETERS, FIXELS 150 W X L50 H, TOTAL HITS = 3379270 PORK DRADDAUCE + 9,59742E-003 WATTS/CM^2 TOTAL POWER + 6,750EE-001 WATTS											

Example 3: Simple Interferometer


Non-Sequential Component Editor


Update: All Windows - 🕐 🐼 🛵 🦚 🐞 🏭 🐽 🌰 🗠 AD - Z - 🚫 🥥 🗐 🚔 🛶 🧼 🔞

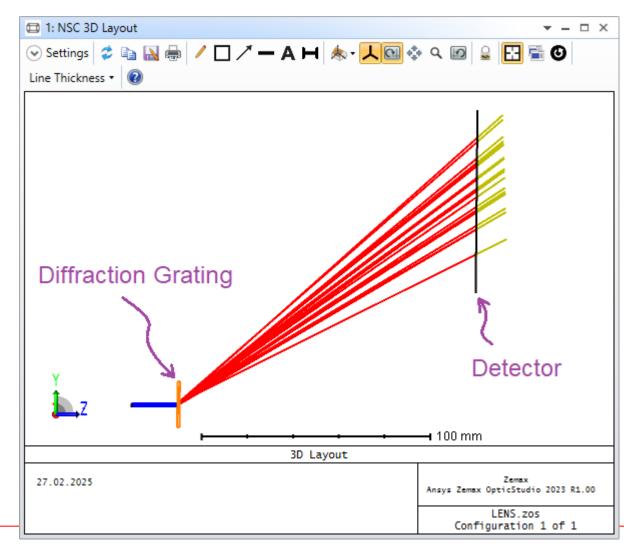
✓ Object 7 Properties (< (>)

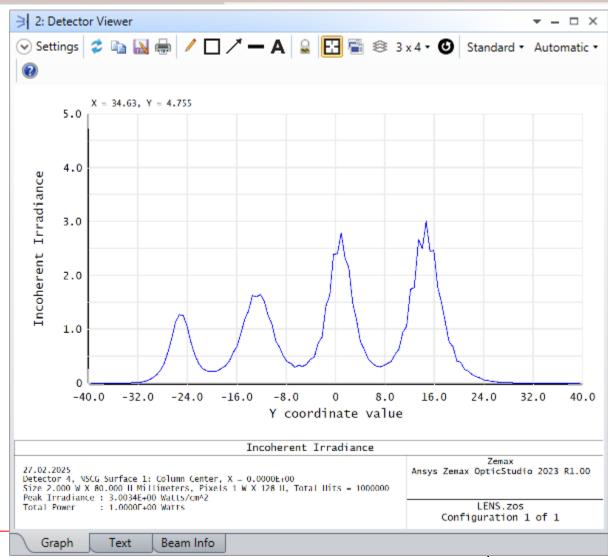
Configuration 1/1 (<)

	Object Type	Comment	Ref	Ins	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	X Half Width	Y Half Width	# X Pixels	# Y Pixels	
1	Source Rectangle 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	100	3E+05	1.000	0	
2	Polygon Object 🔻	SPLITTER.POB	0	0	0.000	0.000	20.000	-45.000	0.000	0.000	BK7	16.000	1			
3	Rectangle 🔻		0	0	0.000	-60.000	20.000	-45.005	0.000	0.000	MIRROR	15.000	15.000			
4	Rectangle 🔻		0	0	0.000	0.000	120.000	-45.000	0.000	0.000	MIRROR	15.000	15.000			
5	Polygon Object 🔻	SPLITTER.POB	0	0	0.000	-60.000	120.000	-225.000	0.000	0.000	BK7	16.000	1			
6	Detector Rectangle 🔻		0	0	0.000	-60.000	160.000	0.000	0.000	-90.000	ABSORB	12.000	12.000	100	100	
7	Detector Rectangle 🔹		0	0	0.000	-100.000	120.000	90.000	0.000	-90.000	ABSORB	12.000	12.000	100	100	
		<														\rightarrow

Enterference Decepte 1- A Supple Interference.200 Configuration 1 of 1

Size 24.000 W X 24.000 H Millimeters, Pixels 100 W X 100 H, Total Hits = 600000


Pesk Irradiance : 2.54101-01 Walls/cm52 Total Power : 4.8063L-01 Walls Modify the system


- Elliptic source
- using point source. (first collimate point source using a suitable lens from lens catalog)

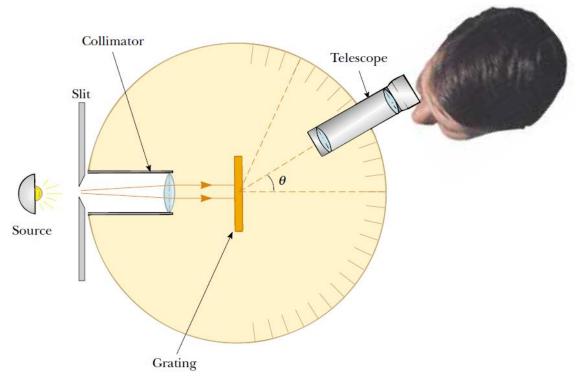
▼ - □ ×

Example 4: Simple Spectrometer

	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	Radius 1	Conic 1	Clear 1	Edge 1	Thickness	Radius 2	Conic 2	Clear 2
1	Source Ellipse 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	10	0	1.000	0	0	1.000	1.000	0.000
2	Source Ellipse 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	10	1E+06	1.000	0	0	1.000	1.000	0.000
3 [Diffraction Grating 🔻		0	0	0.000	0.000	20.000	0.000	0.000	0.000		0.000	0.000	10.000	10.000	1.000	0.000	0.000	10.000
4 D	etector Rectangle 🔻		0	0	0.000	90.000	150.000	0.000	0.000	0.000		1.000	40.000	1	128	0	0	0	0

