

Lectures Notes on Optical Design using Zemax OpticStudio

Lecture 27 Zemax Programming Language

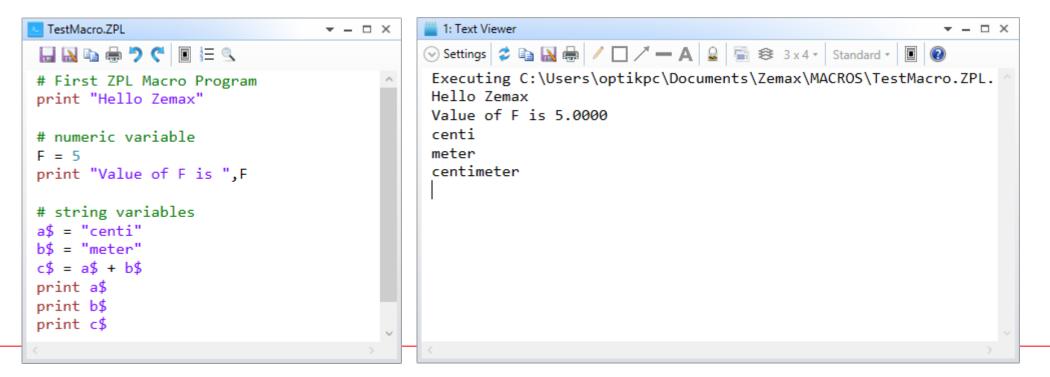
Ahmet Bingül

Gaziantep University Department of Optical Engineering # First ZPL Macro Program
print "Hello Zemax"

numeric variable
F = 5
print "Value of F is ",F

string variables
a\$ = "centi"
b\$ = "meter"
c\$ = a\$ + b\$
print a\$
print b\$
print c\$

Content

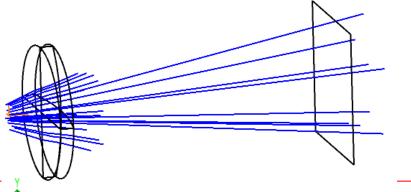

- Introduction
- Example Simulations using Macro Files

Introduction

- Zemax is a powerful tool for optical design, but sometimes designers need extra features for special tasks. To help with this, Zemax includes the Zemax Programming Language (ZPL).
- ZPL is a simple programming language, similar to BASIC, that lets users create their own custom functions.
- ZPL file is also known as Macro file.
- A detailied guide for ZPL can be in <u>Appendix 4</u> at the course web page.

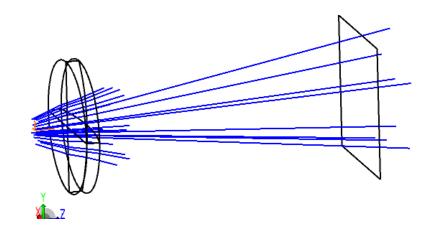
Example 1: How to Edit / Run Macro Files

File Setup	Analyze	Optimize	Tolerance	Libraries	Part Desigr	ner P	rogramming	STAF	Help		
	*	₩?		*	2	?		CPP	*	-	ţ
Macro Edit/Run List ▼		New Macro Macro Help	User Analyses •	User Extensions •	Interactive Extension	ZOS-AF Help	-	C++ •	Mathematica •	MATLAB	Python •
ZP	L Macros			ZOS-API.NET	Applications			ZOS-AP	I.NET Applicati	on Builders	;
System Explorer 🕐		lew Macro									
Update: All Window	vs •	Α.	Create a new 2	ZPL macro							
 Wavelengths 		22									
Environment		Zas									
 Polarization 		V									
 Advanced 	-										
Material Catalog:	s L	No shortcut k	ey assigned								



Example 2: Ray Tracing and Getting Detector Data

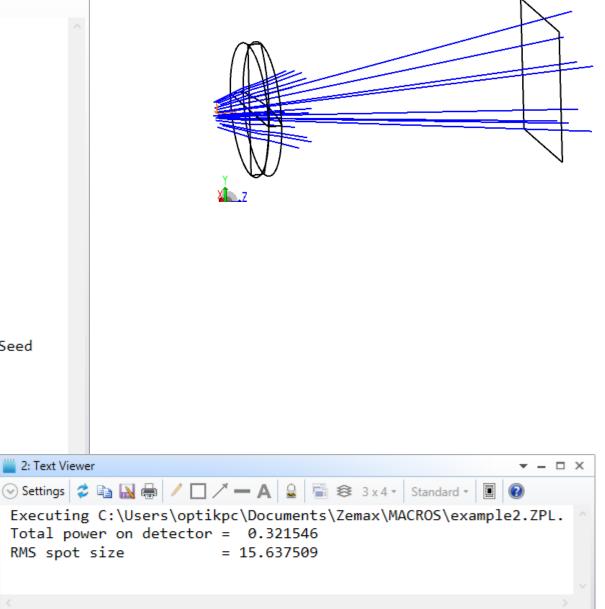
Consider the following system and a merit function:


