

Lecture 25 Gaussian Beam

Ahmet Bingül

Gaziantep University Department of Optical Engineering

Mar 2025

Content

- Gaussian Beam Definition
- Physical Optics in Zemax

References:

- Zemax Knowlegebase pages (https://support.zemax.com)
- Achen University Lectures (https://www.youtube.com/watch?v=MU4eOJw2sBQ)
- Optical System Design, R.E. Ficher et.al., 2nd Ed, McGraw-Hill Companies, (2008)

Introduction

Coherent light generated by lasers has properties different from light generated by other sources which we usually deal with in more conventional optical systems.

Most laser beams can be approximately described by Gaussian optics. Gaussian optics is a type of wave optics and is very different from geometric optics.

Thereare many companies that provide laser source for the end users. See: <u>some laser resources</u>

In this chapter we will investigate modelling coherent light generated by lasers.

GAUSSIAN BEAM DEFINITION

Plane Wave and Spherical Wave (Ideal Case)

See Page 4 (Wavefront and Ray) in Chapter 3 of the lecture notes.

Airy Disk

If we look through a telescope at a distant object, the light intensity across the entrance pupil and aperture stop is uniform, and this is generally known as a **top-hat** intensity profile or distribution. if there is no aberration, a telescope objective focuses a point object into an Airy disk pattern, with the diameter determined by $D_A = 2r_A = 2.44 \lambda (f/\#)$.

Airy disk is the smallest point to which a beam of light can be focused

Sayfa 7

Gaussian Beam Intensity

Laser beams emitted from rotationally symmetric resonators, such as HeNe or YAG lasers with a TEM_{00} output, have an intensity distribution across the beam which is in the form of a gaussian intensity profile.

A gaussian intensity distribution in pupil space will mathematically transform to a gaussian in image space.

The optical design of systems that facilitate laser beam propagation and focusing differs significantly from that of conventional non-laser systems, whether in the visible spectrum or another wavelength range.

Sayfa 8

Gaussian Beam

Consider an ideal Gaussian beam with waist w_0 . As shown in the schematic below This Gaussian beam can be described using any two of the three parameters:

wavelength : λ beam waist : w_0 divergence angle : $\Theta = 2\theta$

The beam size is a function of the distance from the waist. OpticStudio uses the half width to describe beam width. For a perfect gaussian shape, 1/e² intensity radius of the beam as a function of z is given by

$$w(z) = w_0 \left[1 + \left(\frac{z}{z_R}\right)^2 \right]^{1/2}$$

For large distances the beam size expands linearly. The divergence angle θ of the beam is given by

$$\theta = \frac{\lambda}{\pi w_0} \quad for \ z \gg z_R$$

 z_R is the Rayleigh Range (aka depth of focus) of the beam

$$z_R = \frac{\pi w_0^2}{\lambda}$$
 (at $z = z_R$ the beam radius is $w = \sqrt{2}w_0$)

The phase (wavefront) radius of curvature of the beam is

$$R(z) = z + \frac{z_R^2}{z}$$

This means that the radius is infinite at waist location z = 0, reaches its minimum at $z = z_R$, and asymptotically approaches infinity as z approaches infinity.

Gaussian Beam Characterization

Radius of Curvature R(z) and beam Radius w(z)

gbcalc.py
Gaussian Beam Calculator
import math
import numpy as np
import matplotlib.pyplot as plt

```
# *** Calculations ***
w0 = L / (math.pi*theta) # beam waist
zR = math.pi*w0**2 / L # Rayleigh range
print('w0 = ', w0,' mm')
print('zR = ', zR,' mm')
```

```
# *** Plotting ***
z = np.arange(0.1,10,0.1)
wz = w0*np.sqrt( 1+(z/zR)**2 )
Rz = z + zR**2/z
fig, (ax1, ax2) = plt.subplots(2)
ax1.plot(z,Rz,'g')
ax2.plot(z,wz,'r'); ax2.plot(z,-wz,'r')
ax1.set_ylabel('R(z) [mm]')
ax2.set_ylabel('w(z) [mm]'); ax2.set_xlabel('z [mm]')
```

Output of the program: w0 = 0.02238 mm zR = 2.48675 mm

Measurement of Beam Quality

Measured caustic

Intensity profile

Reminder: Source Gaussian in Zemax

M² Factor

The Gaussian beam concept is so useful in photonics that a special quantity, called the M^2 -factor. The M-square factor $M^2 \ge 1$ describes the deviation of a laser beam from a perfect Gaussian beam. In general, the propagation of a laser beam can be described by the following eqns:

$$w(z) = w_0 \left[1 + \left(\frac{M^2 \lambda z}{\pi w_0^2}\right)^2 \right]^{1/2} = w_0 \left[1 + \left(\frac{z}{z_R}\right)^2 \right]^{1/2} \qquad \qquad z_R = \frac{\pi w_0^2}{M^2 \lambda} \qquad \qquad I(r, z) = I_0(z) e^{-2r^2 / w(z)^2}$$