Diffraction Grating

is a useful device for analyzing light sources, consists of a large number of equally spaced parallel slits. A transmission grating can be made by cutting parallel lines on a glass plate with a precision ruling machine.


```
Grating equation: d\sin(\theta) = m\lambda

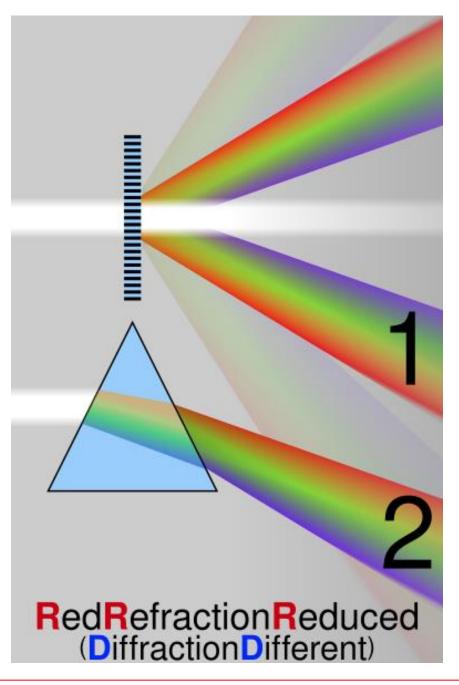
d = 1/n

n = number of lines per length (e.g. 1/600 mm)

m = 0, \pm 1, \pm 2, \dots (order)

\lambda = wavelength
```


Example: Monochromatic light from a helium-neon laser (632.8 nm) is incident normally on a diffraction grating containing 600 lines/mm. Find the angles at which the first, second and third-order maxima are observed.


$$d = 1/600 = 1667 nm \qquad \sin(\theta_1) = \lambda/d = 0.380 \qquad \rightarrow \quad \theta_1 = 22.1^\circ$$

$$\sin(\theta_2) = 2\lambda/d = 0.759 \qquad \rightarrow \quad \theta_2 = 49.4^\circ$$

$$\sin(\theta_3) = 3\lambda/d = 1.139 \qquad \rightarrow \quad \theta_3 = 90^\circ - 29.9^\circ \mathbf{i} \quad \text{[not realistic]}$$

Comparison of the spectra obtained from a diffraction grating by diffraction (1), and a prism by refraction (2). Longer wavelengths (red) are diffracted more, but refracted less than shorter wavelengths (violet).

https://en.wikipedia.org/wiki/Diffraction_grating

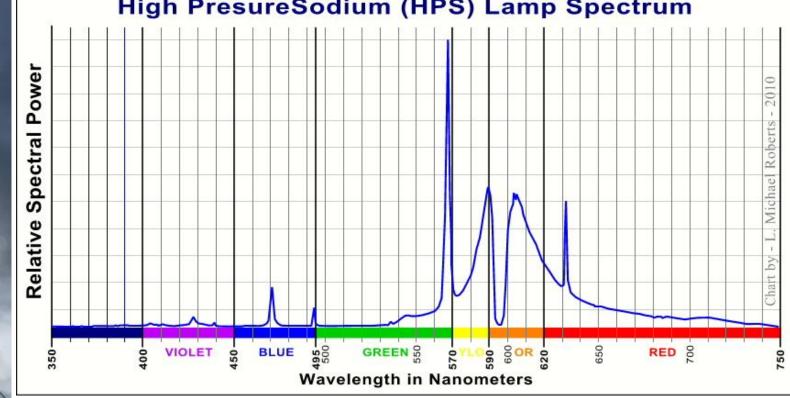
Resolving power:

For two nearly equal wavelengths λ_1 and λ_2 between which a diffraction grating can just barely distinguish, the resolving power *R* of the grating is defined as: $R = \lambda / \Delta \lambda$

where $\lambda = (\lambda_1 + \lambda_2)/2$ and $\Delta \lambda = \lambda_2 - \lambda_1$.

Thus, a grating that has a high resolving power can distinguish small differences in wavelength. If N lines of the grating are illuminated, it can be shown that the resolving power in the *m*th-order diffraction is: R = Nm

Example: When an element is raised to a very high temperature, the atoms emit radiation having discrete wavelengths. The set of wavelengths for a given element is called its atomic spectrum. Two strong components in the atomic spectrum of sodium have wavelengths of 589.00 nm and 589.59 nm. (See next page)


(a) What must be the resolving power of a grating if these wavelengths are to be distinguished?

$$R = \frac{\lambda}{\Delta\lambda} = 999$$

(b) To resolve these lines in the second-order spectrum, how many lines of the grating must be illuminated?

$$N = \frac{R}{m} = 500$$
 lines

High PresureSodium (HPS) Lamp Spectrum