Source Gaussian	Standart Lens	Detector Rectangle
Beam Size = 5 mm	Material = PMMA	X-HW = Y-HW = 20
Position = 10 mm	Thickness = 6 mm	X-pix = Y -pix = 250
	Radius2 = -100 mm	
	Edge1=Edge2=Clear1=Clear2=20 mm	

	Non-Sequential Component Editor																	
Up	Ipdate: All Windows \cdot (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4																	
•	Object 2 Properties Source																	
	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	Radius 1	Conic 1	Clear 1	Edge 1	Thickness	Radius 2	
1	Source Gaussian 🔻		0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	20	1E+06	1.000	0	0	5.000	
2	Standard Lens 🔻		0	0	0.000	0.000	10.000	0.000	0.000	0.000	PMMA	0.000	0.000	20.000	20.000	6.000	-100.000	
3	Detector Rectangle 🔻		0	0	0.000	0.000	100.000	0.000	0.000	0.000		20.000	20.000	250	250	0	0	
		<																\rightarrow

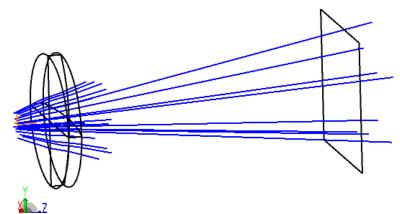
Merit function to read total power on detector:

	Merit Func	tion Editor										▼ - □ >
Wizards and Operands Merit Function: 0												
	Туре	Surf	Src#	Splt?	Scat?	Pol?	lgEr?		Target	Weight	Value	% Contrib
1	NSDD 🔻	1	0	0	0	0	0.000		0.000	0.000	0.000	0.000
2	NSTR 🔻	1	0	1	0	1	1.000		0.000	0.000	0.000	0.00
3	NSDD -	1	3	0	0	0	0.000		0.000	0.000	0.322	0.000



The same operation can be done using ZPL macro as follows:

		2: Text Viewer
E example2.ZPL	- □ ×	⊙ Settings 💈 🗈 🔜 🖶 🖊 🔲 🗡 — 🗛 🔒 🖼 🕸 3 x 4 + Standard + 🔳 🔞
🔚 🔜 🖶 🏓 🦿 💌 🗏 🔍		Executing C:\Users\optikpc\Documents\Zemax\MACROS\example2.ZPL.
<pre>clear = NSDD(1,0,0,0) NSTR 1, 0, 1, 0, 1, 1 totalPower = NSDD(1,3,0,0) print "Total power on detector = ",totalPower </pre>	~	Total power on detector = 0.3215
<	>	


example2.ZPL

```
▼ - □ >
🔚 🔜 🖶 🏓 🦿 🖉 🗏 🖳
 1 ****
 2 # example2.zpl
 3 # This is written in details
 5 \text{ true} = 1
 6 false = 0
 7
8 SplitNSCRays = true
9 Polarization = false
10 Scattering = false
11 IgnoreErrors = true
12 RandomSeed = false # false means "set seed from comupter timer"
13
14 # clear all detectors
15 \, \text{clear} = \text{NSDD}(1,0,0,0)
16
17 # start rays tracing with options above
18 NSTR 1, 0, SplitNSCRays, Polarization, Scattering, IgnoreErrors, RandomSeed
19
20 # compute total power and rms spot size
21 TotalPower = NSDD(1,3, 0,0)
22 \text{ RmsRadius} = \text{NSDD}(1,3,-9,0)
23
24 format 9.6
                                                                     2: Text Viewer
25 print "Total power on detector = ",TotalPower
26 print "RMS spot size = ",RmsRadius
27
```


Example 3: More Settings

In this macro example, we'll use the same setup (as in Example2) Source Gaussian -> Std.Lens -> Detector Rectangle

we'll see three keywords: SETSYSTEMPROPERTY code, value1, value2 SETNSCPARAMETER surface, object, parameter, value SETNSCPOSITION surface, object, code, value

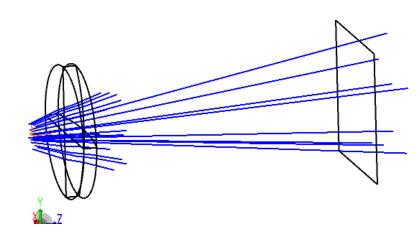
and two control statements:

IF (expression) (commands) ELSE (commands) FOR variable, start_value, stop_value, increment (commands) NEXT (commands) ENDIF

```
example3.ZPL
```

```
🔚 🔊 🖶 ラ 🧲 🗏 🗄 🔙
```

- □ ×


```
# set system wavelength
Wavelength = 1.0 # um
code = 202
SETSYSTEMPROPERTY code, 1, Wavelength
```

```
# set number of rays
NumberOfRays = 100000
sourceObject = 1
SETNSCPARAMETER 1, sourceObject, 2, NumberOfRays
```

```
print "Wavelength = ",Wavelength
print "Number of rays = ",NumberOfRays
if (NumberOfRays >= 1e6)
    beep
    print "Number of rays desired is too high!"
    print "Analysis may take a while"
endif
```

```
startVal = 20
endVal = 50
stepSize = 5
```

```
for zpos,startVal,endVal,stepSize
   SETNSCPOSITION 1, 3, 3, zpos # set detector z-position
   cleanUp = NSDD(1,0,0,0)
   NSTR 1,0,1,0,1,1
   power = NSDD(1,3,0,0) # optical power
   rms = NSDD(1,3,-9,0) # rms value
   print "zpos = ", zpos, " power = ", power, " rms = ",rms
next
```


🚆 2: Text Viewer 💌 🚽	n x
⊙ Settings 🕏 🗈 🔛 🖶 🖊 🔲 🗡 — A 🔒 🖷 🕸 3 x 4 τ Standard τ 🔳 🔞	
Executing C:\Users\optikpc\Documents\Zemax\MACROS\example3.ZPL Wavelength = 1.0000 Number of rays = 100000.0000 zpos = 20.0000 power = 0.9218 rms = 9.5158 zpos = 25.0000 power = 0.9086 rms = 10.7303 zpos = 30.0000 power = 0.8837 rms = 11.7428 zpos = 35.0000 power = 0.8471 rms = 12.5550 zpos = 40.0000 power = 0.8017 rms = 13.1993 zpos = 45.0000 power = 0.7509 rms = 13.6952 zpos = 50.0000 power = 0.6991 rms = 14.0920	• ^

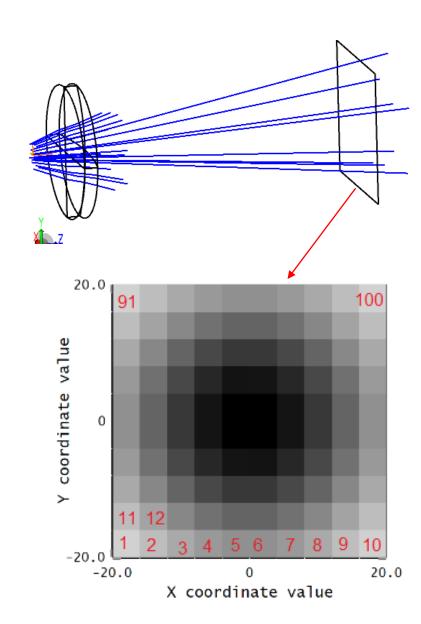
Example 4: Getting Detector Data

In this macro example, we'll use the same setup (as in Example2)

* NSDD operand to get detector data as follows: NSDD (1, Det, Pix, Data)

Det = detector number (for our case 3)

Pix = pixel number (from 0, 1, 2, ..., #number of pixels)


Data = 0 power (flux), Data = 1 power/area (irradiance), ...

* PRINT can not only output messages to the display, but also output messages to files using keyword OUTPUT.