- For a perfect Gaussian laser beam, $M^2 = 1$
- Most gas lasers have $M^2 \approx 1$
- Most solid-state lasers have an $M^2 = [1.1, 1.5]$
- Some lasers, such as laser diode piles and high-power YAG lasers, can have an *M*² value over 10.
- M-square can be measured using the relation:

$$M^2 = \frac{\pi w_0 \theta}{\lambda}$$

m2.py
Gaussian Beam Comparator
import math
import numpy as np
import matplotlib.pyplot as plt

Inputs

```
L = 0.6328 * 1e-3 \# wavelength (mm)
         # M-square factor
M2 = 1.2
           # waist
w0 = 0.025
# Calculations
zR1 = math.pi*w0**2 / (L)
zR2 = math.pi*w0**2 / (L*M2)
# plotting
z = np.arange(-20, 20, 0.1)
wz1 = w0*np.sqrt(1+(z/zR1)**2)
wz2 = w0*np.sqrt(1+(z/zR2)**2)
plt.plot(z,wz1,'r')
plt.plot(z,wz2,'b')
plt.plot(z,-wz1,'r')
plt.plot(z,-wz2,'b')
plt.xlabel('z [mm]')
plt.ylabel('w(z) [mm]')
plt.legend(["M2=1", "M2=1.2"], loc="best")
plt.grid(True)
```


Example 1

Consider He-Ne laser beam at 633 nm with a spot size of 1 mm. For a Gaussian beam ($M^2 = 1$) what is the divergence of the beam? What are the Rayleigh range and the beam width at 25 m?

$$2\theta = \frac{4\lambda}{\pi(2w_o)} = \frac{4(633 \times 10^{-9} \text{ m})}{\pi(1 \times 10^{-3} \text{ m})} = 8.06 \times 10^{-4} \text{ rad} = 0.046^{\circ}$$

$$z_o = \frac{\pi w_o^2}{\lambda} = \frac{\pi \left[(1 \times 10^{-3} \text{ m})/2 \right]^2}{(633 \times 10^{-9} \text{ m})} = 1.24 \text{ m}$$

$$2w = 2w_o \left[1 + (z/z_o)^2 \right]^{1/2} = (1 \times 10^{-3} \text{ m}) \left\{ 1 + \left[(25 \text{ m})/(1.24 \text{ m}) \right]^2 \right\}^{1/2}$$

$$= 0.0202 \text{ m} \text{ or } 20 \text{ mm}.$$

What if $M^2 = 2$?

Exercise

Consider a 5 mW He-Ne laser that is operating at 633 nm, and has a spot size of 1 mm. Find

(a) the maximum irradiance of the beam [Ans: 1.27 W/cm²]

(b) the axial (maximum) irradiance at 25 m from the laser [Ans: 3.13 mW/cm²].

PHYSICAL OPTICS IN ZEMAX

Example2: Paraxial (Abberation Free) Gaussian Beam Propagation

•	Aperture	(
	Aperture Type:		
	Entrance Pupil Diameter	~	
	Aperture Value:		
	6.0		
	Apodization Type:		
	Uniform	~	
	Clear Semi Diameter Margin Millimeters:		
	1.0		
	Clear Semi Diameter Margin %		
	0.0		
	Global Coordinate Reference Surface		
	1	~	
	Telecentric Object Space	1	
	Afocal Image Space		
	Iterate Solves When Updating		
	✓ Fast Semi-Diameters		
	Check GRIN Apertures		
Þ	Fields		
•	Wavelengths		
	Preset:		
	HeNe (.6328)	~	
	Select Preset		
	← Wavelength 1 (0.633 um, Weight = 1.000))	

Surfa	e 1 Properties					Configuration 1/1	Configuration 1/1							
Su	face Type	Comment	Radius	s '	Thickness	Mater	ial	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	Coating		
OBJEC	T Standard 🔹		Infinity		Infinity			0.000	0.000	0.000	0.000			
I STOP	Standard 🔻	beam waist	Infinity	2	800.000			3.000	0.000	3.000	0.000			
2	Standard 🔻	laser output	Infinity		10.000			4.000	0.000	4.000	0.000			
3	Standard 🔻		Infinity	V	5.000	N-BK7		4.000	0.000	4.000	0.000			
L .	Standard 🔻		Infinity	V	50.000			4.000	0.000	4.000	0.000			
IMAG	Standard 🔻		Infinity		-			3.000	0.000	3.000	0.000			

Optimize the lens to get minimum spot size.

Before optimization:

	Merit Fur	nction E	ditor								• -	ΠX
2		X	* •	\$ 0	\$.	• 🔿 🔞						
~	Wizards	and O	perands	0	>		Merit Fun	ction: 1.2545	599246 <mark>474</mark> 3	5		
	Tune	Surf	Wave	UseX	wo	S1toW	M2 Factor	Target	Weight	Value	% Co	ntrib
	Type	Juit		and the second second			Contract of the second state of the second sta	and the second second			100 To 100	

	1
	,

After optimization:

Physical Optics

We examine the same example ...

File Set	up Analyze	Optimize To	lerance Libraries	Part Designe	er Programm	ing STAR Help	2	
Cross-Section Syst	on 3D Shaded Viewer Model em Viewers 15	Rays & Abe Spots •	errations Wavefront	PSF MTF Image Quality	RMS Enclose the Energy	ed Extended Scene • Analysis •	Physical Optics Laser	Gaussian Beams • Fiber Coupling •
3: Physical Optic	s Propagation				3: Physical Option	s Propagation		▼ - □
🔿 Settings 💈 🖺	a 🔝 🖶 🖊 🗖 🖊 -	– A 🔒 🖸 🖼	😂 3 x 4 • 🕑 Standard	 Automatic • 	😔 Settings 🛭 😂 🗎	a 🔝 🖶 🖊 🗖 🖊 🗕 /	🗛 🔒 🔂 🗟 🕄 🛠 3 x 4 •	, 🕑 Standard - Automatic
2					(2)			
General Beam D	Definition Display Fib	er Data			0.1276			
Beam Type:	Gaussian Waist	~	Automatic					1 785.004
X-Sampling:	256 ×	X-Width:	32.6		a			1.78E+004
Y-Sampling:	256 ×	Y-Width:	32.6		alu			1.43E+004
, samping,					>			1.25E+004
O Total Power		Peak Irradiance	e 1		ate			1.07E+004
Waist X	1.15	Waist Y	1.15		l ii (•		8.91E+003
Decenter X	0	Decenter V	0		ord			7.13E+003
A CONTRACT A	0	A . V	0		Ö			3.56E+003
Aperture X	0	Aperture Y	0		~			1.78E+003
Order X	0	Order Y	0					2.38E-020
					0.100			Watts/mm^2
					-0.128	.128 0	0,1276	
✓ Auto Apply	Apply OK C	ancel	Save Load R	eset		X coordinat	te value	
	1000	T ITTautance surfac	e ,	h		Total I	rradiance surface 5	
19.03.2025 Beam wavelength f Display X Width - Peak Irradiance - Pilot: Size= 8.30 Beam Width X = 8.	is 0.63280 µm in the me = 2.5620E-01, Y Height = 1.7821E+04 Watts/Mill D58E-03, Waist= 8.3055E .43723E-03, Y = 8.43723	dia with index 1.000 = 2.5620E-01 Millime imeters∧2, Total Pow -03, Pos= 2.5244E-03 E-03 Millimeters	00 at 0.0000 (deg) ters er = 2.0774E+00 Watts , Rayleigh= 3.4247E-01		19.03.2025 Beam wavelength Display X Width Peak Irradiance Pilot: Size= 8.30 Beam Width X = 8	is 0.63280 µm in the media = 2.5620E-01, Y Height = 2 = 1.7821E+04 Watts/Millime 58E-03, Waist= 8.3055E-03 43723E-03, Y = 8.43723E-03	with index 1.00000 at 0.00 .5620E-01 Millimeters ters^2. Total Power = 2.077 , Pos= 2.5244E-03, Rayleigh 3 Millimeters	00 (deg) 4E+00 Watts = 3.4247E-01
Graph Te	ext Prop Report				Graph Te	xt Prop Report		

Re-optimize to obtain minimum M² Value.

Before optimization

to get value of M²

	Merit Fun	ction Editor										▼ - □ ×
$\Rightarrow \square \triangleright \land \land \land \land \bullet = \triangleleft \otimes \Rightarrow \leftrightarrow \Rightarrow \otimes$												
•	Wizards	and Operand	ls 🔇	>			Merit Functio	on:	0.4995866	585414209)	
	Туре	Surf	Wave	Field	Data	Xtr1	Xtr2		Target	Weight	Value	% Contrib
1	POPD -	5	0	0	25	0.000	0.000		1.000	5.000	1.547	99.995
2	GBPS -	5	1	0	1.150	0.000	1.000		0.000	1.000	8.305E-03	4.606E-03

After optimization

	Merit Fund	tion Editor										▼ - □ ×	
$\Rightarrow \Box \triangleright \land X \land \bullet \ \ \bullet \ \ \bullet \ \Rightarrow \otimes$													
•	Wizards and Operands 🕜 > Merit Function: 0.110688181777744												
	Туре	Surf	Wave	Field	Data	Xtr1	Xtr2		Target	Weight	Value	% Contrib	
1	POPD -	5	0	0	25	0.000	0.000		1.000	5.000	1.085	48.860	
	CRDC -	5	1	0	1 1 5 0	0.000	1.000		0.000	1.000	0.194	51,140	

Example 3: Zemax Examples

Investigate the examples at:

C:\<Zemax>\Samples\Non-sequential\Coherence Interference and Diffraction