OUTPUT SCREEN

OUTPUT filename\$

OUTPUT filename\$, APPEND

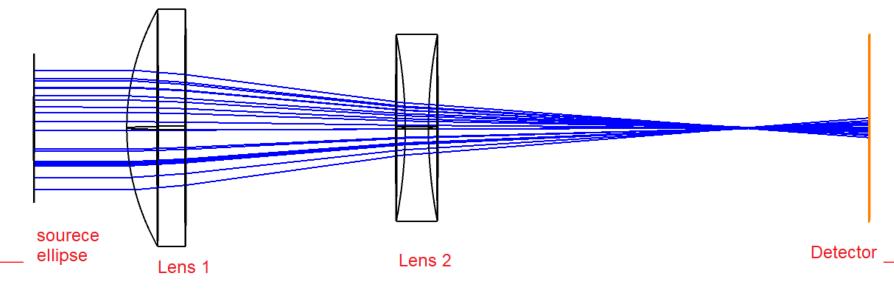

```
example4.ZPL
🔚 🔜 🖶 🗭 🤇 🔲 🔚 🔍
 2 # example4.zpl
3 # In this macro we use the same setup (as before)
 4 # Source Gauss -> Std.Lens -> Detector Rectangle
 6 # set number of rays
7 NumberOfRays = 100000
8 sourceObj = 1
9 SetNSCParameter 1, sourceObj, 2, NumberOfRays
10 # set detector properties (we have 10x10 matrix)
11 \text{ npixx} = 10
12 \text{ npixy} = 10
13 \text{ xhw} = 20
14 \text{ yhw} = 20
15 detectorObj = 3
16 SetNSCParameter 1, detectorObj, 1, xhw
17 SetNSCParameter 1, detectorObj, 2, yhw
18 SetNSCParameter 1, detectorObj, 3, npixx
19 SetNSCParameter 1, detectorObj, 4, npixy
20
21 npix = npixx*npixy # total # of pixels
22 ps = 2*xhw/npixx # pixel size
23
24 file$ = "C:\Users\optikpc\Desktop\output.txt"
25 print "Data will be written to ",file$
26 output file$
27 print "number of pixels = ", npix
28 print "size of one pixel = ", ps
29 print
30 format 12.5 EXP # scientific format
31 # clear all detectors and start ray tracing
32 \text{ clearDet} = \text{NSDD}(1,0,0,0)
33 NSTR 1,0,1,0,1,1
34
35 # print out detector data (power/area) for each pixel
36 for pix,1,npix,1
```

```
37 intensity = NSDD(1,3,pix,1)
38 print "pix = ", pix," value = ",intensity
39 next
40
```


📗 output - Not Defteri

- - X

and output - Not Denen		\sim
<u>D</u> osya Dü <u>z</u> en <u>B</u> içim <u>G</u> örünüm <u>Y</u> ardım		
number of pixels = 100.0000		
size of one pixel = 4.0000		
pix = 1.00000E+00 value = 1.44436E-02		
pix = 2.00000E+00 value = 2.02603E-02		
pix = 3.00000E+00 value = 2.63612E-02		
pix = 4.00000E+00 value = 3.15129E-02		
pix = 5.00000E+00 value = 3.42456E-02		
pix = 6.00000E+00 value = 3.42276E-02		
pix = 7.00000E+00 value = 3.14818E-02		
 		>


100%

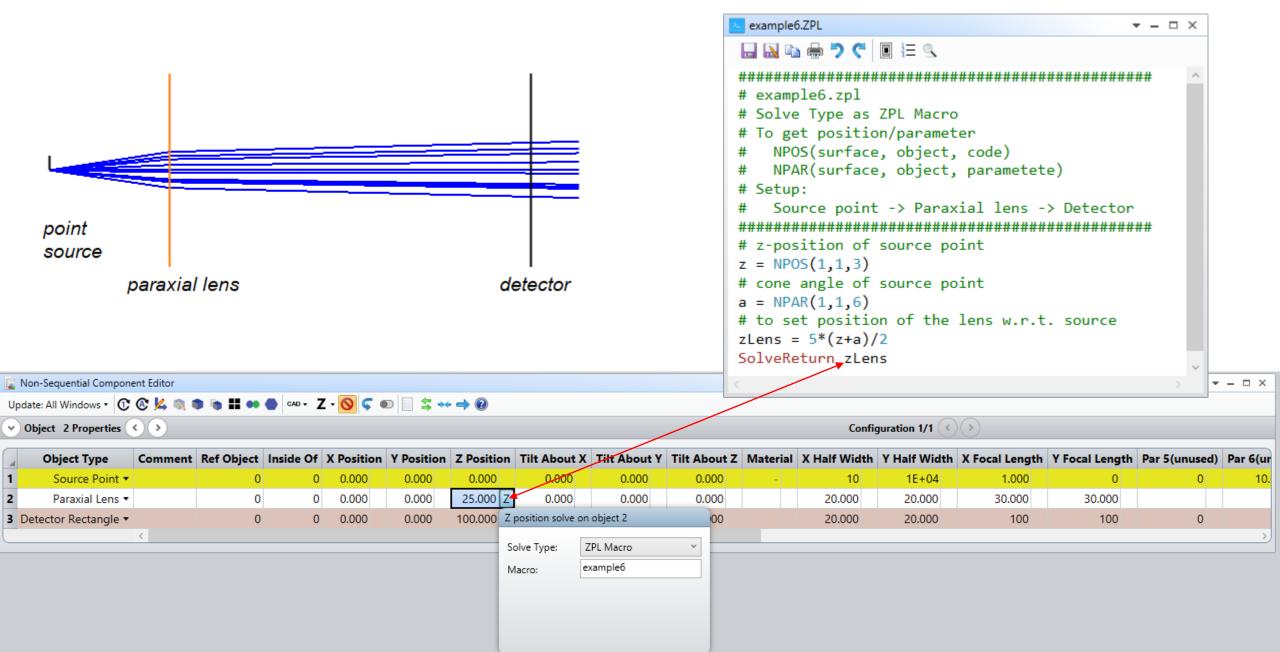
Windows (CRLF) UTF-16 LE

Example 5: Setup Optical Sys. in Macro

In this macro example, we'll setup a system using a macro file. We will use the following keywords (surface=1 for all NSC objects):

INSERTOBJECT	surface,	object		
SETNSCPROPERTY	surface,	object,	code,	face, value
SETNSCPARAMETER	surface,	object,	parame	eter, value
SETNSCPOSITION	surface,	object,	code,	value
SETSYSTEMPROPERTY	code, val	uel, val	Lue2	

example5.ZPL 🔚 🔜 🖶 🖨 🍎 🧲 🔳 🗄 🔍 # example5.zpl # This macro first creates a system including: # SourceEllipse+Lens1+Lens2+Detector # Then, finds the detector's z-pos to get min rms size. # See cource web page to download this macro file. # object 1 (Source Ellipse) print "Setting source ellipse" SetNSCProperty 1,1,0,0, "NSC_SRCE" SetNSCParameter 1,1,1,2e1 # #of layout rays SetNSCParameter 1,1,2,1e4 # #of analysis rays SetNSCParameter 1,1,3,0.1 # source power SetNSCParameter 1,1,6,8.0 # x-half width SetNSCParameter 1,1,7,8.0 # y-half width # object 2 (standart lens1) print "Setting lens 1" InsertObject 1,2 SetNSCProperty 1,2,0,0, "NSC_SLEN" SetNSCProperty 1,2,4,0, "N-BK7"


SetNSCPosition 1,2,3,10.000 # z-pos SetNSCParameter 1,2,1,25.940 # radius1 SetNSCParameter 1,2,3,12.700 # clear1 SetNSCParameter 1,2,4,12.700 # edge1 SetNSCParameter 1,2,5, 6.320 # center thickness SetNSCParameter 1,2,6, 0.000 # radius2 SetNSCParameter 1,2,8,12.700 # clear2 SetNSCParameter 1,2,9,12.700 # edge2 # object 3 (standart lens2) print "Setting lens 2" InsertObject 1,3 SetNSCProperty 1,3,0,0, "NSC_SLEN" SetNSCProperty 1,3,4,0, "N-BK7" SetNSCPosition 1,3,3, 40.000 # z-pos SetNSCParameter 1,3,1,-52.103 # radius1 SetNSCParameter 1,3,3, 10.000 # clear1

1: Text Viewer Setting source ellipse Setting lens 1 Setting lens 2 Setting detector Optimizing to find best focus ... x pos = 50.0000 rms min = 1.8274 x pos = 51.0000 rms min = 1.7668 x pos = 52.0000 rms min = 1.6853 x pos = 53.0000 rms min = 1.6273 x pos = 54.0000 rms min = 1.5607 x pos = 55.0000 rms min = 1.4845 x pos = 56.0000 rms min = 1.4210 x pos = 57.0000 rms min = 1.3566 x pos = 58.0000 rms min = 1.2829 x pos = 59.0000 rms min = 1.2180x pos = 60.0000 rms min = 1.1532x pos = 61.0000 rms min = 1.0850 x pos = 62.0000 rms min = 1.0200 x pos = 63.0000 rms min = 0.9523x pos = 64.0000 rms min = 0.8819x pos = 65.0000 rms min = 0.8120SetNSCParameter 1,3,4, 10.000 # edge1 x nos = 66.0000 rms min = 0.7465SetNSCParameter 1,3,5, 2.500 # center thickness SetNSCParameter 1,3,6, 52.103 # radius2 SetNSCParameter 1,3,8, 10.000 # clear2

 $= \Box \times$

 $- \Box X$ 🕑 Settings 💈 🗈 🔝 🌐 🖊 🔲 🗡 — 🗛 🔒 🞬 🕸 3 x 4 + Standard + 🔳 🔞 Executing C:\Users\optikpc\Documents\Zemax\MACROS\example5.ZPL.

Example 6: Solve Type as ZPL Macro

